A solid-state electricity meter uses a sensor to measure a current supplied to a load. In one aspect, the electricity meter housing includes a meter base, a register cover, and a meter cover. The meter base includes a plurality of meter cover lock notches disposed about a periphery of the meter base. The register cover includes a plurality of secure ramps disposed on a base portion thereof, each secure ramp having a ramped portion along one side and a land portion. The meter cover includes a plurality of locking tabs corresponding to the meter cover lock notches and further includes a plurality of meter cover locks corresponding to the secure ramps. Upon insertion of the meter cover locking tabs into the meter base lock notches and rotation of the meter cover in a predetermined clockwise or counterclockwise direction, the meter cover locks engage the corresponding secure ramps, thereby biasing the meter cover locking tabs against the backside of the meter base to provide a secure connection.
|
1. A utility meter for measuring electric power consumption comprising:
a meter base having a front surface and a back surface and comprising a plurality of supports projecting from said front surface and defining a plurality of slotted through-holes disposed adjacent said supports, each of said supports bearing a plurality of resilient locking members at predetermined locations thereof, said resilient locking members configured to engage a circumferential edge of a circuit board bearing at least one electrical device; a circuit board comprising a sensor for measuring a current supplied to a load; a bus bar comprising an upper bus bar portion and a lower bus bar portion, each of said upper bus bar portion and lower bus bar portion comprising two substantially planar blades configured for insertion at least partially through said slotted through-holes; a plurality of resilient bus bar locks disposed adjacent respective slotted through-holes, said resilient bus bar locks comprising an engaging portion at least partially overlapping the adjacent slotted through-hole; and a solid-state energy metering circuitry configured for generating power consumption signals from the sensor output, wherein said bus bar is configured to retain said sensor between the upper bus bar portion and lower bus bar portion, and wherein said engaging portion of said resilient bus bar lock is configured to be displaced from an initial position to a second position by said blades upon insertion of the blades into said slotted through-holes and to return to said initial position following complete insertion of said blade into said through-hole to engage a top surface of said blades and thereby impede withdrawal of said blades from said slotted through-hole.
2. A utility meter for measuring electric power consumption according to
3. A utility meter for measuring electric power consumption according to
4. A utility meter for measuring electric power consumption according to
5. A utility meter for measuring electric power consumption according to
6. A utility meter for measuring electric power consumption according to
7. A utility meter for measuring electric power consumption according to
8. A utility meter for measuring electric power consumption according to
9. A utility meter for measuring electric power consumption according to
10. A utility meter for measuring electric power consumption as in
11. A utility meter for measuring electric power consumption as in
wherein said meter base further comprises a plurality of meter cover lock notches, wherein said meter cover further comprises a plurality of meter cover locks corresponding to said plurality of secure ramps, and a plurality of locking tabs corresponding to said plurality of meter cover lock notches, and wherein upon insertion of the meter cover locking tabs into the meter base lock notches and rotation of the meter cover in one of a predetermined clockwise or counterclockwise direction, the meter cover locks engage the corresponding secure ramps, thereby biasing the meter cover locking tabs against the backside of the meter base to provide a secure connection.
12. A utility meter for measuring electric power consumption as in
|
This application claims priority from U.S. Provisional Patent Application Serial No. 60/307,855 filed Jul. 27, 2001, the entire disclosure of which is incorporated herein by reference.
The present invention relates to electricity meters, and more particularly to solid-state electricity meters.
Electric energy supplied to consumers is commonly measured using conventional electromechanical meters in accordance to American National Standards Institute (ANSI) Form 2S single-phase meter. These standards cover many aspects of meter design, construction, and testing. For example, the dimensions of the base and location of the meter blades must comply with the set standards.
Electromechanical meters are commonly used. However, these meters are mechanically complex and the manufacturing process thereof is similarly complex. Further, the design of such electromechanical meters are substantially immutable and addition of additional capabilities by means of retrofits are exceedingly difficult.
Accordingly, a need exists for reducing the cost of electric meters including manufacturing cost and/or maintenance cost, for example. Such replacement meter must comply with all applicable ANSI standards. Electricity meters are usually installed outside a building to measure electricity consumption in that location. Like any outdoor fixture, electricity meters are exposed to harsh climate such as direct sun, moisture, wind and large variations in temperature. Specially designed construction is needed to protect the meter internal parts from such undesirable environmental elements.
Additionally, meters may need occasional repair or calibration and test services. Any of these activities often require access to the inside of the meter. Therefore, the construction of the meter must allow opening and securely closing of the meter without much effort and time spent by the operator. The construction of the parts that house sensor boards have to be strong enough to withstand vibration and movements caused by opening and closing the meter. Any excessive displacement of sensor boards may affect calibration of the meter and degrade accuracy and reliability of meter readings.
The present invention provides advantages by incorporating a solid-state electricity meter in an assembly that is inexpensive to manufacture, maintain, and modify.
One aspect of the invention includes a utility meter for measuring electric power consumption comprising a meter base having a front surface and a back surface. A plurality of supports project from the front surface and define a plurality of slotted through-holes disposed adjacent the supports. Each of the supports bears a plurality of resilient locking members at predetermined locations thereof and resilient locking members configured to engage a circumferential edge of a circuit board bearing at least one electrical device. A circuit board comprising a sensor for measuring a current supplied to a load. A bus bar comprises an upper bus bar portion and a lower bus bar portion, each of the upper bus bar portion and lower bus bar portion comprising two substantially planar blades configured for insertion at least partially through the slotted through-holes. A plurality of resilient bus bar locks are disposed adjacent respective slotted through-holes, the resilient bus bar locks comprising an engaging portion at least partially overlapping the adjacent slotted through-hole. A solid-state energy metering circuitry configured for generating power consumption signals from the sensor output is also provide. The bus bar is configured to retain the sensor between the upper bus bar portion and lower bus bar portion, and the engaging portion of the resilient bus bar lock is configured to be displaced from an initial position to a second position by the blades upon insertion of the blades into the slotted through-holes and to return to the initial position following complete insertion of the blade into the through-hole to engage a top surface of the blades and thereby impede withdrawal of the blades from the slotted through-hole.
Another aspect of the invention provides a utility meter housing comprising a meter base and meter cover. The meter base, having a front surface and a back surface, includes a plurality of meter cover lock notches disposed about a periphery of the meter base and a plurality of secure ramps disposed on the meter base front surface, each secure ramp having a ramped portion along one side and a land portion. A meter cover comprises a plurality of locking tabs corresponding to the plurality of meter base lock notches and a plurality of meter cover locks corresponding to the plurality of secure ramps. Upon insertion of the meter cover locking tabs into the meter base lock notches and rotation of the meter cover in one of a predetermined clockwise or counterclockwise direction, the meter cover locks engage the corresponding secure ramps, thereby biasing the meter cover locking tabs against the backside of the meter base to provide a secure connection.
Still another aspect of the invention includes a utility meter housing comprising a meter base, a register cover, and a meter cover. The meter base comprises a front surface and a back surface and has a plurality of meter cover lock notches disposed about a periphery of the meter base. The register cover comprises a plurality of secure ramps disposed on a base portion thereof, each of the secure ramps having a ramped portion along one side and a land portion. The meter cover comprises a plurality of locking tabs corresponding to the plurality of meter cover lock notches and a plurality of meter cover locks corresponding to the plurality of secure ramps. Upon insertion of the meter cover locking tabs into the meter base lock notches and rotation of the meter cover in a predetermined clockwise or counterclockwise direction, the meter cover locks engage the corresponding secure ramps, thereby biasing the meter cover locking tabs against the backside of the meter base to provide a secure connection.
Additional advantages of the present invention will become readily apparent to those skilled in this art from the following detailed description, wherein only the preferred embodiment of the present invention is shown and described, simply by way of illustration of the best mode contemplated for carrying out the present invention. As will be realized, the present invention is capable of other and different embodiments, and its several details are capable of modifications in various obvious respects, all without departing from the invention. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as restrictive.
The present invention is depicted by way of example, and not by way of limitation, in the following figures.
FIGS. 4(a) and 4(b) show front and rear views of the sensor board assembly.
An electricity meter assembly per the invention comprises a meter base and cover, a register cover, bus bars, a sensor board, a Liquid Crystal Display (LCD) board, a meter hanger and a phantom load link. One of the requirements, by industry standards, is that the dimensions of the base and location of the meter blades, or bayonets, are as specified in
Referring to
Upper and lower bus bars 4L and 4U are, in one aspect, made of copper and have a thickness of 2.5 millimeters (2.5 mm) and a width of 5 mm with an inner loop portion approximately having an inner diameter of 9.8 mm and an outer diameter similar to that of the outer diameter of the sense portion 6. Blade portions 37 have, in one aspect, a width of 19.5 mm. These dimensions are by way of example only and may be varied in accord with applicable design requirements or industry standards.
Optional printed circuit boards (PCBs) 7 may be included inside the meter in addition to the sensor board. Seal 40, which may comprise an o-ring or gasket, insures that the cover and the base are tightly connected in order to protect the meter from environmental elements. Same elements are shown in
Since the electricity meter of the present invention is of solid-state design, it requires fewer components than conventional electromechanical meters and, accordingly, provides for economical manufacture, maintenance, and modification. Additionally, current plastic fabrication techniques and integrated molding processes, known to those skilled in the art, can be advantageously utilized to incorporate complicated device geometries inclusive of features such as, but not limited to, snap fittings, openings, windows, and guide members. Use of such fabrication techniques simplifies assembly and lowers cost.
In
In operation, the sensor board sensor (not shown), such as a sensing coil, develops an output signal that is the derivative of the load current waveform (i.e., there is a 90 degree phase shift that is constant with respect to variations in load current, temperature, frequency, and external magnetic fields). The constancy achieved thereby provides a benefit over the influences causing shifts in the accuracy of conventional electromechanical meters and some solid state meters with other types of current sensing, such as current transformers. The derived current signal and the applied voltage are scaled and output to an active energy metering IC configured to generate, for example, power consumption signals from the voltage and current inputs. The current measurement could, for example, be combined with a measurement of the voltage between the bus bar upper 4U and lower 4L portions to derive a measure of the instantaneous power used by a connected load. A display processor coupled to the active energy metering IC receives the energy data from the active energy metering IC and outputs a display signal to a display readout, such as a LCD 6 or LED, as shown in FIG. 2. The meter advantageously stores the energy data outputs in a suitable data storage medium, such as a solid-state memory device, for later access by the utility company, or transmits the data via a communications link such as, but not limited to, an integrated modem, RF transmitter, or electromagnetic energy based communication device, according to a predetermined protocol.
FIGS. 4(a) and 4(b) show bus bar 4, comprising lower bus bar 4L and upper bus bar 4U. Bus bar 4 and sensor board 5 are integrated into an assembly 38, as shown. This is accomplished by, in one aspect of the invention, disposing sensor board 5 between an upper surface of the lower bus bar 4L and a lower surface of the upper bus bar 4U and connecting the two bus bars 4U and 4L to the sensor board by, for example, soldering. In this aspect of the invention, the sensor board 5 contacts, through an interposed insulating material (not shown), substantially all of an upper surface of the lower bus bar 4L and substantially all of a lower surface of the upper bus bar 4U. Alternatively, the bus bars 44L, 4U could be configured to contact the sensor board 5 only in the vicinity of the through-hole in the center of the sensor board and the sensing coil disposed about the through-hole. Means of attaching the bus bars 4L, 4U to the sensor board 5 may also include, but are not limited to, welding or use of conductive adhesive materials.
A trace outline of the upper bus bar 4U or lower bus bar 4L may optionally be formed in a respective side of the sensor board 5 to facilitate alignment and connection of the bus bars 4U, 4L to the sensor board. In one aspect of the invention, sensor board 5 has a trace outline of upper bus bar 4U and lower bus bar 4L formed in respective upper and lower surfaces to facilitate alignment of the sensor board with upper and lower bus bars. The surface of the sensor board 5 disposed within the trace outline is preferably treated and prepared for attachment to the bus bar 4 appropriate to the attachment technique (e.g., soldering) in a manner known to those skilled in the art. The trace outline preferably corresponds in shape to the shape of the respectively adjacent bus bar 4U, 4L portion and is sized and toleranced to be slightly larger than such adjacent bus bar 4U, 4L portion to simplify and enhance alignment of the bus bar 4 with sensor board 5. In the above-described configuration, sensor board 5 is securely held by bus bar 4.
Positioning of bus bar 4 is relative to meter base 2 is accomplished, in part, by bottoming stops 36, which are configured to contact the meter base and restrict further movement of the bus bar 4 in a direction toward the meter base upon installation of sensor assembly 38 onto the meter base. Bus bar guides 19 help direct and position assembly 38 into four bus bar slots 18. Bus bar locks 20 are provided to resiliently deflect to permit passage of contact tabs 37 upon insertion of the contact tabs into bus bar slots 18 and to resiliently engage an upper lateral surface 37U of contact tabs 37 after the upper lateral surface 37U is inserted such that the bottoming stops 36 contact the meter base 2. Thus, bus bar 4 contact tabs 37 are securely held between meter base 2 on one side and bus bar locks 20 on the other side.
Additionally, as shown in
In one aspect, four PCB locking means are provided on each PCB support 11 to support installation of additional optional substrates or PCBs bearing, for example, modems, radio frequency (RF) transmitters or transceivers, receivers, power supplies, relay inputs or outputs, Ethernet connection and communication devices, extended memory modules, WWV time chips, antennas, and/or electromagnetic-based data transmission devices, as generally known to those skilled in the art. Such optional capability may comprise, for example, communications schemes disclosed in co-pending U.S. patent application "System And Method For Communicating And Control Of Automated Meter Reading" filed on May 6, 2002 by Belski, et al. (number not assigned), incorporated herein by reference. Further, electrical interconnections between PCBs may be achieved by any conventional electrical connection means including, but not limited to, ribbon connectors such as shown in
Accordingly, as shown for example in
In accord with the above-described configurations, the phantom load circuit can be simply engaged or disengaged from the back of the meter base. Further, the phantom load circuit can be simply assembled and disassembled using by virtue of the mating engagement between the phantom load conductor, phantom load socket, and sensor board configurations, particularly in conjunction with the aforementioned anti-rotation features.
Molded hex sockets 13 have through-holes, shown in
Turning to
Other features present of meter base 2 include register cover lock tab 12, cover seal groove 14 and meter cover lock notch 15 as shown, for example, in FIG. 5. All of these features relate to fastening of the cover 1 to the meter base 2 to provide a secure meter enclosure. An o-ring or other sealing means (e.g., meter cover seal 40) may optionally be provided in or adjacent cover seal groove 14.
The register cover 3 is shown in
Along the right side lip of register cover 3 is a notch for T-bar seal pocket 27. Because of this, register cover 3 can only be installed in one way to the meter base. PCB support locks 28 are molded into register cover 3 in four places to stabilize PCB supports 11 once register cover 3 is installed in meter base 2. A manufacturer/customer label area 31 is provided on the front of register cover 3. When register cover 3 is installed, all of the electronics are hidden with the exception of LCD 29 and infrared (IR) test pulse indicator window 30. The IR indicator may be used for general purpose reading and testing of the meter, in a manner known to those skilled in the art.
Meter cover 1, as shown in
As shown in
In other aspects of the invention, the indentations could be omitted entirely or replaced by openings and/or protrusions configured to receive specialized tools so as to reduce the possibility of unauthorized access or tampering. In such configuration, the register cover lock itself could comprise an internally disposed protrusion configured to co-act with the respective secure ramps 42. Internally disposed protrusions may preferably be strengthened by longitudinal ribs extending along a lengthwise axis of meter cover 1. Further, the secure ramps 42, meter base 2, and meter cover locking tabs 34 can be individually or collectively configured to impart a desired degree of a normal force between the front side of the meter cover locking tabs 34 and the rear surface of meter base 2 so as to regulate the static and/or sliding frictional forces therebetween to provide a desired torque necessary to initiate rotational movement of the meter cover 1 in an opening direction. Such control of the opening forces can serve to deter unauthorized access, particularly in combination with other positive anti-intrusion measures such as, but not limited to, a substantially smooth meter cover 2 comprising a plurality of openings configured for insertion of an appropriately configured torque transmitting device.
Also in accord with the invention, it is also to be understood that the secure ramps 42 may be disposed on the meter base 2 itself and the aforementioned register cover locks 43 could be configured as meter cover locks to co-act with meter cover secure ramps to achieve positive compression locking of the meter cover to the meter base. In this way, the register cover 3 could be omitted and the functions thereof could be incorporated into the meter cover 1. For example, the meter cover could be endowed with a tinting to attenuate or substantially eliminate incident thermal loading on the meter and to obscure the innards of the meter from public view. Further, such tinting can be omitted in areas corresponding to an digital display (e.g., LCD) or manufacturer/customer label affixed to the inside surface of the meter cover.
Three T-bar access holes 33, as shown in
The above is a description of unique features and attributes of the electricity meter. It is clear that one skilled in the art could add additional features such as a key that would allow installation of meter cover 1 in only one way thereby eliminating the need for two of the three T-bar access holes 33. One skilled in the art could also vary the design of the features described using known mechanisms to accomplish what is described in this disclosure without departing from the principals that are described.
Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited by the terms of the appended claims and their equivalents.
Johnson, Mark A., Fye, Jeffery F.
Patent | Priority | Assignee | Title |
10048088, | Feb 27 2015 | EI ELECTRONICS LLC D B A ELECTRO INDUSTRIES GAUGE TECH | Wireless intelligent electronic device |
10200476, | Oct 18 2011 | Itron, Inc | Traffic management and remote configuration in a gateway-based network |
10274340, | Feb 27 2015 | EI ELECTRONICS LLC D B A ELECTRO INDUSTRIES GAUGE TECH | Intelligent electronic device with expandable functionality |
10739162, | Feb 27 2015 | EI ELECTRONICS LLC D B A ELECTRO INDUSTRIES GAUGE TECH | Intelligent electronic device with surge supression |
10833799, | May 31 2018 | Itron Global SARL | Message correction and dynamic correction adjustment for communication systems |
11009922, | Feb 27 2015 | EI ELECTRONICS LLC D B A ELECTRO INDUSTRIES GAUGE TECH | Wireless intelligent electronic device |
11146352, | May 31 2018 | Itron Global SARL | Message correction and dynamic correction adjustment for communication systems |
11625734, | Aug 28 2013 | SAN DIEGO GAS & ELECTRIC COMPANY | Managing grid interaction with interconnect socket adapter configured for an energy storage device |
11641052, | Feb 27 2015 | EI ELECTRONICS LLC D B A ELECTRO INDUSTRIES GAUGE TECH | Wireless intelligent electronic device |
11644341, | Feb 27 2015 | EI ELECTRONICS LLC D B A ELECTRO INDUSTRIES GAUGE TECH | Intelligent electronic device with hot swappable battery |
11729931, | Aug 28 2020 | Itron, Inc. | Metrology device support system |
12087998, | Feb 27 2015 | EI ELECTRONICS LLC D B A ELECTRO INDUSTRIES GAUGE TECH | Wireless intelligent electronic device |
6836108, | Nov 03 2003 | TRANSDATA, INC | Three-phase electricity meter including integral test switch |
6983211, | Aug 09 1999 | Power Measurement, Ltd. | Revenue meter bayonet assembly and method of attachment |
7253605, | Sep 11 2002 | Landis+Gyr LLC | Configurable utility meter connection interface |
7265532, | Jun 02 2004 | Aclara Meters LLC | Electronic electricity meter and method of assembly |
7274305, | Oct 16 2002 | CARINA TECHNOLOGY, INC | Electrical utility communications and control system |
7274553, | Feb 03 2003 | Landis+Gyr LLC | Utility meter housing arrangement |
7478003, | Aug 09 1999 | Revenue meter bayonet assembly and method of attachment | |
7599173, | Jun 15 2005 | SIEMENS INDUSTRY, INC | Systems, devices, and methods for securing covers |
7614908, | Aug 27 2007 | SIEMENS INDUSTRY, INC | Insulating meter jaw guide for a watt-hour meter socket |
7656649, | Dec 26 2007 | Elster Electricity, LLC | Mechanical packaging apparatus and methods for an electrical energy meter |
7756030, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Downlink routing mechanism |
7756078, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Cell size management |
7764714, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Crystal drift compensation in a mesh network |
7821776, | Mar 25 2008 | Elster Electricity, LLC | Tamper resistant meter assembly |
7826398, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Broadcast acknowledgement in a network |
7827268, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Number of sons management in a cell network |
7843391, | Sep 15 2006 | Itron, Inc | RF local area network antenna design |
7843834, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Use of minimal propagation delay path to optimize a mesh network |
7847536, | Aug 31 2006 | ITRON FRANCE S A S ; Itron Global SARL | Hall sensor with temperature drift control |
7848362, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Real time clock distribution and recovery |
7929916, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Embedded RF environmental evaluation tool to gauge RF transceivers performance need |
7965758, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Cell isolation through quasi-orthogonal sequences in a frequency hopping network |
7986718, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Discovery phase in a frequency hopping network |
8024724, | Aug 31 2006 | Itron, Inc | Firmware download |
8027168, | Aug 13 2008 | Aptiv Technologies Limited | Electrical center with vertical power bus bar |
8045537, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Traffic load control in a mesh network |
8049642, | Sep 05 2006 | Itron, Inc | Load side voltage sensing for AMI metrology |
8054821, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Beacon requests and RS bit resolving circular routes |
8055461, | Sep 15 2006 | Itron, Inc | Distributing metering responses for load balancing an AMR network |
8059009, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Uplink routing without routing table |
8059011, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Outage notification system |
8138944, | Sep 15 2006 | Itron, Inc | Home area networking (HAN) with handheld for diagnostics |
8212687, | Sep 15 2006 | Itron, Inc | Load side voltage sensing for AMI metrology |
8270910, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Embedded RF environmental evaluation tool to gauge RF transceivers performance need |
8284107, | Sep 15 2006 | Itron, Inc. | RF local area network antenna design |
8299778, | Aug 31 2006 | ITRON FRANCE S A S ; Itron Global SARL | Hall sensor with temperature drift control |
8312103, | Aug 31 2006 | Itron, Inc | Periodic balanced communication node and server assignment |
8379376, | Aug 18 2010 | General Electric Company | Heat management and reduction of high temperatures exposure to components inside energy meter |
8384558, | Oct 19 2006 | Itron, Inc | Extending contact life in remote disconnect applications |
8391177, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Use of minimal propagation delay path to optimize a mesh network |
8437378, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Cell isolation through quasi-orthogonal sequences in a frequency hopping network |
8441987, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Beacon requests and RS bit resolving circular routes |
8442029, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Traffic load control in a mesh network |
8462015, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Real time clock distribution and recovery |
8488482, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Downlink routing mechanism |
8494792, | Sep 15 2006 | Itron, Inc. | Distributing metering responses for load balancing an AMR network |
8717007, | Oct 10 2008 | EI ELECTRONICS LLC D B A ELECTRO INDUSTRIES GAUGE TECH | Intelligent electronic device having a terminal assembly for coupling to a meter mounting socket |
8760353, | Sep 02 2011 | Huawei Technologies Co., Ltd. | Active antenna |
8787210, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Firmware download with adaptive lost packet recovery |
8848571, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Use of minimal propagation delay path to optimize a mesh network |
8907812, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Uplink routing without routing table |
9129514, | Sep 15 2006 | ITRON FRANCE S A S ; Itron Global SARL | Number of sons management in a cell network |
9354083, | Sep 15 2006 | Itron, Inc | Home area networking (HAN) with low power considerations for battery devices |
9419888, | Dec 22 2011 | ITRON FRANCE S A S ; Itron Global SARL | Cell router failure detection in a mesh network |
9897461, | Feb 27 2015 | EI ELECTRONICS LLC D B A ELECTRO INDUSTRIES GAUGE TECH | Intelligent electronic device with expandable functionality |
Patent | Priority | Assignee | Title |
4491789, | Aug 14 1981 | ABB POWER T&D COMPANY, INC , A DE CORP | Electrical energy meter having a cover-mounted time-of-day multifunction register |
4783623, | Aug 29 1986 | CELLNET INNOVATIONS, INC | Device for use with a utility meter for recording time of energy use |
4881070, | Jun 21 1985 | Energy Innovations, Inc. | Meter reading methods and apparatus |
5034682, | Apr 05 1990 | General Electric Company | Method and apparatus for mounting disk sensing optics on electric energy register circuit board |
5057767, | Apr 05 1990 | General Electric Company | Optical communications light shield for energy meter |
6059605, | Oct 30 1997 | E J BROOKS COMPANY | Watthour meter socket adapter |
Date | Maintenance Fee Events |
Sep 20 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 23 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 26 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
May 11 2007 | 4 years fee payment window open |
Nov 11 2007 | 6 months grace period start (w surcharge) |
May 11 2008 | patent expiry (for year 4) |
May 11 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 11 2011 | 8 years fee payment window open |
Nov 11 2011 | 6 months grace period start (w surcharge) |
May 11 2012 | patent expiry (for year 8) |
May 11 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 11 2015 | 12 years fee payment window open |
Nov 11 2015 | 6 months grace period start (w surcharge) |
May 11 2016 | patent expiry (for year 12) |
May 11 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |