High-output transmitters are applied to a power generation satellite and a transmission antenna apparatus and a transmission antenna having an array antenna with a small number of element antennas and a reflecting mirror antenna is applied, thereby providing a power generation satellite and a transmission antenna apparatus in a space photovoltaic generation system comprising transmission antennas each having performance equivalent to that of a phased array antenna with a smaller number of transmitters and a smaller number of element antennas than those of a transmission antenna implemented as a phased array antenna.
|
4. A transmission antenna apparatus, comprising:
a photoelectric conversion element configured to generate electric energy from incident sunlight; a transmitter configured to generate microwaves from the electric energy generated by the photoelectric conversion element; and a transmission antenna configured to send the microwaves generated by the transmitter to space, wherein the transmission antenna comprises: a phased array antenna having an element antenna configured to emit the microwaves; and a reflecting mirror antenna configured to reflect the microwaves emitted from the array antenna; and wherein the photoelectric conversion element is placed on a back of the reflecting mirror antenna. 1. A power generation satellite, comprising:
a light condensing optical section configured to condense sunlight in space; a photoelectric conversion section configured to receive light condensed in the light condensing optical section, and to generate electric energy; a plurality of transmitters configured to generate microwaves from the electric energy generated by the photoelectric conversion section; and a transmission antenna configured to send the generated microwaves to space, wherein the transmission antenna comprises: a phased array antenna having an element antenna configured to emit the plurality of microwaves; and a reflecting mirror antenna configured to reflect the plurality of microwaves emitted from the array antenna. 2. The power generation satellite according to
3. The power generation satellite according to
|
1. Field of the Invention
This invention relates to a power generation satellite and a transmission antenna apparatus in a space photovoltaic generation system in which the sunlight is received and electric power is generated in space and is transmitted through space by a microwave and is accumulated at a power base for use as electric energy.
2. Description of the Related Art
Power generation systems using sunlight include a solar battery as a small scale, a photovoltaic generation panel installed on a building, intended for home use, and the like. The photovoltaic generation on the ground is not always good in efficiency because of atmospheric attenuation of sunlight and lightness and darkness in day and night on the principle. As the photovoltaic generation in space, a solar panel mounted on an artificial satellite is well known and using the solar panel, the artificial satellite generates electric power required for observation, communications, etc., for achieving its mission. In any way, generated power energy by the solar battery wired to a specific machine is used by the specific machine.
On the other hand, a system for receiving sunlight and generating electric power in space and transmitting the electric power to a specific location, such as a specific point on the earth or in space, is supported by the progression of communication technology, the construction technology of a large-scaled space structure, etc., as the result of the recent space development, and is researched and developed vigorously. As an example of such a space photovoltaic generation system, a system is designed wherein a plurality of power generation satellites are placed in space and at each of the power generation satellites, sunlight is condensed and is converted into electric energy and then a microwave from the electric energy is transmitted to a power base on the ground, etc. The power base has an antenna for receiving the microwave from the plurality of power generation satellites and converts the microwave received at the antenna into a DC and combines.
In the space photovoltaic generation system as described above, to enhance the power generation capability in space, it becomes necessary to place a large number of power generation satellites for transmitting a microwave to the ground in space. At present, generally a phased array antenna is studied as an antenna system of transmission antennas each mounted on each of the power generation satellites. In this case, the assumed size of the antenna is about 200 m to about 1 km in diameter and it is considered that the required number of element antennas reaches several ten millions to several hundred millions. Further, to adjust the phase of an output wave from the phased array antenna, as many transmitters as the number similar to the number of element antennas become necessary, and it is very difficult to manufacture a large-sized phased array antenna about 200 m to about 1 km in diameter as the transmission antenna in the space photovoltaic generation system because an extremely large number of element antennas and an extremely large number of transmitters are required; this is a problem.
It is therefore an object of the invention to provide a power generation satellite and a transmission antenna apparatus in a space photovoltaic generation system having transmission antennas for making it possible to decrease the required number of element antennas and the required number of transmitters wherein electric power generated from sunlight in space is converted into a microwave and then the microwave is transmitted to a power base.
According to the invention, there is provided a power generation satellite having a light condensing optical section, a photoelectric conversion section, a plurality of transmitters, and a transmission antenna. The light condensing optical section condenses sunlight in space. The photoelectric conversion section receives light condensed in the light condensing optical section and generating electric energy. The plurality of transmitters generates microwaves from the electric energy generated by the photoelectric conversion section. The transmission antenna sends the microwaves generated by the transmitters to space. The transmission antenna includes an array antenna having an element antenna for emitting the microwave and a reflecting mirror antenna for reflecting the microwave emitted from the array antenna.
Also, according to the invention, there is provided a transmission antenna apparatus having a photoelectric conversion element, a transmitter, and a transmission antenna. The photoelectric conversion element generates electric energy from incident sunlight. The transmitter generates microwave from the electric energy generated by the photoelectric conversion element. The transmission antenna sends the microwave generated by the transmitters to space. The transmission antenna has an array antenna having an element antenna for emitting the microwave and a reflecting mirror antenna for reflecting the microwave emitted from the array antenna. The photoelectric conversion element is placed on a back of the reflecting mirror antenna.
In the accompanying drawings:
Embodiment 1
A power generation satellite and a transmission antenna apparatus in a space photovoltaic generation system according to an embodiment 1 of the invention will be discussed with reference to
In
The power generation satellite 1 converts the electric energy converted from sunlight into a microwave and transmits the microwave to the power base 3. The electric power of the microwave that can be sent by each power generation satellite 1 is determined by the light condensing capability of sunlight and the photoelectric conversion and microwave amplification capabilities in the power generation satellite. A plurality of the power generation satellites 1 are placed in space, whereby it is made possible to transmit large-power microwaves to the power base 3. Since the beam width of the microwave transmitted as the phase is adjusted in each power generation satellite 1 is determined by the aperture area of an array antenna having transmission antennas mounted on the power generation satellites 1, the beam width of the transmitted microwave can be narrowed without enlarging the aperture area of the transmission antenna of each power generation satellite 1.
The microwaves thus transmitted are received at the power base antennas 2 and undergo low-frequency conversion in the power base 3 for use as electric power. The power base 3 may be installed not only on the ground, but also on the moon, in a space plant facility, etc., for example, in space. To install the power base 3 on the ground, the distance from space to the earth is extremely large and thus the power base antennas 2 may require a vast area reaching an equivalent to several-10-km square. To form such a giant antenna, it is common practice to arrange antennas each of a specific size like an array, for example. Therefore, the power base 3 may also have a combining function of combining the received microwaves from the transmission antennas of the power generation satellites 1 or transmission antenna groups in addition to the low-frequency conversion function.
Further, in
Next, the configuration of the power generation satellite will be discussed with reference to FIG. 2. In the block diagram of
Next, converting of sunlight into a microwave and sending of the microwave in the power generation satellite and the transmission antenna apparatus will be discussed. The light condensing section 5 condenses sunlight incident on the power generation satellite and the transmission antenna apparatus. As the sunlight is thus condensed, the density of energy received by the photoelectric conversion section 6 formed of solar batteries can be enhanced and therefore the sunlight is condensed. The light condensing section 5 may be implemented as a reflecting mirror reaching a diameter of several 10 m. Of course, the photoelectric conversion section 6 may directly receive sunlight without providing the light condensing section 5. The photoelectric conversion section 6 has an arrangement of solar panels for receiving the condensed sunlight from the light condensing section 5 or directly receiving sunlight and converts the sunlight into electric energy. The electric energy generated by the photoelectric conversion section 6 is input to the DC-microwave conversion sections 10 in the transmitters 7 and is converted into microwaves. Output of the solar battery generally is a DC component and thus is transformed and stabilized appropriately for input. The phase adjustment sections 11 adjusts the phases of the microwaves generated by the DC-microwave conversion sections 10 so that the output microwave beam of the whole transmission antenna having the array antenna 8 and the reflecting mirror antenna 9 is directed toward the direction of the power base 3. The output terminals of the transmitters 7 are placed on the array antenna 8 as the element antennas thereof. Therefore, the phases of the microwaves are adjusted in response to the positions where the output terminals of the transmitters 7 are placed on the array antenna 8. The output microwaves of the transmitters 7 with the phases adjusted by the phase adjustment sections 11 are emitted from the array antenna 8 and are reflected on the reflecting mirror antenna 9, forming a microwave beam. Therefore, the reflecting mirror antenna 9 is shaped so that it can form any desired microwave beam. The microwave beam formed by the reflecting mirror antenna 9 has the phases adjusted by the phase adjustment sections 11 in the transmitters 7 and thus is directed toward the direction of the power base 3.
In
Next, an example of the configuration of the power generation satellite and the transmission antenna apparatus will be discussed with reference to FIG. 3. In
Next, converting of sunlight into a microwave and sending of the microwave in the power generation satellite shown in
The sun tracking reflecting mirror 12 in
The DC-microwave conversion section in the transmitter housed in the array antenna 16 in
The photoelectric conversion section 15 is placed on the back of the reflecting mirror antenna 17 (when the face of the reflecting mirror antenna 17 opposed to the array antenna 16, namely, the reflecting mirror face is assumed to be the surface, the back). A photoelectric conversion section support truss may be placed on the back of the reflecting mirror antenna 17 to place the photoelectric conversion section 15, or the photoelectric conversion section 15 may be formed of a thin-film or flexible material and be installed directly on the back of the reflecting mirror antenna 17. A plurality of the photoelectric conversion sections 15 may be placed on the back of the reflecting mirror antenna 17 if condensed sunlight is applied to the location where the photoelectric conversion sections 15 are placed. Of course, the photoelectric conversion section 15 may be placed at any other part other than the back of the reflecting mirror antenna 17.
In
Next,
It is not necessary for the transmitter 20 of the transmission antenna apparatus to be integral with the antenna array 21 as shown in
According to the invention, in a space photovoltaic generation system wherein electric power generated from sunlight is converted into a microwave in a plurality of power generation satellites in space and the microwave is transmitted to a power base and electric power is generated at the power base, to transmit a microwave from a array antenna with a small number of element antennas in the direction of the power base, the phase of the microwave is adjusted and then the microwave is reflected on a reflecting mirror antenna and is transmitted to the power base, whereby an increase in the number of transmitters and the number of element antennas can be suppressed and a photoelectric conversion section is placed on the back of the reflecting mirror antenna, so that power generation and transmission units can be combined into one unit.
Naito, Izuru, Satou, Hiroyuki, Takada, Kazuyuki, Mikami, Izumi
Patent | Priority | Assignee | Title |
7711441, | May 03 2007 | The Boeing Company | Aiming feedback control for multiple energy beams |
7900875, | Jul 20 2004 | Power generating and distribution system and method | |
8074936, | Jul 20 2004 | Power generating and distribution system and method | |
8373613, | Aug 04 2009 | Industrial Technology Research Institute | Photovoltaic apparatus |
8596581, | Jul 20 2004 | CRISWELL, DAVID R , DR | Power generating and distribution system and method |
Patent | Priority | Assignee | Title |
3781647, | |||
4364532, | Nov 29 1979 | North American Construction Utility Corp. | Apparatus for collecting solar energy at high altitudes and on floating structures |
4368415, | Sep 14 1979 | BRITISH AEROSPACE, A STATE CORPORATION | Converting solar power to electric power |
5019768, | Jul 13 1983 | Power collection and transmission system and method | |
6492586, | Apr 24 2000 | Mitsubishi Denki Kabushiki Kaisha | Space photovoltaic power generation system, power satellite, and control satellite |
6492940, | Sep 14 2000 | Mitsubishi Denki Kabushiki Kaisha | Method of and system for receiving microwave |
6495751, | Sep 14 2000 | Mitsubishi Denki Kabushiki Kaisha | Space photovoltaic power generation system, power satellite, and electric power base |
6528719, | Sep 14 2000 | Mitsubishi Denki Kabushiki Kaisha | Space photovoltaic power generation method and system |
20030098057, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 17 2002 | TAKADA, KAZUYUKI | Mitsubishi Denki Kabushiki Kaisha | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014188 | /0334 | |
Jun 17 2002 | SATOU, HIROYUKI | Mitsubishi Denki Kabushiki Kaisha | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014188 | /0334 | |
Jun 17 2002 | NAITO, IZURU | Mitsubishi Denki Kabushiki Kaisha | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014188 | /0334 | |
Jun 17 2002 | MIKAMI, IZUMI | Mitsubishi Denki Kabushiki Kaisha | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014188 | /0334 | |
Jul 01 2002 | Mitsubishi Denki Kabushiki Kaisha | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 16 2004 | ASPN: Payor Number Assigned. |
Aug 16 2004 | RMPN: Payer Number De-assigned. |
Sep 17 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 12 2011 | REM: Maintenance Fee Reminder Mailed. |
Apr 27 2012 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Apr 27 2007 | 4 years fee payment window open |
Oct 27 2007 | 6 months grace period start (w surcharge) |
Apr 27 2008 | patent expiry (for year 4) |
Apr 27 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 27 2011 | 8 years fee payment window open |
Oct 27 2011 | 6 months grace period start (w surcharge) |
Apr 27 2012 | patent expiry (for year 8) |
Apr 27 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 27 2015 | 12 years fee payment window open |
Oct 27 2015 | 6 months grace period start (w surcharge) |
Apr 27 2016 | patent expiry (for year 12) |
Apr 27 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |