Apparatus and method for stabilizing the wavelength of a tunable laser to a target wavelength, by correspondingly adjusting the electrooptical performance of the laser's gain medium, whereby to eliminate the frequency shift due to vibrational factors. The electrooptical performance of the laser's gain medium is adjusted, in the case of an electrically pumped laser, by changing the injection current used to pump the laser; and the electrical performance of the laser's gain medium is adjusted, in the case of an optically pumped laser, by changing the intensity of the pump laser used to energize the laser. The system is implemented with a feedback mechanism.
|
4. A method for stabilizing the wavelength of an optically pumped tunable laser to a target wavelength, said method comprising:
determining a target wavelength of a laser signal emitted from the optically pumped tunable laser from a range of wavelengths corresponding to a tuning voltage applied across a top electrode and a bottom electrode of the tunable laser; detecting a difference between an instantaneous wavelength of the laser and the target wavelength and generating an output signal which is representative of the difference; and modifying an electrooptical performance characteristic of a gain medium of a pump laser providing a pump laser signal to the optically pumped tunable laser in accordance with said output signal so as to adjust the laser signal from the tunable laser to the predetermined target wavelength.
3. A laser system comprising:
an optically pumped tunable laser; a pump laser providing a pump laser signal having an intensity, said pump laser having a gain medium, the gain medium having an electrooptical characteristic, said pump laser signal being optically coupled to the optically pumped tunable laser, wherein the optically pumped tunable laser provides a laser output signal having a wavelength; wavelength stabilizing apparatus for use in stabilizing the wavelength of the laser output signal to a target wavelength, said wavelength stabilizing apparatus comprising: a wavelength measuring module for detecting a difference between an instantaneous wavelength of the laser output signal and the target wavelength, and for generating an error signal which is representative of the difference; and a control unit for receiving said error signal from said wavelength measuring module and operative to provide a control signal to the pump laser suitable for modifying said electrooptical characteristic of the gain medium of the pump laser in accordance with said control signal, wherein the modified electrooptical performance characteristic of the gain medium of the pump laser modulates the intensity of the pump laser signal, wherein said modulated pump laser signal modifies the electrooptical performance characteristic of the gain medium of the optically pumped tunable laser, so as to adjust the tunable laser to its target wavelength. 1. wavelength stabilizing apparatus for use in stabilizing the wavelength of an optically pumped tunable laser to a predetermined target wavelength, wherein the optically pumped tunable laser provides an output laser signal having an instantaneous wavelength and the optically pumped tunable laser is optically pumped by a pump laser signal provided by a pump laser, the pump laser signal having an intensity, the pump laser and the optically pumped tunable laser each having a gain medium and each gain medium having an electrooptical performance characteristic, the wavelength stabilizing apparatus comprising:
a wavelength measuring module for detecting a difference between the instantaneous wavelength of the output laser signal and the predetermined target wavelength, and for generating an output error signal which is representative of the difference; and a control unit for receiving said output error signal from said wavelength measuring module and for providing a control signal to said pump laser suitable for modifying the electrooptical performance characteristic of said the medium of the pump laser in accordance with said control signal, wherein the modified electrooptical performance characteristic of the gain medium modulates the intensity of said pump laser signal, wherein the modulated pump laser signal modifies the electrooptical performance characteristic of the gain medium of the optically pumped tunable laser, wherein the wavelength of the output laser signal of the optically pumped tunable laser is adjusted to substantially equal the predetermined target wavelength.
2. wavelength stabilizing apparatus according to
|
This patent application claims benefit of pending prior U.S. Provisional Patent Application Serial No. 60/161,499, filed Oct. 26, 1999 by Parviz Tayebati for WAVELENGTH STABILIZATION OF TUNABLE LASERS BY CURRENT MODULATION, which patent application is hereby incorporated herein by reference.
This invention relates to photonic devices in general, and more particularly to tunable lasers.
In pending prior U.S. patent application Ser. No. 09/105,399, filed Jun. 26, 1998 by Parviz Tayebati et al. for MICROELECTROMECHANICALLY TUNABLE, CONFOCAL, VERTICAL CAVITY SURFACE EMITTING LASER AND FABRY-PEROT FILTER, and in pending prior U.S. patent application Ser. No. 09/543,318, filed Apr. 5, 2000 by Peidong Wang et al. for SINGLE MODE OPERATION OF MICROMECHANICALLY TUNABLE, HALF-SYMMETRIC, VERTICAL CAVITY SURFACE EMITTING LASERS, which patent applications are hereby incorporated herein by reference, there are disclosed tunable Fabry-Perot filters and tunable vertical cavity surface emitting lasers (VCSEL's).
More particularly, and looking now at
As a result of this construction, a Fabry-Perot filter is effectively created between top mirror 40 and bottom mirror 20. Furthermore, by applying an appropriate voltage across top electrode 30 and bottom electrode 15, the position of top mirror 40 can be changed relative to bottom mirror 20, whereby to change the length of the Fabry-Perot cavity, and hence tune Fabry-Perot filter 5.
Correspondingly, and looking next at
The present invention is directed to tunable lasers of the type disclosed in the aforementioned U.S. patent applications Ser. Nos. 09/105,399 and 09/543,318.
Tunable lasers of the type disclosed in the aforementioned U.S. patent application Ser. Nos. 09/105,399 and 09/543,318 are highly advantageous since they can be quickly and easily tuned by simply changing the voltage applied across the top electrode and the bottom electrode.
However, it has been found that tunable lasers of the type disclosed in the aforementioned U.S. patent application Ser. Nos. 09/105,399 and 09/543,318 can suffer from vibrational problems.
The aforementioned vibrational problems may be due to a variety of factors, such as thermal noise; or noise in the tuning voltage of the laser; or, in the case of an electrically pumped laser, shot noise in the injection current; etc.
Regardless of the cause, the effect of these vibrational problems is to cause the laser to move out of tune. In other words, these vibrational effects cause the output frequency of the laser to change even though the tuning voltage of the laser is held constant. While the extent of this vibration-related frequency shift may be relatively modest (e.g., a 300 MHz shift in the lasing frequency from a 100 MHz vibration frequency), this frequency shift may nonetheless create significant problems in certain types of systems, e.g., WDM communication systems.
See, for example,
As a result, an object of the present invention is to provide a method and apparatus for stabilizing the wavelength of tunable lasers affected by the aforementioned vibrational problems.
The present invention provides a fast and easy way to compensate for the aforementioned vibrational problems in tunable lasers, by correspondingly adjusting the electrooptical performance of the laser's gain medium, whereby to eliminate the frequency shift due to vibrational factors.
The electrooptical performance of the laser's gain medium is adjusted, in the case of an electrically pumped laser, by changing the injection current used to pump the laser; and the electrical performance of the laser's gain medium is adjusted, in the case of an optically pumped laser, by changing the intensity of the pump laser used to energize the laser.
The system is implemented with a feedback mechanism. A wavelength measuring module detects the difference between the instantaneous wavelength of the laser and the desired wavelength of the laser, and generates a voltage signal which is representative of this difference. This voltage signal is then used to appropriately modify the electrooptical performance of the laser's gain medium, either by appropriately adjusting the injection current applied to the gain medium (in the case of an electrically pumped laser), or by appropriately adjusting the intensity of the pump laser applied to the gain medium (in the case of an optically pumped laser).
These and other objects and features of the present invention will be more fully disclosed or rendered obvious by the following detailed description of the preferred embodiments of the invention, which is to be considered together with the accompanying drawings wherein like numbers refer to like parts and further wherein:
The present invention provides a fast and easy way to compensate for the aforementioned vibrational problems in tunable lasers, by correspondingly adjusting the electrooptical performance of the laser's gain medium, whereby to eliminate the frequency shift due to vibrational factors.
More particularly, in a tunable laser of the sort disclosed in the aforementioned U.S. patent application Ser. Nos. 09/105,399, and 09/543,318, the output frequency of the laser may be affected by three variables, among others: (1) the tuning voltage applied to the laser, in the case of both electrically pumped and optically pumped lasers; (2) the injection current applied to the laser's gain medium, in the case of an electrically pumped laser; and (3) the intensity of the pump laser applied to the laser's gain medium, in the case of an optically pumped laser.
In particular, in the case of an electrically pumped laser, changing the injection current applied to the laser's gain medium causes a change in both the intensity of the laser's output and the output frequency of the laser. This is due to a corresponding change in the electrooptical performance of the laser's gain medium.
And in the case of an optically pumped laser, changing the intensity of the pump laser applied to the laser's gain medium causes a change in both the intensity of the laser's output and the output frequency of the laser. Again, this is due to a corresponding change in the electrooptical performance of the laser's gain medium.
The present invention is adapted to utilize one or the other of these phenomena, depending on whether the laser is electrically pumped or optically pumped, to selectively adjust the electrooptical performance of the laser's gain medium, whereby to eliminate the frequency shift due to the aforementioned vibrational factors.
More specifically, the present invention is adapted to (1) detect the frequency shift due to vibrational factors, and (2) compensate for this frequency shift by selectively modifying the electrooptical performance of the laser's gain medium, whereby to lock the laser to its target frequency. In the case of an electrically pumped laser, this compensation is achieved by appropriately adjusting the injection current applied to the laser's gain medium; in the case of an optically pumped laser, this compensation is achieved by selectively adjusting the intensity of the pump laser applied to the laser's gain medium.
The system is implemented with a feedback mechanism. More particularly, a wavelength measuring module detects the difference between the instantaneous wavelength of the tunable laser and the desired wavelength of the laser, and generates a voltage signal which is representative of this difference. This voltage signal is then used to appropriately modify the electrooptical performance of the laser's gain medium, either by appropriately adjusting the injection current applied to the gain medium (in the case of an electrically pumped laser), or by appropriately adjusting the intensity of the pump laser applied to the gain medium (in the case of an optically pumped laser).
The particular wavelength measuring module used for the feedback mechanism can be any one of the many such devices well known in the art.
Looking now at
Correspondingly, and looking now at
It is to be understood that the present invention is by no means limited to the particular constructions and method steps disclosed above and/or shown in the drawings, but also comprises any modifications or equivalents within the scope of the claims.
Patent | Priority | Assignee | Title |
11402479, | Feb 08 2022 | Quantum Valley Ideas Laboratories | Communicating information using photonic crystal transceivers |
11469566, | Feb 08 2022 | Quantum Valley Ideas Laboratories | Generating electromagnetic radiation from a photonic crystal maser |
11533101, | Feb 08 2022 | Quantum Valley Ideas Laboratories | Communicating information using photonic crystal masers |
7149431, | Oct 15 2002 | Samsung Electronics Co., Ltd. | Self-seeded Fabry-Perot laser device for wavelength division multiplexing system |
7885301, | Mar 13 2009 | The Boeing Company | Laser safety system |
Patent | Priority | Assignee | Title |
5265116, | Feb 02 1988 | Massachusetts Institute of Technology | Microchip laser |
5450207, | Jul 16 1993 | Cymer, INC | Method and apparatus for calibrating a laser wavelength control mechanism |
5657340, | Apr 19 1996 | The Aerospace Corporation | Rubidium atomic clock with fluorescence optical pumping and method using same |
5691989, | Jul 26 1991 | ONDAX, Inc | Wavelength stabilized laser sources using feedback from volume holograms |
5970076, | Mar 24 1997 | Ando Electric Co., Ltd. | Wavelength tunable semiconductor laser light source |
6014400, | Sep 02 1996 | Matsushita Electric Industrial Co., Ltd | Surface-emitting laser and a fabrication method thereof |
6018536, | Nov 20 1998 | Sarnoff Corporation | Multiple-wavelength mode-locked laser |
6034799, | Jun 30 1997 | WSOU Investments, LLC | Tuning source for lightwave systems |
6120190, | Nov 26 1997 | AVANEX CORPORA TION | Spatially variable bandpass filter monitoring and feedback control of laser wavelength especially in wavelength division multiplexing communication systems |
6289028, | Feb 19 1998 | Lumentum Operations LLC | Method and apparatus for monitoring and control of laser emission wavelength |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 26 2000 | Nortel Networks, Ltd. | (assignment on the face of the patent) | / | |||
Oct 01 2002 | TAYEBATI, PARVIZ | CORETEK, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014607 | /0722 |
Date | Maintenance Fee Events |
Dec 10 2007 | REM: Maintenance Fee Reminder Mailed. |
Jun 01 2008 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 01 2007 | 4 years fee payment window open |
Dec 01 2007 | 6 months grace period start (w surcharge) |
Jun 01 2008 | patent expiry (for year 4) |
Jun 01 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 01 2011 | 8 years fee payment window open |
Dec 01 2011 | 6 months grace period start (w surcharge) |
Jun 01 2012 | patent expiry (for year 8) |
Jun 01 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 01 2015 | 12 years fee payment window open |
Dec 01 2015 | 6 months grace period start (w surcharge) |
Jun 01 2016 | patent expiry (for year 12) |
Jun 01 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |