An extendable exterior rearview mirror assembly includes a mirror subassembly, a bracket which is adapted for mounting to a vehicle, and a support which mounts the mirror subassembly to the bracket. support extends into the housing which is movable along the support. The housing includes a retracted position and at lease one outboard position, which define a direction of extension. The mirror assembly further includes a drive assembly which is supported in the housing and drivingly coupled to the support. The drive assembly selectively moves the housing along the support. The mirror assembly further includes a clutch mechanism which drivingly decouples the drive assembly from the support when a force of sufficient magnitude is applied to the housing in the direction of extension such that the housing can be manually moved along the support.
|
23. An electrically extended exterior rearview mirror assembly comprising:
a mirror subassembly having a housing and a reflective element; a bracket adapted for mounting to a vehicle; a pair of support arms pivotally mounting said minor subassembly to said bracket, said support arms extending into said housing, and said mirror subassembly being movable along said support arms and having a fully retracted viewing position and at least one outboard viewing position for said mirror subassembly, and said support arms being substantially within said housing when said subassembly is fully retracted and said support arms being visible exteriorly of said rearview mirror assembly when said mirror subassembly is moved to said outboard position; and a drive assembly drivingly coupled to outboard ends of said support arms, said drive assembly selectively moving said mirror subassembly along said support arms.
1. An electrically extendable exterior rearview mirror assembly comprising:
a mirror subassembly having a housing including a reflective element; a bracket adapted for mounting to a vehicle; a support pivotally mounting said mirror subassembly to said bracket, said support comprising a pair of support arms, said at-least-one support arms extending into said housing, said mirror subassembly being movable along said support arms in a direction of extension or retraction and having a fully retracted viewing position and at least one outboard viewing position for said mirror subassembly, and said support arms having outboard ends and being interconnected at said outboard ends; and a drive assembly drivingly coupled to said support at said outboard ends of said support arms, said drive assembly selectively moving said mirror subassembly along said support arms, and said drive assembly disengaging from said support when a force is applied to said housing in said direction of extension or refraction whereby said mirror subassembly can be manually moved along said support in said direction of extension or retraction.
29. An electrically extendable exterior rearview mirror assembly comprising:
a mirror subassembly having a housing and a reflective element supported in said housing; a bracket adapted for mounting to a vehicle; a pair of support arms pivotally mounting said mirror subassembly to said bracket, said support arms extending into said housing, and said mirror subassembly being one outboard viewing position for said mirror subassembly, and said support arms being substantially within said housing when said subassembly is fully retracted and said support arms being visible exteriorly of said rearview mirror assembly when said mirror subassembly is moved to stud outboard position: a drive assembly drivingly coupled to said support arms, said drive assembly selectively moving said mirror subassembly along said support arms, said support arms being connected by an interconnecting member, said drive assembly driving coupling to said interconnecting member to selectively move said mirror subassembly along said support arms, said drive assembly including a lead screw and a motor, said lead screw being supported by opposed end walls of said housing; and said interconnecting member including a clutch, and said motor driving said lead screw to drivingly engage said interconnecting member through said clutch, and said clutch drivingly decoupling said drive assembly from said support arms when a force of sufficient magnitude is applied to mirror subassembly into a direction of extension of said mirror assembly such that said mirror subassembly can be manually moved along said support.
2. The electrically extendable exterior rearview mirror assembly according to
3. The electrically extendable exterior rearview minor assembly according to
4. The electrically extendable exterior rearview mirror assembly according to
5. The electrically extendable exterior mirror assembly according to
6. The electrically extendable exterior rearview mirror assembly according to
7. The electrically extendable exterior rearview mirror assembly according to
8. The electrically extendable exterior rearview mirror assembly according to
9. The electrically extendable exterior rearview minor assembly according to
10. The electrically extendable exterior rearview minor assembly according to
11. The electrically extendable exterior rearview mirror assembly according to
12. The electrically extendable exterior rearview mirror assembly according to
13. The electrically extendable exterior rearview minor assembly according to
14. The electrically extendable exterior rearview mirror assembly according to
15. The electrically extendable exterior rearview mirror assembly according to
16. The electrically extendable exterior rearview mirror assembly according to
17. The electrically extendable exterior rearview mirror assembly according to
18. The electrically extendable exterior rearview mirror assembly according to
19. The electrically extendable exterior rearview mirror assembly according to
20. The electrically extendable exterior rearview mirror assembly according to
21. The electrically extendable exterior rearview mirror assembly according to
22. The electrically extendable exterior rearview minor assembly according to
24. The electrically extendable exterior rearview mirror assembly according to
25. The electrically extendable exterior rearview minor assembly according to
26. The electrically extendable exterior rearview minor assembly according to
27. The electrically extendable exterior rearview mirror assembly according to
28. The electrically extendable exterior rearview mirror assembly according to
30. The electrically extendable exterior rearview mirror assembly according to
31. The electrically extendable exterior rearview minor assembly according to
32. The electrically extendable exterior rearview minor assembly according to
33. The electrically extendable exterior rearview mirror assembly according to
|
This application is a divisional application of application Ser. No. 09/267,532, filed Mar. 12, 1999, and now U.S. Pat. No. 6,325,518, Peter J. Whitehead and Michiel P. van de Ven, entitled EXTENDABLE EXTERIOR REARVIEW MIRROR ASSEMBLY, the disclosure of which is hereby incorporated by reference herein.
The present invention relates to an extendable exterior rearview mirror assembly for mounting on a vehicle and, more particularly, to an exterior rearview mirror for mounting on a vehicle which can be selectively extended by the occupant of the vehicle to increase the field of view for example when the vehicle is used for towing a trailer, camper, another vehicle, or the like.
Conventional towing mirrors include a reflective element housed in a frame that is mounted to the body of a vehicle by a support and mounting bracket. The support extends the mirror a greater distance from the body of the vehicle than conventional exterior rearview mirrors in order to provide an unobstructed view to the rear of the towed object. For example, in U.S. Pat. No. 3,119,591 to A. J. Malecki an extendable rearview mirror assembly is disclosed which includes a rigid support for eccentrically mounting the mirror assembly in a fixed extended position from the vehicle. However, these fixed extended rearview mirror assemblies increase the width of the vehicle X in some vehicles, the width is increased beyond the maximum width allowed by conventional vehicle transport trucks which deliver the vehicles to the dealership. Therefore, these extended mirror assemblies are typically installed at the dealership which ultimately increases the cost of the vehicle.
In addition, the fixed extended rearview mirror assemblies is of limited use for a driver who only occasionally tows a trailer. Since such mirror assemblies substantially increase the width of the vehicle, they hamper normal maneuvering through passages such as those defined by garage door openings, drive-through banking structures, and the like. Furthermore, they are more vulnerable to being damaged or to causing damage than conventional exterior rearview mirrors, especially when used by an inexperienced driver. This inconvenience is compounded by the fact that not only do these extended rearview mirrors generally detract from the appearance of the vehicle, they increase the cost of the vehicle.
In response to the needs of drivers who only occasionally tow objects, several extendable mirror assemblies have been developed. For example, in U.S. Pat. Nos. 5,513,048 and 5,489,080 extendable mirrors are disclosed which includes telescoping tubular members which are fixed in position by threaded fasteners. Though simple in construction, these telescoping members typically require the operator to use a tool to adjust the position of the mirror. Moreover, they tend to increase the vibration of the mirror assembly, which may in turn loosen the connection between the telescoping members of the mirror assembly especially when the mirror assembly is in the outboard position.
In U.S. Pat. No. 5,546,239 to Lewis, an extendable mirror element is disclosed in which the mirror element is extended from the mirror casing to an outboard position. Again the mounting bracketry lacks the structure to perform well in vibration. Consequently, the mirror element is more vulnerable to damage.
More recently, manually extendable rearview mirror assemblies have included one or more mounting arms which releasably engage the housing of the mirror subassembly to permit manual extension of the mirror subassembly along the mounting arms, such as disclosed in pending U.S. patent application Ser. No. 08/838,877, filed Apr. 19, 1997, by Peter J. Whitehead, now U.S. Pat. No. 5,969,890, which is assigned to Donnelly Corporation of Holland, Mich., which is herein incorporated by reference in its entirety. Other more recent extendable mirrors include one or more mounting arms which frictionally engage the mirror subassembly housing to permit selective manual adjustment of the position of the housing along the mounting arm, such as disclosed in pending U.S. patent application Ser. No. 08/821,458 filed Mar. 21, 1997, to Steven G. Hoek, now U.S. Pat. No. 5,903,402, which is assigned to Donnelly Corporation of Holland, Mich. and which is herein incorporated by reference in its entirety.
In contrast, U.S. Pat. No. 5,572,376 to Pace discloses an electrically actuated extendable vehicle mirror which includes a rack and pinion system and a drive motor to translate the mirror longitudinally along the mirror support arm. Despite the enhanced control of the position of the mirror, the Pace assembly does not include any safety features that prevent the mirror from being damaged when it inadvertently overextended or provide a manual override option which are both highly desirable. In addition, the Pace drive assembly is relatively complicated and the associated parts increase the weight of the mirror assembly significantly. With an increased number of parts, the cost of manufacture increases. Further, weight increases of this magnitude tend to increase the vibration of the mirror assembly and degrade the performance of the mirror.
Consequently, there is a need for an extendable exterior rearview mirror that can be installed at the factory, which provides extended field of view required when towing vehicles and yet be retracted to a normal operating position where it does not hamper the maneuverability of the vehicle. Moreover, the extendable rearview mirror should have minimal impact on the vibration of the mirror assembly and be relatively easy to adjust between non-towing and towing positions by the occupant of the vehicle without the need for tools and yet provides a safety mechanism and manual override option.
Accordingly, the present invention provides an improved extendable exterior rearview mirror assembly, especially suited for towing vehicles, which is selectively adjustable between a retracted position for normal non-towing use and one or more extended positions in which the mirror assembly is outboard of its normal position allowing an increased field of view to the rear of a towed trailer or the like. These functions are provided by a drive assembly which allows the occupant of the vehicle to selectively adjust the position of the mirror housing and a clutch mechanism which provides a safety release for the drive assembly and, further, allows manual adjustment of the mirror housing.
According to one aspect of the invention, an extendable exterior rearview mirror assembly includes a mounting bracket adapted for mounting to a vehicle, a support supported by the mounting bracket, a mirror subassembly having a housing and a reflective element supported by the housing and being movably mounted on the support, and a drive assembly supported in the housing. The drive assembly selectively engages the support to move the housing with respect to the support to adjust the position of the mirror subassembly. The extendable exterior rearview mirror further includes a clutch for decoupling the driver from engagement with the support which provides a safety mechanism and a manual override option. In one form, the mirror subassembly is selectively moved along the support between inboard and outboard positions by the drive assembly.
In another form, the support comprises a pair of support arms, with the support arms extending into the housing of the mirror subassembly. The support arms are interconnected by a member with the member being coupled to the drive assembly. In one form, the member is releasably coupled to the drive assembly.
According to another form, the drive assembly includes a motor, a drive pulley, an idler pulley, and a belt which extends around the drive pulley and the idler pulley. The belt is coupled to the support such that when the motor drives the drive pulley, the housing moves along the support. The support may comprise a pair of arms, with the support arms being interconnected by a member and with the member being coupled to the belt.
In yet another form, the drive assembly includes a motor and a plurality of rollers. The motor drives the rollers to frictionally engage the support to move the housing along the support. For example, the driver may include a drive rod, with the rollers being mounted on the drive rod with both the drive rod and the rollers extending into the support. The support may comprise a tubular member, with the rollers engaging the inner surface of the tubular member to thereby move the housing along the support.
According to yet another form of the invention, the drive assembly includes a lead screw and a motor. The lead screw extends through a portion of the support and is driven by the motor to move the housing on the support. Preferably the support includes a pair of support arms, with the support arms being interconnected by a member. The lead screw extends through the member. Optionally, the member includes flexible thread engaging portions for engaging the lead screw whereby the flexible thread engaging portions disengage from the lead screw when a force is applied to the housing in the direction of the extension thus permitting manual adjustment of the housing along the support.
In another form, the support includes a tooth rack. The drive assembly includes a motor and at least one movable piston which is driven by the motor to drivingly engage the tooth rack to selectively move the housing along the support. In one form, the piston is mounted on a shaft, which is driven by the motor. The shaft imparts motion to the piston and moves the piston in a cycloidal path to drivingly engage the tooth rack. Optionally, the drive assembly may include a plurality of piston members and a corresponding plurality of drivers, with the drivers selectively and sequentially moving the pistons into engagement with the tooth rack to move the housing along the support. For example, the drivers may comprise solenoids.
According to another aspect of the invention, an extendable exterior rearview mirror assembly includes a mirror subassembly having a housing and a reflective element, a bracket which is adapted for mounting to a vehicle, a support which is mounted to the bracket, and a link which pivotally mounts the mirror subassembly to a the support. The mirror assembly further includes a drive assembly supporting the housing which is drivingly coupled to the support and moves the housing between a retracted position and at least one extended position which define a direction of extension. The drive assembly includes a clutch for decoupling the drive assembly from the support when a force is applied to the housing in the direction of extension to provide manual adjustment of the position of the housing.
As will be understood, the extendable exterior rearview mirror assembly of the present invention provides numerous advantages over the prior known mirror assemblies. The extendable exterior rearview mirror assembly provides an extended field of view for towing vehicles and yet can be retracted to a normal operating position by the occupant of the vehicle to return the vehicle to its normal width. Therefore, the extendable exterior rearview mirror assembly of the present invention can be installed at the factory. Moreover, the extendable mirror subassembly of the exterior rearview mirror assembly includes a safety release so that the mirror subassembly can be manually adjusted and, further, the drive assembly is protected from damage if the mirror assembly is inadvertently overextended.
These and other objects, advantages, purposes and features of the invention will become more apparent from the study of the following description taken in conjunction with the drawings.
Referring to
As best seen in
Housing 20 is preferably a modular housing and injection molded from non-electrically conductive material, such as suitable thermoplastic resin. Housing 20 includes a rearward facing opening 28, in which reflective element assembly 22 is positioned, and one or more sleeves 30 for receiving housing support 16. In the illustrated embodiment, housing support 16 includes a pair of support arms 32 and 34, which extend into respective sleeves 30 of housing 20 for supporting housing 20 thereon. Support arms 32 and 34 may comprise tubular members and are, preferably, injection molded from non-electrically conductive material, similar to housing 20. Housing 20 moves in and out on support arms 32 and 34 to permit the extension of mirror subassembly 18 from vehicle 12 between an in board position and one or more outboard positions. The outboard positions provide larger fields of view which is suitable for viewing rearward towed objects, such as campers, trailers, or the like. The position of housing 20 is selectively controlled by a drive assembly 36, as will be discussed in more detail below.
As best seen in
As noted above, support arms 32 and 34 extend into housing 20 through sleeves 30 and, further, are interconnected at their free ends 32a and 34a by a plate member 42. Drive assembly 36 includes a motor 44 and a drive or lead screw 46, which includes a reduction gear 48 that is driven by a drive gear 50 of motor 44 (FIG. 4). Motor 44 is preferably powered by the vehicle battery and is electrically coupled to the vehicle electrical system through electrical leads 44c, which may be bundled along with other wiring in a harness, preferably an extendable harness, such as a spring mounted or coiled harness. It should be understood, further, that electrical leads 44c may be electrically coupled to an electronic module or the like housed in mirror subassembly 18, support 16, or bracket 14. Further, motor 44 is preferably actuated by a remote switch or toggle which is mounted in the vehicle cabin and, more preferably, in the vehicle cabin in close proximity to the driver. In addition, the switch or toggle preferably includes selection between the left and right mirror assemblies so that each mirror assembly can be individually controlled to extend or contract. Drive screw 46 extends through housing 20 and is optionally supported on opposed side walls 52 and 54 for example by bushings 56 and 58. Motor 44 is supported by motor supports 44a and 44b, which are in turn supported by housing wall 20a. Optionally, motor supports 44a and 44b may be formed as an integral part of housing 20 during molding. In a similar manner, bushings 56 and 58 may be directly adhered to housing wall 20a or optionally may be mounted in bushing supports which are either adhered to or molded along with housing 20. Drive screw 46 extends through plate member 42 to selectively couple drive assembly 36 to support 16. Plate member 42 includes flexible tongues or fingers 60 with tapered distal ends 62 which form threads for engaging threads 64 of drive screw 46. In this manner, when motor 44 drives drive screw 46, housing 20 is translated along support arms 32 and 34. Furthermore, flexible fingers 60 are sufficiently flexible to permit disengagement of tapered portion 62 from threads 64 of drive screw 46 when a force is applied to housing 20 in the direction of extension. In this manner, flexible fingers 60 form a clutch and permit manual override of drive assembly 36. In addition, flexible fingers 60 provide a safety override, for example when housing 20 is driven to extend into a rigid or fixed object, tapered portion 62 will disengage from threads 64 to drivingly decouple drive assembly 36 from support 16.
It should be noted that drive assembly 36 may include a bi-state or may be preprogrammed to index mirror subassembly 18 between desired positions along support 16. Alternately, drive assembly 36 may provide continuous movement driving the mirror subassembly between an infinite number of positions along support 16 between its fully retracted and its fully extended positions. In addition, drive assembly 16 may be coupled to a lock-out device or mechanism which prevents inadvertent or intended actuation of the extension of mirror subassembly 18 while the vehicle is driven down the highway. Such lockout device may be provided by a circuitry which detects: when the vehicle is placed in gear; or motion or speed of the vehicle. The circuitry may also be electrically coupled to and detect the operation of the ignition system. In such circumstances, the selection and setting of the position of the exterior mirror subassembly needs to be achieved in the non-operating mode.
Referring to
Similar to the first embodiment, support arms 132 and 134 are interconnected by a plate member 142 to which closed drive belt 146 is coupled by a belt clamp 152. In this manner, as drive belt 146 is driven around pulleys 148a and 148b, housing 120 is translated or moved along support arms 132 and 134 to its desired position.
Referring again to
Alternately, as seen in
A third embodiment 210 of an extendable rearview mirror assembly is illustrated in
Referring to
Referring to
In the illustrated embodiment, support 316 includes a pair of spaced apart support arms 332 and 334 which are pivotally mounted to mounting bracket 314 on a pivot bushing 340. Support arm 332 extends into upper sleeve 330a of housing 320 and includes an enlarged end, for example a flange, which defines a stop 332a. Support arm 334 extends into lower sleeve 330b of housing 320 and similarly includes an enlarged end 334a to define a stop. In this manner, housing 320 is movable between an in board position, with housing 320 in close proximity or abutting mounting bracket 314 and one or more extended positions, with an outermost extended position being defined where stops 332a and 334a abut sleeves 330a and 330b.
Housed in mirror subassembly 318 is a drive assembly 326. Drive assembly 326 includes a motor 344, which is supported or mounted to casing wall 320a by motor supports 344a and 344b, and a drive rod or tube 346. Drive rod 346 is mounted to housing 320 by one or more bushing supports 352 and includes a driven gear 348 which is driven by a motor drive gear 350. In the illustrated embodiment, driven gear 348 and drive gear 350 are beveled gears; however, it should be understood by those skilled in the art that other gear arrangements, for example worm gear arrangements may be used to rotate drive rod 346 about its longitudinal axis 346a. Mounted to end portion 346b of drive rod 346 is a frictional roller assembly 356. As will be described in further detail below, frictional roller assembly 356 frictionally engages the inner surface 334b of support arm 334 to move or translate housing 320 along support arms 332 and 334.
Referring to
It should be understood that rollers 360 may comprise wheels or the like. Preferably, rollers 360 comprise a relatively high friction material, for example rubber or the like. Further, drive rod 346 may include a plurality of threads similar to drive rod 246, with motor 344 including a worm gear similar to motor 244. Moreover, similar to mirror assembly 210, mirror assembly 310 may include a second drive rod for extending into and frictionally engaging the inner surface 332a of support arm 332.
Referring to
As previously noted, tooth pistons 438, 440, and 442 are each individually actuated and moved by solenoid coils 444, 446 and 448 such that their respective tapered ends 439a extend into and engage tooth rack 454. In order to translate housing member 420 toward bracket 414, tooth pistons 438, 440 and 442 are sequenced such that piston 438 is initially extended into engagement with one of the threads on tooth rack 454 as shown in FIG. 11A. As shown in
Referring to
Referring to
A seventh embodiment of an exterior rearview mirror assembly 610 is illustrated in FIG. 14. Mirror assembly 610 includes a mounting bracket 614, a support 616, and a mirror subassembly 618 movably mounted to support 616. Support 616 includes a C-shaped mounting portion which includes a pair of spaced support arms 616a and 616b. Support arms 616a and 616b are pivotally mounted to a mounting portion 614A of mounting bracket 614 on a pivot bushing 640. Cantilevered from the C-shaped member of support 616 is a mounting arm 632 which extends into an opening 622 provided in mirror subassembly housing 620. Distal end 632a of mounting arm 632 includes a transversely extending axle 624 which extends into a bushing or the like (not shown) on rearward facing wall 626 of housing 620. Mounted on a projecting end 624b of axle 624 is a friction member 654 and a drive wheel or gear 652. Drive wheel 652 is rotatably mounted on free end 624b but is urged into frictional engagement with friction member by a spring 655, which is mounted between drive wheel 652 and an enlarged end portion 665 of axle 624. Spring 655 urges drive wheel 654 into frictional engagement with friction member 654 in order to drivingly couple motor 644 to arm 632. In this manner, when motor 644 is coupled to mounting arm 632 and actuated, housing 620 is rotated about axle 624. However, when housing 620 moves into engagement with a rigid structure or object or when a sufficient rotational force is applied to housing 622 about axle axis 624a to compress spring 655, motor 644 is drivingly decoupled from mounting arm 632 to permit manual adjustment of the position of housing 620 about axle 624. It should be understood, that friction member 654 may include a plurality of detents or the like for engaging a corresponding plurality of recesses or the like formed in drive wheel 652 in a similar manner to the previous embodiment shown in FIG. 5A.
In the illustrative embodiment, axle 624 is shown as an integral part of mounting arm 632; however, it should be understood that a separate axle may be mounted to free end of 632a. Furthermore, friction member 654 may be omitted with drive wheel or gear 652 frictionally engaging mounting arm 632 or may include detents to engage corresponding recesses formed in friction member 654 or mounting arm 632. These and other variations may be appreciated from the preceding description.
Referring to
As best seen in
In addition, in order to reduce the aerodynamic drag of mirror subassembly 716, upper wall 728 of housing 720 includes a recessed portion 728a which permits link 722 to be mounted flush with an upper surface 720b of housing 720 and yet permits the full range of motion of lever 722 between the mirror's fully retracted position to its fully extended position.
Referring to
Furthermore, while one form of the invention has been shown and described, other forms will now be apparent to those skilled in the art. For example, the various embodiments illustrate electrically actuated drive assemblies, but it should be appreciated that other actuation systems may be used, such as a pneumatic system. In addition, as noted in reference to the first embodiment, the support may be fixed to the mounting bracket or have a breakaway mounting or a folding mounting or, further, may be directly mounted to the vehicle. The embodiment of the invention shown in the drawings is not intended to limit the scope of the invention which is defined by the claims which follow.
Whitehead, Peter John, van de Ven, Michiel Pieter
Patent | Priority | Assignee | Title |
10029616, | Sep 20 2002 | Donnelly Corporation | Rearview mirror assembly for vehicle |
10053013, | Mar 02 2000 | MAGNA ELECTRONICS INC. | Vision system for vehicle |
10131280, | Mar 02 2000 | Donnelly Corporation | Vehicular video mirror system |
10144355, | Nov 24 1999 | Donnelly Corporation | Interior rearview mirror system for vehicle |
10150417, | Sep 14 2005 | MAGNA MIRRORS OF AMERICA, INC. | Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle |
10166927, | May 19 2003 | Donnelly Corporation | Rearview mirror assembly for vehicle |
10175477, | Mar 31 2008 | MAGNA MIRRORS OF AMERICA, INC. | Display system for vehicle |
10179545, | Mar 02 2000 | MAGNA ELECTRONICS INC. | Park-aid system for vehicle |
10239457, | Mar 02 2000 | MAGNA ELECTRONICS INC. | Vehicular vision system |
10272839, | Jan 23 2001 | MAGNA ELECTRONICS INC. | Rear seat occupant monitoring system for vehicle |
10308186, | Sep 14 2005 | MAGNA MIRRORS OF AMERICA, INC. | Vehicular exterior rearview mirror assembly with blind spot indicator |
10363875, | Sep 20 2002 | DONNELLY CORPORTION | Vehicular exterior electrically variable reflectance mirror reflective element assembly |
10449903, | May 19 2003 | Donnelly Corporation | Rearview mirror assembly for vehicle |
10538202, | Sep 20 2002 | Donnelly Corporation | Method of manufacturing variable reflectance mirror reflective element for exterior mirror assembly |
10583782, | Oct 16 2008 | MAGNA MIRRORS OF AMERICA, INC. | Interior mirror assembly with display |
10661716, | Sep 20 2002 | Donnelly Corporation | Vehicular exterior electrically variable reflectance mirror reflective element assembly |
10829052, | May 19 2003 | Donnelly Corporation | Rearview mirror assembly for vehicle |
10829053, | Sep 14 2005 | MAGNA MIRRORS OF AMERICA, INC. | Vehicular exterior rearview mirror assembly with blind spot indicator |
11021107, | Oct 16 2008 | MAGNA MIRRORS OF AMERICA, INC. | Vehicular interior rearview mirror system with display |
11072288, | Sep 14 2005 | MAGNA MIRRORS OF AMERICA, INC. | Vehicular exterior rearview mirror assembly with blind spot indicator element |
11124121, | Nov 01 2005 | MAGNA ELECTRONICS INC. | Vehicular vision system |
11285879, | Sep 14 2005 | MAGNA MIRRORS OF AMERICA, INC. | Vehicular exterior rearview mirror assembly with blind spot indicator element |
11433816, | May 19 2003 | MAGNA MIRRORS OF AMERICA, INC. | Vehicular interior rearview mirror assembly with cap portion |
11577652, | Oct 16 2008 | MAGNA MIRRORS OF AMERICA, INC. | Vehicular video camera display system |
11718231, | May 27 2020 | CLEARVIEW PROPERTY MANAGEMENT PTY LTD | Assembly for attaching a rear view mirror to a vehicle |
11807164, | Oct 16 2008 | MAGNA MIRRORS OF AMERICA, INC. | Vehicular video camera display system |
6877868, | Sep 07 2001 | Schefenacker Vision Systems Australia Pty Ltd | Powered telescoping trailer tow mirror |
6929372, | Apr 27 2001 | Schefenacker Vision Systems Australia Pty Ltd | Power fold mechanism for double arm mirrors |
7172298, | Apr 27 2001 | Schefenacker Vision Systems Australia Pty Ltd | Power fold mechanism for vehicle mirrors |
7270430, | Sep 07 2001 | Schefenacker Vision Systems Australia Pty Ltd. | Powered telescoping trailer tow mirror |
7370983, | Mar 02 2000 | Donnelly Corporation | Interior mirror assembly with display |
7474963, | Mar 02 2000 | Donnelly Corporation | Navigational mirror system for a vehicle |
7490007, | Mar 02 2000 | Donnelly Corporation | Video mirror system for a vehicle |
7494231, | May 05 1994 | Donnelly Corporation | Vehicular signal mirror |
7543947, | May 05 1994 | Donnelly Corporation | Vehicular rearview mirror element having a display-on-demand display |
7571042, | Mar 02 2000 | Donnelly Corporation | Navigation system for a vehicle |
7572017, | May 05 1994 | Donnelly Corporation | Signal mirror system for a vehicle |
7579939, | Jan 07 1998 | Donnelly Corporation | Video mirror system suitable for use in a vehicle |
7579940, | Jan 07 1998 | Donnelly Corporation | Information display system for a vehicle |
7583184, | Mar 02 2000 | Donnelly Corporation | Video mirror system suitable for use in a vehicle |
7586666, | Sep 20 2002 | Donnelly Corp. | Interior rearview mirror system for a vehicle |
7589883, | May 05 1994 | Donnelly Corporation | Vehicular exterior mirror |
7619508, | Jan 23 2001 | Donnelly Corporation | Video mirror system for a vehicle |
7643200, | May 05 1994 | Donnelly Corp. | Exterior reflective mirror element for a vehicle rearview mirror assembly |
7667579, | Feb 18 1998 | Donnelly Corporation | Interior mirror system |
7711479, | Mar 02 2000 | Donnelly Corporation | Rearview assembly with display |
7728721, | Jan 07 1998 | Donnelly Corporation | Accessory system suitable for use in a vehicle |
7731403, | Jan 23 2001 | Donnelly Corpoation | Lighting system for a vehicle, with high-intensity power LED |
7771061, | May 05 1994 | Donnelly Corporation | Display mirror assembly suitable for use in a vehicle |
7815326, | Jun 06 2002 | Donnelly Corporation | Interior rearview mirror system |
7821697, | May 05 1994 | Donnelly Corporation | Exterior reflective mirror element for a vehicular rearview mirror assembly |
7822543, | Mar 02 2000 | Donnelly Corporation | Video display system for vehicle |
7826123, | Sep 20 2002 | Donnelly Corporation | Vehicular interior electrochromic rearview mirror assembly |
7832882, | Jun 06 2002 | Donnelly Corporation | Information mirror system |
7855755, | Jan 23 2001 | Donnelly Corporation | Interior rearview mirror assembly with display |
7859737, | Sep 20 2002 | Donnelly Corporation | Interior rearview mirror system for a vehicle |
7864399, | Sep 20 2002 | Donnelly Corporation | Reflective mirror assembly |
7871169, | May 05 1994 | Donnelly Corporation | Vehicular signal mirror |
7888629, | Jan 07 1998 | MAGNA ELECTRONICS, INC | Vehicular accessory mounting system with a forwardly-viewing camera |
7898398, | Aug 25 1997 | Donnelly Corporation | Interior mirror system |
7898719, | Oct 02 2003 | Donnelly Corporation | Rearview mirror assembly for vehicle |
7906756, | May 03 2002 | Donnelly Corporation | Vehicle rearview mirror system |
7914188, | Aug 25 1997 | MAGNA ELECTRONICS INC | Interior rearview mirror system for a vehicle |
7916009, | Jan 07 1998 | Donnelly Corporation | Accessory mounting system suitable for use in a vehicle |
7918570, | Jun 06 2002 | Donnelly Corporation | Vehicular interior rearview information mirror system |
7926960, | Nov 24 1999 | Donnelly Corporation | Interior rearview mirror system for vehicle |
7994471, | Jan 07 1998 | MAGNA ELECTRONICS, INC | Interior rearview mirror system with forwardly-viewing camera |
8000894, | Mar 02 2000 | Donnelly Corporation | Vehicular wireless communication system |
8019505, | Oct 14 2003 | Donnelly Corporation | Vehicle information display |
8044776, | Mar 02 2000 | Donnelly Corporation | Rear vision system for vehicle |
8047667, | Jun 06 2002 | Donnelly Corporation | Vehicular interior rearview mirror system |
8049640, | May 19 2003 | Donnelly Corporation | Mirror assembly for vehicle |
8063753, | Aug 25 1997 | Donnelly Corporation | Interior rearview mirror system |
8072318, | Jan 23 2001 | Donnelly Corporation | Video mirror system for vehicle |
8083386, | Jan 23 2001 | Donnelly Corporation | Interior rearview mirror assembly with display device |
8094002, | Jan 07 1998 | MAGNA ELECTRONICS INC | Interior rearview mirror system |
8095260, | Oct 14 2003 | Donnelly Corporation | Vehicle information display |
8095310, | Mar 02 2000 | Donnelly Corporation | Video mirror system for a vehicle |
8100568, | Aug 25 1997 | MAGNA ELECTRONICS INC | Interior rearview mirror system for a vehicle |
8106347, | May 03 2002 | Donnelly Corporation | Vehicle rearview mirror system |
8121787, | Mar 02 2000 | Donnelly Corporation | Vehicular video mirror system |
8134117, | Jan 07 1998 | MAGNA ELECTRONICS, INC | Vehicular having a camera, a rain sensor and a single-ball interior electrochromic mirror assembly attached at an attachment element |
8154418, | Mar 31 2008 | MAGNA MIRRORS OF AMERICA, INC. | Interior rearview mirror system |
8162493, | Nov 24 1999 | Donnelly Corporation | Interior rearview mirror assembly for vehicle |
8164817, | May 05 1994 | Donnelly Corporation | Method of forming a mirrored bent cut glass shape for vehicular exterior rearview mirror assembly |
8170748, | Oct 14 2003 | Donnelly Corporation | Vehicle information display system |
8177376, | Jun 06 2002 | Donnelly Corporation | Vehicular interior rearview mirror system |
8179236, | Mar 02 2000 | Donnelly Corporation | Video mirror system suitable for use in a vehicle |
8179586, | Oct 02 2003 | Donnelly Corporation | Rearview mirror assembly for vehicle |
8194133, | Mar 02 2000 | Donnelly Corporation | Vehicular video mirror system |
8228588, | Sep 20 2002 | Donnelly Corporation | Interior rearview mirror information display system for a vehicle |
8267559, | Aug 25 1997 | MAGNA ELECTRONICS INC | Interior rearview mirror assembly for a vehicle |
8271187, | Mar 02 2000 | Donnelly Corporation | Vehicular video mirror system |
8277059, | Sep 20 2002 | Donnelly Corporation | Vehicular electrochromic interior rearview mirror assembly |
8282226, | Jun 06 2002 | Donnelly Corporation | Interior rearview mirror system |
8282253, | Nov 22 2004 | Donnelly Corporation | Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle |
8288711, | Jan 07 1998 | MAGNA ELECTRONICS INC | Interior rearview mirror system with forwardly-viewing camera and a control |
8294975, | Aug 25 1997 | Donnelly Corporation | Automotive rearview mirror assembly |
8304711, | May 03 2002 | Donnelly Corporation | Vehicle rearview mirror system |
8309907, | Aug 25 1997 | MAGNA ELECTRONICS, INC | Accessory system suitable for use in a vehicle and accommodating a rain sensor |
8325028, | Jan 07 1998 | MAGNA ELECTRONICS INC | Interior rearview mirror system |
8325055, | May 19 2003 | Donnelly Corporation | Mirror assembly for vehicle |
8335032, | Sep 20 2002 | Donnelly Corporation | Reflective mirror assembly |
8355839, | Oct 14 2003 | Donnelly Corporation | Vehicle vision system with night vision function |
8379289, | Oct 02 2003 | Donnelly Corporation | Rearview mirror assembly for vehicle |
8400704, | Sep 20 2002 | Donnelly Corporation | Interior rearview mirror system for a vehicle |
8427288, | Mar 02 2000 | MAGNA ELECTRONICS INC | Rear vision system for a vehicle |
8462204, | May 22 1995 | Donnelly Corporation | Vehicular vision system |
8465162, | Jun 06 2002 | Donnelly Corporation | Vehicular interior rearview mirror system |
8465163, | Jun 06 2002 | Donnelly Corporation | Interior rearview mirror system |
8503062, | Jan 23 2001 | Donnelly Corporation | Rearview mirror element assembly for vehicle |
8506096, | Sep 20 2002 | Donnelly Corporation | Variable reflectance mirror reflective element for exterior mirror assembly |
8508383, | Mar 31 2008 | Magna Mirrors of America, Inc | Interior rearview mirror system |
8508384, | May 19 2003 | Donnelly Corporation | Rearview mirror assembly for vehicle |
8511841, | May 05 1994 | Donnelly Corporation | Vehicular blind spot indicator mirror |
8525703, | Apr 08 1998 | Donnelly Corporation | Interior rearview mirror system |
8543330, | Mar 02 2000 | MAGNA ELECTRONICS INC | Driver assist system for vehicle |
8559093, | Apr 27 1995 | Donnelly Corporation | Electrochromic mirror reflective element for vehicular rearview mirror assembly |
8577549, | Oct 14 2003 | Donnelly Corporation | Information display system for a vehicle |
8608327, | Jun 06 2002 | Donnelly Corporation | Automatic compass system for vehicle |
8610992, | Aug 25 1997 | Donnelly Corporation | Variable transmission window |
8653959, | Jan 23 2001 | Donnelly Corporation | Video mirror system for a vehicle |
8654433, | Jan 23 2001 | MAGNA MIRRORS OF AMERICA, INC. | Rearview mirror assembly for vehicle |
8676491, | Mar 02 2000 | MAGNA ELECTRONICS IN | Driver assist system for vehicle |
8705161, | Oct 02 2003 | Donnelly Corporation | Method of manufacturing a reflective element for a vehicular rearview mirror assembly |
8727547, | Sep 20 2002 | Donnelly Corporation | Variable reflectance mirror reflective element for exterior mirror assembly |
8779910, | Aug 25 1997 | Donnelly Corporation | Interior rearview mirror system |
8797627, | Sep 20 2002 | Donnelly Corporation | Exterior rearview mirror assembly |
8833987, | Sep 14 2005 | Donnelly Corporation | Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle |
8842176, | May 22 1996 | Donnelly Corporation | Automatic vehicle exterior light control |
8864325, | May 26 2008 | NIPPON SEIKI CO , LTD | Power transmission device |
8884788, | Apr 08 1998 | Donnelly Corporation | Automotive communication system |
8908039, | Mar 02 2000 | Donnelly Corporation | Vehicular video mirror system |
9014966, | Mar 02 2000 | MAGNA ELECTRONICS INC | Driver assist system for vehicle |
9019090, | Mar 02 2000 | MAGNA ELECTRONICS INC | Vision system for vehicle |
9019091, | Nov 24 1999 | Donnelly Corporation | Interior rearview mirror system |
9045091, | Sep 14 2005 | Donnelly Corporation | Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle |
9073491, | Sep 20 2002 | Donnelly Corporation | Exterior rearview mirror assembly |
9090211, | Sep 20 2002 | Donnelly Corporation | Variable reflectance mirror reflective element for exterior mirror assembly |
9221399, | Apr 08 1998 | MAGNA MIRRORS OF AMERICA, INC. | Automotive communication system |
9278654, | Nov 24 1999 | Donnelly Corporation | Interior rearview mirror system for vehicle |
9315151, | Mar 02 2000 | MAGNA ELECTRONICS INC | Driver assist system for vehicle |
9341914, | Sep 20 2002 | Donnelly Corporation | Variable reflectance mirror reflective element for exterior mirror assembly |
9352623, | Jan 23 2001 | MAGNA ELECTRONICS INC | Trailer hitching aid system for vehicle |
9376061, | Nov 24 1999 | Donnelly Corporation | Accessory system of a vehicle |
9481306, | Apr 08 1998 | Donnelly Corporation | Automotive communication system |
9487144, | Oct 16 2008 | Magna Mirrors of America, Inc | Interior mirror assembly with display |
9545883, | Sep 20 2002 | Donnelly Corporation | Exterior rearview mirror assembly |
9557584, | May 19 2003 | Donnelly Corporation | Rearview mirror assembly for vehicle |
9694749, | Jan 23 2001 | MAGNA ELECTRONICS INC. | Trailer hitching aid system for vehicle |
9694753, | Sep 14 2005 | MAGNA MIRRORS OF AMERICA, INC. | Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle |
9758102, | Sep 14 2005 | MAGNA MIRRORS OF AMERICA, INC. | Mirror reflective element sub-assembly for exterior rearview mirror of a vehicle |
9783114, | Mar 02 2000 | Donnelly Corporation | Vehicular video mirror system |
9783115, | May 19 2003 | Donnelly Corporation | Rearview mirror assembly for vehicle |
9809168, | Mar 02 2000 | MAGNA ELECTRONICS INC. | Driver assist system for vehicle |
9809171, | Mar 02 2000 | MAGNA ELECTRONICS INC | Vision system for vehicle |
9878670, | Sep 20 2002 | Donnelly Corporation | Variable reflectance mirror reflective element for exterior mirror assembly |
D620408, | Aug 20 2009 | Ford Global Technologies, LLC | Vehicle mirror |
Patent | Priority | Assignee | Title |
3118965, | |||
3119591, | |||
3420490, | |||
4135694, | May 16 1977 | Donnelly Corporation | Pivot support bracket |
4315614, | May 16 1977 | Donnelly Corporation | Constant torque pivot assembly |
4558930, | Apr 04 1984 | Truck mirror adjustable in the horizontal direction | |
4730913, | Aug 04 1986 | BOOTHE, LEE, H | Adjustable mount for lateral rear view mirror |
4740066, | Oct 18 1985 | Britax (Wingard) Limited | Exterior rear view mirrors for vehicles |
4789232, | Aug 14 1987 | ELIN ENERGIEANWENDUNG GESELLSCHAFT MBH | Break-away pivot system for rearview mirrors |
4793582, | Apr 30 1982 | Rear view mirror extension device | |
4815836, | Dec 03 1987 | MAIN STREET PRODUCTS LLC, A LIMITED LIABILITY COMPANY OF NEW YORK | Adjustable support mechanism for vehicle side view mirror |
4846011, | Feb 29 1988 | Clutch assembly | |
4907871, | Jul 12 1989 | Telescopic exterior rear view mirror | |
4911545, | Jun 16 1988 | Extendible and pivotable mirrors for vehicles | |
4921337, | Apr 21 1989 | Telescopic side mirror | |
4922836, | Dec 01 1988 | Thill, Inc. | Lead screw support mechanism for an overbed table |
4936670, | Jun 03 1988 | Automatic rearview mirror for vehicle | |
4998812, | Jul 12 1989 | Telescopic exterior rear view mirror | |
5007724, | May 30 1990 | Auxiliary mirror angle changing device for a main and auxiliary rearview mirror | |
5028029, | Mar 09 1990 | Delbar Products, Inc. | Mirror swing lock mechanism |
5061056, | Nov 29 1989 | Poong Jeong Industrial Co., Ltd. | Sideview mirror for automobiles |
5096283, | Apr 23 1990 | Adjustable rear view mirror extension apparatus | |
5217197, | Apr 09 1991 | Vehicle rear view mirror extension device | |
5292100, | Apr 16 1993 | G&T HOLDINGS, LLC | Adjustable support for vehicle side view mirror |
5432640, | Jun 04 1990 | Britax Rainsfords PTY Ltd. | Spigot type break-away mirror |
5483385, | Oct 19 1994 | Lowell Engineering Corp. | Adjustable truck mirror |
5489080, | Jun 09 1994 | Adjustable extender for a vehicle exterior side mirror | |
5513048, | Apr 27 1995 | Telescopic side view mirror for automobiles | |
5546239, | Feb 08 1995 | Extendable rearview mirror | |
5572376, | Aug 31 1994 | POWER VISION L L C | Extensible vehicle mirror |
5623374, | Mar 15 1994 | ADAC Plastics, Inc. | Spring detent for foldable side mount rear view mirror |
5760977, | Aug 11 1995 | Bernhard, Mittelhauser | Exterior rearview mirror for motor vehicles |
5886838, | Dec 22 1995 | Door mirror with a small dead angle | |
CA2013178, | |||
D285549, | Sep 17 1984 | Orion Industries, Inc. | Adjustable automotive mirror support |
D331216, | Apr 25 1991 | Vehicle extendable side view mirror |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 01 2001 | Donnelly Corporation | (assignment on the face of the patent) |
Date | Maintenance Fee Events |
Sep 17 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 14 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 14 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 27 2007 | 4 years fee payment window open |
Oct 27 2007 | 6 months grace period start (w surcharge) |
Apr 27 2008 | patent expiry (for year 4) |
Apr 27 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 27 2011 | 8 years fee payment window open |
Oct 27 2011 | 6 months grace period start (w surcharge) |
Apr 27 2012 | patent expiry (for year 8) |
Apr 27 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 27 2015 | 12 years fee payment window open |
Oct 27 2015 | 6 months grace period start (w surcharge) |
Apr 27 2016 | patent expiry (for year 12) |
Apr 27 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |