A device for incising a stenosis in the aortic valve of a patient includes an elongated balloon catheter, with at least one straight blade mounted on the balloon. Specifically, the blade is coplanar with the axis of the catheter, and the proximal end of the blade is located adjacent the proximal end of the balloon. In operation, the balloon/blade combination is advanced into the vasculature and positioned distal to the stenosis to be incised. The balloon is then inflated. With this inflation, the blade is inclined relative to the axis of the catheter with an increasing distance between the blade and the axis in a distal direction. The device is then retracted, proximally, to incise the stenosis.
|
17. A method for incising a stenosis which comprises the steps of:
providing a substantially straight elongated blade having a proximal end portion and a distal end portion, with a sharp cutting edge in at least said distal end portion; advancing the elongated blade in a distal direction along a predetermined path into the vasculature of a patient, to position the blade distal to the stenosis; inclining the blade relative to the path to separate said distal end portion of said blade from a balloon with an increasing distance between the blade and the path in the distal direction; and retracting the blade in a proximal direction along the path to incise the stenosis with the cutting edge of the blade.
11. A device for incising a stenosis which comprises:
a substantially straight elongated blade having a proximal end portion and a distal end portion, with a sharp cutting edge in at least said distal end portion; a means for advancing the elongated blade in a distal direction along a predetermined path into the vasculature of a patient, to position the blade at a location distal to the stenosis; a means for inclining the blade relative to the path to separate said distal end portion of said blade from a balloon with an increasing distance between the blade and the path in the distal direction; and a means for retracting the blade in a proximal direction along the path to incise the stenosis with the cutting edge of the blade.
1. A cutting device which comprises:
a catheter; an elongated balloon defining an axis, said balloon being mounted on said catheter for reconfiguration between an inflated configuration and a deflated configuration; a substantially straight, elongated blade formed with a sharp edge and having a proximal end portion and a distal end portion, with the proximal end portion attached to said balloon to orient said blade in a plane with the axis of said balloon and to project the sharp edge of the blade in a radial direction from the axis of said balloon; and a means for inflating the balloon into its inflated configuration to separate said distal end portion of said blade from said balloon and incline said blade relative to the axis, with an increasing distance between the blade and the axis in a distal direction, to present the sharp edge of said distal end portion of said blade for cutting an object as said device is moved relative to the object in a proximal direction.
2. A device as recited in
3. A device as recited in
4. A device as recited in
a substantially conical-shaped distal section having a taper with increasing radius in the proximal direction; a substantially conical-shaped proximal section having a taper with decreasing radius in the proximal direction; and a substantially cylindrical-shaped intermediate section located between said distal section and said proximal section.
5. A device as recited in
6. A device as recited in
7. A device as recited in
9. A device as recited in
12. A device as recited in
13. A device as recited in
a substantially conical-shaped distal section having a taper with increasing radius in the proximal direction; a substantially conical-shaped proximal section having a taper with decreasing radius in the proximal direction; and a substantially cylindrical-shaped intermediate section located between the distal section and the proximal section.
14. A device as recited in
15. A device as recited in
16. A device as recited in
18. A method as recited in
19. A method as recited in
deflating the balloon after the retracting step; and withdrawing the device from the vasculature of the patient after the deflating step.
|
The present invention pertains generally to interventional medical devices. More particularly, the present invention pertains to catheters that can be used to incise tissue in the vasculature of a patient. The present invention is particularly, but not exclusively, useful as a catheter for incising the aortic valve between the left ventricle of the heart and the aorta for the purpose of relieving the heart condition known as aortic valve stenosis (AS).
In its normal operation, the left ventricle of the heart pumps oxygen-rich blood to arteries in the vasculature of the body through the aorta. As the heart pumps, the aortic valve, which is located between the ventricle and the aorta, opens and closes to control the direction of blood flow. Specifically, during a heartbeat, the valve is open to allow blood to flow from the ventricle into the aorta. Between heartbeats, however, the aortic valve closes to form a tight seal that prevents blood from leaking back into the ventricle. For any of several reasons (e.g. aging, or birth defects), it can happen that the aortic valve is somehow damaged and may become stenosed. When this happens, the aortic valve does not open to its normal extent and the flow of blood from the heart into the aorta is constricted. This leads to a heart condition that is commonly known as aortic valve stenosis (AS).
In a patient with AS, the aortic valve is stenosed and the heart is forced to pump blood through a narrowed opening through the aortic valve. Over time, this narrowing causes pressure to build up in the left ventricle of the heart. In order to compensate for this pressure overload, the muscles of the left ventricle enlarge (hypertrophy) so that the heart can pump with more force. It eventually happens, however, that the stenosis in the aortic valve increases to the point the heart can no longer maintain adequate blood flow through the stenosis. At this point, the patient experiences several characteristic symptoms of AS. In general, this occurs when the aortic valve, when open, has a valve opening area that is approximately one square centimeter (1 cm2).
Heretofore, the treatment for AS has been accomplished either surgically by doing a valve replacement, or by performing a percutaneous balloon valvuloplasty. In the case of a valve replacement, an extensive surgical procedure is required wherein the aortic valve is replaced either by a mechanical or a porcine valve. On the other hand, being a percutaneous procedure, balloon valvuloplasty is somewhat less involved than a valve replacement procedure. Nevertheless, for many reasons including a high recurrence rate, and despite its initial acceptance, balloon valvuloplasty is now used infrequently and only palliatively or as a bridge to surgery.
In light of the above it is an object of the present invention to provide a percutaneous device and method for treating aortic valve stenosis that effectively makes controlled shallow incisions in the leaflets, of the aortic valve to thereby establish a more normal flow of blood from the left ventricle of the heart into the aorta. Another object of the present invention is to provide a cutting device that can be safely advanced through the vasculature of a patient, and subsequently withdrawn therefrom, while permitting surgical incisions at selected locations in the vasculature. Still another object of the present invention is to provide a cutting device and method for treating aortic valve stenosis that is simple to manufacture, easy to use, and comparatively cost effective.
In accordance with the present invention, a cutting device for treating aortic valve stenosis includes a catheter that has an elongated balloon mounted near its distal end. As intended for the present invention, the balloon can be reconfigured on the catheter between an inflated configuration and a deflated configuration. Structurally, the balloon defines an axis and, in its inflated configuration, it has three identifiable sections that are located between its distal end and its proximal end. These sections are: a substantially conical-shaped distal section having a taper with an increasing radius in the proximal direction; a substantially conical-shaped proximal section having a taper with a decreasing radius in the proximal direction; and a substantially cylindrical-shaped intermediate section that is located between the distal section and the proximal section.
At least one, but as many as three or possibly four, substantially straight, elongated blades are attached to the balloon. Importantly, these blades are oriented on the balloon so as to be coplanar with the axis of the balloon. Further, each blade is formed with a sharp edge, and each blade is attached to the balloon to project the sharp edge of the blade in a radial direction from the axis of the balloon. In more detail, the proximal portion of each blade is attached to the proximal section of the balloon, with the distal end of the blade adjacent the distal end of the balloon. The blades, however, are longer than the proximal section of the balloon. Therefore, the distal portion and the distal end of each blade is not attached to the balloon.
In the operation of the present invention, the balloon (in its deflated configuration) is advanced into the vasculature of the patient. Specifically, for the treatment of AS, the balloon is positioned inside the left ventricle of the heart. This then places the balloon distal to the aortic valve. In any event, once the balloon is in the left ventricle it is then inflated.
In its inflated configuration, the balloon inclines each blade relative to the axis of the balloon. Specifically, this inclination is characterized by an increasing distance between the blade and the axis of the balloon, in a distal direction along the axis. In cooperation with the balloon, each blade is inclined relative to the balloon's axis at an angle (α) that is established by the taper of the balloon's proximal section, when the balloon is inflated. Preferably, this angle (α) is in a range between approximately zero degrees, when the balloon is in its deflated configuration, and approximately forty-five degrees, when the balloon is in its inflated configuration. (0°C-45°C). An important consequence of this is that, when the balloon is in its inflated configuration, the sharp edges of the blades are presented for cutting (incising) the aortic valve. More specifically, the distal portions and distal ends of respective blades are projected radially outward from the axis through a distance that extends beyond the radius of the cylindrical-shaped intermediate section.
An incising action on the aortic valve is accomplished as the inflated balloon is retracted through the aortic valve in a proximal direction. After the inflated balloon has been retracted through the aortic valve, and the valve has been incised, the balloon is deflated. The deflated balloon is then withdrawn from the vasculature and the procedure is completed.
The novel features of this invention, as well as the invention itself, both as to its structure and its operation, will be best understood from the accompanying drawings, taken in conjunction with the accompanying description, in which similar reference characters refer to similar parts, and in which:
Referring initially to
Still referring to
The structure for balloon 18 will be best understood by referencing both FIG. 1 and FIG. 2B. As shown, the balloon 18, when inflated, generally defines three sections. These are: a proximal section 34; an intermediate section 36; and a distal section 38. More specifically, when the balloon 18 is inflated, the proximal section 34 is generally conical-shaped and has a taper with an increasing radius in the distal direction. On the other hand, the intermediate section 36 is substantially cylindrical-shaped and has a generally constant radius. Again, there is a conical-shape for the distal section 38. This time, however, the taper for the distal section 38 has a decreasing radius in the distal direction. Preferably, the blade 26a is longer than the proximal section 34 and is attached to only the proximal section 34 of the balloon 18. Consequently, the distal end 40 of the blade 26a is not engaged with the balloon 18. As perhaps best seen in
As envisioned for the present invention, the balloon 18 of the present invention can be reconfigured between a deflated configuration (FIG. 2A and
Referring now to
As intended for the operation of the present invention, the balloon 18 is advanced over the guidewire 22 until the balloon 18 has been positioned in the left ventricle 52 of the patient's heart. At this point, the inflation/deflation device 24 is manipulated to inflate the balloon 18 into its inflated configuration (
While the particular A Device for Percutaneous Cutting and Dilating a Stenosis of the Aortic Valve as herein shown and disclosed in detail is fully capable of obtaining the objects and providing the advantages herein before stated, it is to be understood that it is merely illustrative of the presently preferred embodiments of the invention and that no limitations are intended to the details of construction or design herein shown other than as described in the appended claims.
Patent | Priority | Assignee | Title |
10016212, | Mar 13 2008 | Cook Medical Technologies LLC | Cutting balloon with connector and dilation element |
10016271, | Oct 19 2011 | FOUNDRY NEWCO XII, INC | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
10028827, | Jun 21 2011 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
10034750, | Jun 21 2011 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
10046146, | Dec 29 2010 | Boston Scientific Scimed, Inc. | Cutting balloon catheter |
10052204, | Oct 19 2011 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
10076641, | May 11 2005 | SPECTRANETICS LLC | Methods and systems for delivering substances into luminal walls |
10086178, | Nov 09 2001 | SPECTRANETICS LLC | Balloon catheter with non-deployable stent |
10111747, | May 20 2013 | TWELVE, INC | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
10117668, | Oct 08 2013 | SPECTRANETICS LLC | Balloon catheter with non-deployable stent having improved stability |
10238490, | Aug 21 2015 | Twelve, Inc. | Implant heart valve devices, mitral valve repair devices and associated systems and methods |
10258468, | Mar 01 2012 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
10265172, | Apr 29 2016 | Medtronic Vascular, Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
10286190, | Dec 11 2013 | Cook Medical Technologies LLC; William Cook Europe ApS | Balloon catheter with dynamic vessel engaging member |
10299917, | Oct 19 2011 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
10299927, | Oct 19 2011 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
10314947, | Apr 19 2010 | SPECTRANETICS LLC | Coating formulations for scoring or cutting balloon catheters |
10327802, | Oct 06 2010 | Rex Medical, L.P. | Cutting wire assembly for use with a catheter |
10335189, | Dec 03 2014 | PAVMED INC | Systems and methods for percutaneous division of fibrous structures |
10335278, | Oct 19 2011 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
10342960, | May 11 2005 | SPECTRANETICS LLC | Methods and systems for delivering substances into luminal walls |
10350004, | Dec 09 2004 | Twelve, Inc. | Intravascular treatment catheters |
10433961, | Apr 18 2017 | Twelve, Inc. | Delivery systems with tethers for prosthetic heart valve devices and associated methods |
10471184, | Apr 19 2010 | SPECTRANETICS LLC | Coating formulations for scoring or cutting balloon catheters |
10485571, | Oct 08 2013 | SPECTRANETICS LLC | Balloon catheter with non-deployable stent having improved stability |
10517725, | Dec 23 2010 | Twelve, Inc. | System for mitral valve repair and replacement |
10548627, | Nov 18 2010 | Rex Medical, L.P. | Cutting wire assembly for use with a catheter |
10575950, | Apr 18 2017 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
10617443, | Mar 13 2008 | Cook Medical Technologies LLC | Cutting balloon with connector and dilation element |
10646338, | Jun 02 2017 | Twelve, Inc. | Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods |
10702378, | Apr 18 2017 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
10702380, | Oct 19 2011 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
10709591, | Jun 06 2017 | TWELVE, INC | Crimping device and method for loading stents and prosthetic heart valves |
10722694, | Jan 21 2003 | SPECTRANETICS LLC | Apparatus and methods for treating hardened vascular lesions |
10729541, | Jul 06 2017 | TWELVE, INC | Prosthetic heart valve devices and associated systems and methods |
10729893, | Dec 29 2010 | Boston Scientific Scimed, Inc. | Cutting balloon catheter |
10736652, | Sep 21 2010 | SPECTRANETICS LLC | Method and system for treating valve stenosis |
10751173, | Jun 21 2011 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
10765503, | Jul 31 2017 | Edwards Lifesciences Corporation | Bicuspid valve dissection device |
10786352, | Jul 06 2017 | TWELVE, INC | Prosthetic heart valve devices and associated systems and methods |
10792151, | May 11 2017 | TWELVE, INC | Delivery systems for delivering prosthetic heart valve devices and associated methods |
10820996, | Aug 21 2015 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
10945835, | Oct 19 2011 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
11033390, | Apr 29 2016 | Medtronic Vascular, Inc. | Prosthetic heart valve devices with tethered anchors and associated systems and methods |
11129714, | Mar 01 2012 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
11141186, | Dec 03 2014 | PAVmed Inc. | Systems and methods for percutaneous division of fibrous structures |
11154320, | Apr 09 2018 | Boston Scientific Scimed, Inc. | Cutting balloon basket |
11197758, | Oct 19 2011 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
11202704, | Oct 19 2011 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
11234821, | May 20 2013 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
11259837, | Dec 03 2014 | PAVmed Inc. | Systems and methods for percutaneous division of fibrous structures |
11272982, | Dec 09 2004 | Twelve, Inc. | Intravascular treatment catheters |
11389295, | Apr 18 2017 | Twelve, Inc. | Delivery systems with tethers for prosthetic heart valve devices and associated methods |
11420030, | May 11 2005 | SPECTRANETICS LLC | Methods and systems for delivering substances into luminal walls |
11464659, | Jun 06 2017 | Twelve, Inc. | Crimping device for loading stents and prosthetic heart valves |
11497603, | Oct 19 2011 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
11523900, | Jun 21 2011 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
11559398, | Jun 02 2017 | Twelve, Inc. | Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods |
11571303, | Dec 23 2010 | Twelve, Inc. | System for mitral valve repair and replacement |
11571554, | Nov 09 2001 | SPECTRANETICS LLC | Balloon catheter with non-deployable stent |
11576782, | Aug 21 2015 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
11617648, | Oct 19 2011 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
11628063, | Oct 19 2011 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
11654021, | Apr 18 2017 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
11712334, | Jun 21 2011 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
11737873, | Apr 18 2017 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
11759226, | Jul 31 2017 | Edwards Lifesciences Corporation | Bicuspid valve dissection device |
11786370, | May 11 2017 | Twelve, Inc. | Delivery systems for delivering prosthetic heart valve devices and associated methods |
11801067, | Apr 09 2018 | Boston Scientific Scimed, Inc. | Cutting balloon basket |
11812987, | Nov 27 2019 | Boston Scientific Scimed, Inc. | Cutting balloon catheter |
11826249, | Oct 19 2011 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
11877926, | Jul 06 2017 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
6951566, | Jan 25 2002 | LARY RESEARCH AND DEVELOPMENT LLC | Reciprocating cutting and dilating balloon |
7291158, | Nov 12 2004 | Boston Scientific Scimed, Inc | Cutting balloon catheter having a segmented blade |
7303572, | Dec 30 2004 | Cook Medical Technologies LLC | Catheter assembly with plaque cutting balloon |
7396358, | Mar 25 2003 | AngioDynamics, Inc. | Device and method for converting a balloon catheter into a cutting balloon catheter |
7708753, | Sep 27 2005 | Cook Medical Technologies LLC | Balloon catheter with extendable dilation wire |
7727254, | May 23 2006 | Method of removing heart valve stenosis | |
7736375, | Nov 29 2004 | Boston Scientific Scimed, Inc | Balloon catheter with controller depth incising blade |
7803168, | Dec 09 2004 | TWELVE, INC | Aortic valve repair |
7879053, | Dec 20 2004 | Boston Scientific Scimed, Inc | Balloon with stepped sections and implements |
7993358, | Feb 11 2005 | Boston Scientific Scimed, Inc. | Cutting balloon catheter having increased flexibility regions |
8137352, | Oct 16 2006 | Depuy Synthes Products, LLC | Expandable intervertebral tool system and method |
8192675, | Mar 13 2008 | Cook Medical Technologies LLC | Cutting balloon with connector and dilation element |
8323307, | Feb 13 2007 | Cook Medical Technologies LLC | Balloon catheter with dilating elements |
8348987, | Dec 22 2009 | Cook Medical Technologies LLC | Balloon with scoring member |
8491615, | Dec 29 2010 | Boston Scientific Scimed, Inc. | Cutting balloon catheter |
8632559, | Sep 21 2010 | SPECTRANETICS LLC | Method and system for treating valve stenosis |
8685049, | Nov 18 2010 | Rex Medical, LP | Cutting wire assembly for use with a catheter |
8685050, | Oct 06 2010 | Rex Medical, LP | Cutting wire assembly for use with a catheter |
8702736, | Nov 22 2010 | Rex Medical, LP | Cutting wire assembly for use with a catheter |
8702743, | Oct 25 2006 | Koninklijke Philips Electronics N V | Instrument with an inflatable balloon |
8728012, | Dec 19 2008 | ST JUDE MEDICAL, INC | Apparatus and method for measuring blood vessels |
8758388, | May 23 2006 | Device for filtering of blood during removal of heart valve stenosis and method of removing heart valve stenosis | |
8870816, | May 31 2007 | Global Therapeutics, LLC | Device for treating hardened lesions |
8882771, | Oct 16 2006 | Depuy Synthes Products, LLC | Method for manipulating intervertebral tissue |
8905961, | Dec 19 2008 | ST JUDE MEDICAL, INC | Systems, apparatuses, and methods for cardiovascular conduits and connectors |
8906049, | May 31 2007 | Cook Medical Technologies LLC | Device for treating hardened lesions and method of use thereof |
8986248, | Jun 23 2004 | Boston Scientific Scimed, Inc. | Cutting balloon and process |
9034032, | Oct 19 2011 | TWELVE, INC | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
9034033, | Oct 19 2011 | TWELVE, INC | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
9039757, | Oct 19 2011 | TWELVE, INC | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
9119944, | May 31 2007 | Cook Medical Technologies LLC | Device for treating hardened lesions and method of use thereof |
9125740, | Jun 21 2011 | FOUNDRY NEWCO XII, INC | Prosthetic heart valve devices and associated systems and methods |
9173977, | Apr 19 2010 | SPECTRANETICS LLC | Coating formulations for scoring or cutting balloon catheters |
9192747, | Feb 13 2007 | Cook Medical Technologies LLC | Balloon catheter with dilating elements |
9211394, | Feb 06 2007 | Cook Medical Technologies LLC | Angioplasty balloon with conceal wires |
9282980, | Oct 16 2006 | DePuy Synthes Products, Inc. | Device and method for manipulating intervertebral tissue |
9282991, | Oct 06 2010 | REX MEDICAL, L P | Cutting wire assembly with coating for use with a catheter |
9295552, | Oct 19 2011 | TWELVE, INC | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
9302071, | Dec 29 2010 | Boston Scientific Scimed, Inc. | Cutting balloon catheter |
9351756, | Sep 21 2010 | SPECTRANETICS LLC | Method and system for treating valve stenosis |
9364254, | Sep 21 2010 | SPECTRANETICS LLC | Method and system for treating valve stenosis |
9375328, | Nov 09 2001 | SPECTRANETICS LLC | Balloon catheter with non-deployable stent |
9414852, | Dec 09 2004 | TWELVE, INC | Aortic valve repair |
9421098, | Dec 23 2010 | FOUNDRY NEWCO XII, INC | System for mitral valve repair and replacement |
9532798, | Oct 06 2010 | Rex Medical, LP | Cutting wire assembly for use with a catheter |
9566146, | Dec 19 2008 | ST JUDE MEDICAL, LLC | Cardiovascular valve and valve housing apparatuses and systems |
9572662, | Jun 21 2011 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
9579196, | Jun 21 2011 | FOUNDRY NEWCO XII, INC | Prosthetic heart valve devices and associated systems and methods |
9579198, | Mar 01 2012 | TWELVE, INC | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
9585751, | Jun 21 2011 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
9586031, | May 11 2005 | SPECTRANETICS LLC | Methods and systems for delivering substances into luminal walls |
9604036, | Mar 13 2008 | Cook Medical Technologies LLC | Cutting balloon with connector and dilation element |
9615849, | Nov 18 2010 | Rex Medical, LP | Cutting wire assembly for use with a catheter |
9622771, | Oct 06 2010 | REX MEDICAL, L P | Cutting wire assembly with coating for use with a catheter |
9655722, | Oct 19 2012 | TWELVE, INC | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
9737330, | Nov 22 2010 | REX MEDICAL, L P | Cutting wire assembly for use with a catheter |
9763780, | Oct 19 2011 | FOUNDRY NEWCO XII, INC | Devices, systems and methods for heart valve replacement |
9770331, | Dec 23 2010 | Twelve, Inc. | System for mitral valve repair and replacement |
9901443, | Oct 19 2011 | FOUNDRY NEWCO XII, INC | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
9956384, | Jan 24 2014 | Cook Medical Technologies LLC | Articulating balloon catheter and method for using the same |
9962529, | Jan 21 2003 | SPECTRANETICS LLC | Apparatus and methods for treating hardened vascular lesions |
Patent | Priority | Assignee | Title |
4886061, | Feb 09 1988 | ARROW INTERNATIONAL INVESTMENT CORP , A CORP OF DE | Expandable pullback atherectomy catheter system |
5009659, | Oct 30 1989 | SciMed Life Systems, INC; Boston Scientific Scimed, Inc | Fiber tip atherectomy catheter |
5176693, | May 11 1992 | SciMed Life Systems, INC | Balloon expandable atherectomy cutter |
5192291, | Jan 13 1992 | InterVentional Technologies, Inc. | Rotationally expandable atherectomy cutter assembly |
5336234, | Apr 17 1992 | SciMed Life Systems, INC | Method and apparatus for dilatation of a stenotic vessel |
5556408, | Apr 27 1995 | SciMed Life Systems, INC | Expandable and compressible atherectomy cutter |
5616149, | Jul 03 1990 | Cedars-Sinai Medical Center | Balloon catheter with cutting edge |
5697944, | Nov 15 1995 | LARY, BANNING G | Universal dilator with expandable incisor |
5713913, | Nov 12 1996 | LARY, BANNING G | Device and method for transecting a coronary artery |
5792158, | Nov 15 1995 | LARY, BANNING G | University dilator with expandable incisor |
5797935, | Sep 26 1996 | SciMed Life Systems, INC | Balloon activated forced concentrators for incising stenotic segments |
6096054, | Mar 05 1998 | SciMed Life Systems, INC | Expandable atherectomy burr and method of ablating an occlusion from a patient's blood vessel |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 27 2003 | SciMed Life Systems, INC | (assignment on the face of the patent) | / | |||
Feb 05 2003 | SCHWARTZ, LEONARD | SciMed Life Systems, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014116 | /0729 | |
Jan 01 2005 | SciMed Life Systems, INC | Boston Scientific Scimed, Inc | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 018505 | /0868 |
Date | Maintenance Fee Events |
Sep 14 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 17 2009 | ASPN: Payor Number Assigned. |
Apr 17 2009 | RMPN: Payer Number De-assigned. |
Sep 23 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Nov 25 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 08 2007 | 4 years fee payment window open |
Dec 08 2007 | 6 months grace period start (w surcharge) |
Jun 08 2008 | patent expiry (for year 4) |
Jun 08 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 08 2011 | 8 years fee payment window open |
Dec 08 2011 | 6 months grace period start (w surcharge) |
Jun 08 2012 | patent expiry (for year 8) |
Jun 08 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 08 2015 | 12 years fee payment window open |
Dec 08 2015 | 6 months grace period start (w surcharge) |
Jun 08 2016 | patent expiry (for year 12) |
Jun 08 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |