A highly absorbent tissue product is provided having a uniform density and a three-dimensional structure including at least first and second background regions separated by a visually distinctive transition region. The first and second background regions include a series of parallel ridges and depressions extending in the machine direction.
|
16. A sheet material comprising:
tissue material having a substantially uniform density and having a machine direction; a first region having alternating ridges and depressions extending substantially parallel with the machine direction; a second region having a plurality of alternating ridges and depressions extending substantially parallel to the machine direction; a visually distinctive transition region separating said first and said second regions, wherein the visually distinctive transition region has a greater depth than said first and second regions; and wherein the ridges within the first region are laterally offset from the ridges within the second region and the depressions within the flit region are laterally offset from the depressions within the second region.
1. A sheet material comprising:
tissue material having a substantially uniform density and having a machine direction; a first region having alternating ridges and depressions extending substantially parallel with the machine direction; a second region having a plurality of alternating ridges and depressions extending substantially parallel to the machine direction, wherein the ridges and depressions within the first and second regions have a substantially uniform width, wherein the ridges within the first and second regions have a substantially equal width, wherein the depressions within the first and second regions have a substantially equal width, and wherein the depressions have a greater width then said ridges; a visually distinctive transition region separating said first and second regions; and wherein the ridges within the first region are laterally offset from the ridges within the second region and the depressions within the first region are laterally offset from the depressions within the second region.
9. A sheet material comprising:
tissue material having a substantially uniform density and having a machine direction; a first region having alternating ridges and depressions extending substantially parallel with the machine direction; a second region having a plurality of alternating ridges and depressions extending substantially parallel to the machine direction, wherein the ridges and depressions within the first and second regions have a substantially uniform width, wherein the ridges within the first and second regions have a substantially equal width, wherein the depressions within the first and second regions have a substantially equal width, and further wherein the ridges have a greater width then said depressions; a visually distinctive transition region separating said first and second regions; and wherein the ridges within the first region are laterally offset from the ridges within the second region and the depressions within the first region are laterally offset from the depressions within the second region.
2. The sheet material of
3. The sheet material of
4. The sheet material of
6. The sheet material of
7. The sheet material of
8. The sheet material of
10. The sheet material of
11. The sheet material of
12. The sheet material of
13. The sheet material of
14. The sheet material of
15. The sheet material of
17. The sheet material of
18. The sheet material of
19. The sheet material of
20. The sheet material tissue product of
21. The sheet material of
22. The sheet material of
|
This application is a continuation-in-part of application Ser. No. 10/015,838 entitled "Fabric For Use In The Manufacture Of Tissue Products Having Visually Discernable Background Texture Regions Bordered By Curvilinear Decorative Elements" and filed in the U.S. Patent and Trademark Office on Nov. 2, 2001. The entirety of application Ser. No. 10/015,838 is hereby incorporated by reference.
The present invention relates to the field of paper manufacturing. More particularly, the present invention relates to the manufacture of absorbent tissue products such as bath tissue, facial tissue, napkins, towels, wipers, and the like. Specifically, the present invention relates to improved fabrics used to manufacture absorbent tissue products having visually discernible background texture regions bordered by curvilinear decorative elements, methods of tissue manufacture, methods of fabric manufacture, and the actual tissue products produced.
In the manufacture of tissue products, particularly absorbent tissue products, there is a continuing need to improve the physical properties and final product appearance. It is generally known in the manufacture of tissue products that there is an opportunity to mold a partially dewatered cellulosic web on a papermaking fabric specifically designed to enhance the finished paper product's physical properties. Such molding can be applied by fabrics in an uncreped through air dried process as disclosed in U.S. Pat. No. 5,672,248 issued on Sep. 30, 1997 to Wendt et al., or in a wet pressed tissue manufacturing process as disclosed U.S. Pat. No. 4,637,859 issued on Jan. 20, 1987 to Trokhan. Wet molding typically imparts desirable physical properties independent of whether the tissue web is subsequently creped, or an uncreped tissue product is produced.
However, absorbent tissue products are frequently embossed in a subsequent operation after their manufacture on the paper machine, while the dried tissue web has a low moisture content, to impart consumer preferred visually appealing textures or decorative lines. Thus, absorbent tissue products having both desirable physical properties and pleasing visual appearances often require two manufacturing steps on two separate machines. Hence, there is a need to combine the generation of visually discernable background texture regions bordered by curvilinear decorative elements with the paper manufacturing process to reduce manufacturing costs. There is also a need to develop a paper manufacturing process that not only imparts visually discernable background texture regions bordered by curvilinear decorative elements to the sheet, but also maximizes desirable physical properties of the absorbent tissue products without deleteriously affecting other desirable physical properties.
Previous attempts to combine the above needs, such as those disclosed in U.S. Pat. No. 4,967,805 issued on Nov. 6, 1990 to Chiu, U.S. Pat. No. 5,328,565 issued on Jul. 12, 1994 to Rasch et al., and in U.S. Pat. No. 5,820,730 issued on Oct. 13, 1998 to Phan et al., have manipulated the papermaking fabric's drainage in different localized regions to produce a pattern in the wet tissue web in the forming section of the paper machine. Thus, the texture results from more fiber accumulation in areas of the fabric having high drainage and fewer fibers in areas of the fabric having low drainage. Such a method can produce a dried tissue web having a non-uniform basis weight in the localized areas or regions arranged in a systematic manner to form the texture. While such a method can produce textures, the sacrifice in the uniformity of the dried tissue web's physical properties such as tear, burst, absorbency, and density can degrade the dried tissue web's performance while in use.
For the foregoing reasons, there is a need to generate aesthetically pleasing combinations of background texture regions and curvilinear decorative elements in the dried or partially dried tissue web, while being manufactured on the paper machine, using a method that produces a substantially uniform density dried tissue web which has improved performance while in use.
Numerous woven fabric designs are known in papermaking. Examples are provided by Sabut Adanur in Paper Machine Clothing, Lancaster, Pa.: Technomic Publishing, 1997, pp. 33-113, 139-148, 159-168, and 211-229. Another example is provided in Patent Application WO 00/63489, entitled "Paper Machine Clothing and Tissue Paper Produced with Same," by H. J. Lamb, published on Oct. 26, 2000.
The problems experienced by those skilled in the art are overcome by the present invention which, in one aspect, comprises a tissue product having a substantially uniform density and first and second background regions having alternating ridges and depressions extending substantially parallel with the machine direction. A transition region is located between and separates the first and second background regions. In one embodiment of the present invention, the ridges within the first background region are offset from the ridges within the second background region and the depressions within the first background region are offset from the depressions within the second background region. The ridges and depressions within the first and second background regions can have a substantially uniform width or, in an alternative embodiment, the depressions can have a larger width than the ridges. The transition region can define any one of numerous decorative shapes and, in one aspect, can comprise curvilinear shapes.
The transition region can form a macroscopically different pattern, i.e. a visually distinctive pattern, by any one of various methods. As an example, the transition region can have a greater depth than the first and second background regions. As a further example, the transition region can have a height between that of the ridges and the depressions. As yet a further example, the transition region can comprise a gap having a length, in the machine direction, such as between 0.05 and 2 cm. Still further, the transition region can comprise an area wherein the offset ridges of adjacent first and second background regions overlap a certain distance such as, for example, between 0.05 and 1 cm. The transition region can have a curvilinear shape and, in a particular aspect, can surround the first back ground regions. The transition region, when surrounding the first background region, can form a discrete decorative element. The size of the decorative element can vary and, by way of example, can have a maximum dimension between 0.8 to 18 cm
In a further aspect of the present invention, a tissue product is provided comprising a sheet material having a three-dimensional texture and a substantially uniform density. The sheet material includes repeating first and second background regions separated by transitions regions. The first background regions and second background regions each include at least four raised elements or ridges per centimeter that extend in a direction substantially parallel to the machine direction of the sheet. The transition region is positioned between the first and second background regions and separates the two regions. In addition, the transition region has a pattern visually distinct from the pattern within the first and second background regions. The tissue sheet has excellent absorbency characteristics and, in one aspect, can have a z-directional wicking rate greater than 2 g/g/s. In other embodiments, the tissue sheet can have a z-directional wicking rate in excess of about 3 g/g/s. Desirably, the ridges within the first and/or second background regions are substantially uniformly spaced apart. Still more desirably, the first and second background regions have substantially uniformly spaced apart ridges and further have substantially the same number of ridges per centimeter. In this regard, in one embodiment of the present invention, the first and second background regions can each have between 5 and 10 ridges per cm. The transition region can vary in numerous respects such as, for example, those noted above. In a further aspect, the transition region can surround the first background region and define a decorative element. By way of example, the decorative element can have a length in the machine direction between about 1 and 18 cm.
These and other features, aspects, and advantages of the present invention will be better understood with regard to the following description, appended claims, and accompanying drawings where:
As used herein, "curvilinear decorative element" refers to any line or visible pattern that contains either straight sections, curved sections, or both that are substantially connected visually. Thus, a decorative pattern of interlocking circles may be formed from many curvilinear decorative elements shaped into circles. Similarly, a pattern of squares may be formed from many curvilinear decorative elements shaped into individual squares. It is understood that curvilinear decorative elements also may appear as undulating lines, substantially connected visually, forming signatures or patterns as well as multiple warp mixed with single warp to generate textures of more complicated patterns.
Also, as used herein "decorative pattern" refers to any non-random repeating design, figure, or motif. It is not necessary that the curvilinear decorative elements form recognizable shapes, and a repeating design of the curvilinear decorative elements is considered to constitute a decorative pattern.
As used herein, the term "float" means an unwoven or non-interlocking portion of a warp emerging from the topmost layer of shutes that spans at least two consecutive shutes of the topmost layer of shutes.
As used herein, a "sinker" means a span of a warp that is generally depressed relative to adjacent floats, further having two end regions both of which pass under one or more consecutive shutes.
As used herein, "machine-direction" or "MD" refers to the direction of travel of the fabric, the fabric's individual strands, or the paper web while moving through the paper machine. With respect to tissue products, the machine-direction refers to the direction in which the tissue product is made. Thus, the MD test data for the tissue refers to the tissue's physical properties in a sample cut lengthwise in the machine-direction. Similarly, "cross-machine direction" or "CD" refers to a direction orthogonal to the machine-direction extending across the width of the paper machine. Thus, the CD test data for the tissue refers to the tissue's physical properties in a sample cut lengthwise in the cross-machine direction. In addition, the strands may be arranged at acute angles to the MD and CD directions. One such arrangement is described in "Rolls of Tissue Sheets Having Improved Properties", Burazin et al., EP 1 109 969 A1 which published on Jun. 27, 2001 and incorporated herein by reference to the extent it is not contradictory herewith.
As used herein, "plane difference" refers to the z-direction height difference between an elevated region and the highest immediately adjacent depressed region. Specifically, in a woven fabric, the plane difference is the z-direction height difference between a float and the highest immediately adjacent sinker or shute. Z-direction refers to the axis mutually orthogonal to the machine direction and cross-machine direction.
As used herein, "transfer fabric" is a fabric that is positioned between the forming section and the drying section of the web manufacturing process.
As used herein, "transition region" is defined as the intersection of three or more floats on three or more consecutive MD strands. The transition regions are formed by deliberate interruptions in the textured background regions, which may result from a variety of arrangements of intersections of the floats. The floats may be arranged in an overlapping intersection or in a non-overlapping intersection.
As used herein, a "filled" transition region is defined as a transition region where the space between the floats in the transition region is partially or completely filled with material, raising the height in the transition area. The filling material may be porous. The filling material may be any of the materials discussed hereinafter for use in the construction of fabrics. The filling material may be substantially deformable, as measured by High Pressure Compressive Compliance (defined hereinafter).
As used herein, the term "warp" can be understood as a strand substantially oriented in the machine direction, and "shute" can be understood to refer to the strands substantially oriented in the cross-machine direction of the fabric as used on a papermachine. The warps and shutes may be interwoven via any known fabric method of manufacture. In the production of endless fabrics, the normal orientation of warps and shutes, according to common weaving terminology, is reversed, but as used herein, the structure of the fabric and not its method of manufacture determine which strands are classified as warps and which are shutes.
As used herein "strand" refers a substantially continuous filament suitable for weaving sculptured fabrics of the present invention. Strands may include any known in the prior art. Strands may comprise monofilament, cabled monofilament, staple fiber twisted together to form yarns, cabled yarns, or combinations thereof. Strand cross-sections, filament cross sections, or stable fiber cross sections may be circular, elliptical, flattened, rectangular, oval, semi-oval, trapezoidal, parallelogram, polygonal, solid, hollow, sharp edged, rounded edged, bi-lobal, multi-lobal, or can have capillary channels. Strand diameter or strand cross sectional shape may vary along its length.
As used herein "multi-strand" refers to two or more strands arranged side by side or twisted together. It is not necessary for each side-by-side strand in a multi-strand group to be woven identically. For example, individual strands of a multi-strand warp may independently enter and exit the topmost layer of shutes in sinker regions or transition regions. As a further example, a single multi-strand group need not remain a single multi-strand group throughout the length of the strands in the fabric, but it is possible for one or more strands in a multi-strand group to depart from the remaining strand(s) over a specific distance and serve, for example, as a float or sinker independently of the remaining strand(s).
As used herein, "Frazier air permeability" refers to the measured value of a well-known test with the Frazier Air Permeability Tester in which the permeability of a fabric is measured as standard cubic feet of air flow per square foot of material per minute with an air pressure differential of 0.5 inches (12.7 mm) of water under standard conditions. The fabrics of the present invention can have any suitable Frazier air permeability. For example, thoughdrying fabrics can have a permeability from about 55 standard cubic feet per square foot per minute (about 16 standard cubic meters per square meter per minute) or higher, more specifically from about 100 standard cubic feet per square foot per minute (about 30 standard cubic meters per square meter per minute) to about 1,700 standard cubic feet per square foot per minute (about 520 standard cubic meters per square meter per minute), and most specifically from about 200 standard cubic feet per square foot per minute (about 60 standard cubic meters per square meter per minute) to about 1,500 standard cubic feet per square foot per minute (about 460 standard cubic meters per square meter per minute).
The Process
Referring to
In
The wet tissue web 15 forms on the inner forming fabric 13 as the inner forming fabric 13 revolves about a forming roll 14. The inner forming fabric 13 serves to support and carry the newly-formed wet tissue web 15 downstream in the process as the wet tissue web 15 is partially dewatered to a consistency of about 10 percent based on the dry weight of the fibers. Additional dewatering of the wet tissue web 15 may be carried out by known paper making techniques, such as vacuum suction boxes, while the inner forming fabric 13 supports the wet tissue web 15. The wet tissue web 15 may be additionally dewatered to a consistency of at least about 20%, more specifically between about 20% to about 40%, and more specifically about 20% to about 30%. The wet tissue web 15 is then transferred from the inner forming fabric 13 to a transfer fabric 17 traveling preferably at a slower speed than the inner forming fabric 13 in order to impart increased MD stretch into the wet tissue web 15.
The wet tissue web 15 is then transferred from the transfer fabric 17 to a throughdrying fabric 19 whereby the wet tissue web 15 preferably is macroscopically rearranged to conform to the surface of the throughdrying fabric 19 with the aid of a vacuum transfer roll 20 or a vacuum transfer shoe like the vacuum shoe 18. If desired, the throughdrying fabric 19 can be run at a speed slower than the speed of the transfer fabric 17 to further enhance MD stretch of the resulting absorbent tissue product 27. The transfer is preferably carried out with vacuum assistance to ensure conformation of the wet tissue web 15 to the topography of the throughdrying fabric 19. This yields a dried tissue web 23 having the desired bulk, flexibility, CD stretch, and enhances the visual contrast between the background texture regions 38 and 50 and the curvilinear decorative elements which border the background texture regions 38 and 50.
In one embodiment, the throughdrying fabric 19 is woven in accordance with the present invention, and it imparts the curvilinear decorative elements and background texture regions 38 and 50, such as substantially broken-line like corduroy, to the wet tissue web 15. It is possible, however, to weave the transfer fabric 17 in accordance with the present invention to achieve similar results. Furthermore, it is also possible to eliminate the transfer fabric 17, and transfer the wet tissue web 15 directly to the throughdrying fabric 19 of the present invention. Both alternative papermaking processes are within the scope of the present invention, and will produce a decorative absorbent tissue product 27.
While supported by the throughdrying fabric 19, the wet tissue web 15 is dried to a final consistency of about 94 percent or greater by a throughdryer 21 and is thereafter transferred to a carrier fabric 22. Alternatively, the drying process can be any noncompressive drying method that tends to preserve the bulk of the wet tissue web 15.
In another aspect of the present invention, the wet tissue web 15 is pressed against a Yankee dryer by a pressure roll while supported by a woven sculpted fabric 30 comprising visually discernable background texture regions 38 and 50 bordered by curvilinear decorative elements. Such a process, without the use of the sculpted fabrics 30 of the present invention, is shown in U.S. Pat. No. 5,820,730 issued on Oct. 13, 1998 to Phan et al. The compacting action of a pressure roll will tend to densify a resulting absorbent tissue product 27 in the localized regions corresponding to the highest portions of the sculpted fabric 30.
The dried tissue web 23 is transported to a reel 24 using a carrier fabric 22 and an optional carrier fabric 25. An optional pressurized turning roll 26 can be used to facilitate transfer of the dried tissue web 23 from the carrier fabric 22 to the carrier fabric 25. If desired, the dried tissue web 23 may additionally be embossed to produce a combination of embossments and the background texture regions and curvilinear decorative elements on the absorbent tissue product 27 produced using the throughdrying fabric 19 and a subsequent embossing stage.
Once the wet tissue web 15 has been non-compressively dried, thereby forming the dried tissue web 23, it is possible to crepe the dried tissue web 23 by transferring the dried tissue web 23 to a Yankee dryer prior to reeling, or using alternative foreshortening methods such as microcreping as disclosed in U.S. Pat. No. 4,919,877 issued on Apr. 24, 1990 to Parsons et al.
In an alternative embodiment not shown, the wet tissue web 15 may be transferred directly from the inner forming fabric 13 to the throughdrying fabric 19 and the transfer fabric 17 eliminated. The throughdrying fabric 19 is constructed with raised MD floats 60, and illustrative embodiments are shown in
Differential velocity transfer from one fabric to another can follow the principles taught in any one of the following patents, each of which is herein incorporated by reference to the extent it is not contradictory herewith: U.S. Pat. No. 5,667,636, issued on Sep. 16, 1997 to Engel et al.; U.S. Pat. No. 5,830,321, issued on Nov. 3, 1998 to Lindsay et al.; U.S. Pat. No. 4,440,597, issued on Apr. 3, 1984 to Wells et al.; U.S. Pat. No. 4,551,199, issued on Nov. 5, 1985 to Weldon; and, U.S. Pat. No. 4,849,054, issued on Jul. 18, 1989 to Klowak.
In yet another alternative embodiment of the present invention, the inner forming fabric 13, the transfer fabric 17, and the throughdrying fabric 19 can all be traveling at substantially the same speed. Foreshortening may be employed to improve MD stretch of the absorbent tissue product 27. Such methods include, by way of illustration without limitation, conventional Yankee dryer creping or microcreping.
Any known papermaking or tissue manufacturing method may be used to create a three-dimensional web 23 using the fabrics 30 of the present invention as a substrate for imparting texture to the wet tissue web 15 or the dried tissue web 16. Though the fabrics 30 of the present invention are especially useful as through drying fabrics and can be used with any known tissue making process that employs throughdrying, the fabrics 30 of the present invention can also be used in the formation of paper webs as forming fabrics, transfer fabrics, carrier fabrics, drying fabrics, imprinting fabrics, and the like in any known papermaking or tissue making process. Such methods can include variations comprising any one or more of the following steps in any feasible combination:
web formation in a wet end in the form of a classical Fourdrinier, a gap former, a twin-wire former, a crescent former, or any other known former comprising any known headbox, including a stratified headbox for bringing layers of two or more furnishes together into a single web, or a plurality of headboxes for forming a multilayered web, using known wires and fabrics or fabrics of the present invention;
web formation or web dewatering by foam-based processes, such as processes wherein the fibers are entrained or suspended in a foam prior to dewatering, or wherein foam is applied to an embryonic web prior to dewatering or drying, including the methods disclosed in U.S. Pat. 5,178,729, issued on Jan. 12, 1993 to Janda, and U.S. Pat. No. 6,103,060, issued on Aug. 15, 2000 to Munerelle et al., both of which are herein incorporated by reference to the extent they are not contradictory herewith;
differential basis weight formation by draining a slurry through a forming fabric having high and low permeability regions, including fabrics of the present invention or any known forming fabric;
rush transfer of a wet web from a first fabric to a second fabric moving at a slower velocity than the first fabric, wherein the first fabric can be a forming fabric, a transfer fabric, or a throughdrying fabric, and wherein the second fabric can be a transfer fabric, a throughdrying fabric, a second throughdrying fabric, or a carrier fabric disposed after a throughdrying fabric (one exemplary rush transfer process is disclosed in U.S. Pat. No. 4,440,597 to Wells et al, herein incorporated by reference to the extent it is not contradictory herewith), wherein the aforementioned fabrics can be selected from any known suitable fabric including fabrics of the present invention;
application of differential air pressure across the web to mold it into one or more of the fabrics on which the web rests, such as using a high vacuum pressure in a vacuum transfer roll or transfer shoe to mold a wet web into a throughdrying fabric as it is transferred from a forming fabric or intermediate carrier fabric, wherein the carrier fabric, throughdrying fabric, or other fabrics can be selected from the fabrics of the present invention or other known fabrics;
use of an air press or other gaseous dewatering methods to increase the dryness of a web and/or to impart molding to the web, as disclosed in U.S. Pat. No. 6,096,169, issued on Aug. 1, 2000 to Hermans et al.; U.S. Pat. No. 6,197,154, issued on Mar. 6, 2001 to Chen et al.; and, U.S. Pat. No. 6,143,135, issued on Nov. 7, 2000 to Hada et al., all of which are herein incorporated by reference to the extent they are not contradictory herewith;
drying the web by any compressive or noncompressive drying process, such as throughdrying, drum drying, infrared drying, microwave drying, wet pressing, impulse drying (e.g., the methods disclosed in U.S. Pat. No. 5,353,521, issued on Oct. 11, 1994 to Orloff and U.S. Pat. No. 5,598,642, issued on Feb. 4, 1997 to Orloff et al.), high intensity nip dewatering, displacement dewatering (see J. D. Lindsay, "Displacement Dewatering To Maintain Bulk," Paperi Ja Puu, vol. 74, No. 3, 1992, pp. 232-242), capillary dewatering (see any of U.S. Pat. Nos. 5,598,643; 5,701,682; and 5,699,626, all of which issued to Chuang et al.), steam drying, etc.
printing, coating, spraying, or otherwise transferring a chemical agent or compound on one or more sides of the web uniformly or heterogeneously, as in a pattern, wherein any known agent or compound useful for a web-based product can be used (e.g., a softness agent such as a quaternary ammonium compound, a silicone agent, an emollient, a skin-wellness agent such as aloe vera extract, an antimicrobial agent such as citric acid, an odor-control agent, a pH control agent, a sizing agent; a polysaccharide derivative, a wet strength agent, a dye, a fragrance, and the like), including the methods of U.S. Pat. No. 5,871,763, issued on Feb. 16, 1999 to Luu et al.; U.S. Pat. No. 5,716,692, issued on Feb. 10, 1998 to Warner et al.; U.S. Pat. No. 5,573,637, issued on Nov. 12, 1996 to Ampulski et al.; U.S. Pat. No. 5,607,980, issued on Mar. 4, 1997 to McAtee et al.; U.S. Pat. No. 5,614,293, issued on Mar. 25, 1997 to Krzysik et al.; U.S. Pat. No. 5,643,588, issued on Jul. 1, 1997 to Roe et al.; U.S. Pat. No. 5,650,218, issued on Jul. 22, 1997 to Krzysik et al.; U.S. Pat. No. 5,990,377, issued on Nov. 23, 1999 to Chen et al.; and, U.S. Pat. No. 5,227,242, issued on Jul. 13, 1993 Walter et al., each of which is herein incorporated by reference to the extent they are not contradictory herewith;
imprinting the web on a Yankee dryer or other solid surface, wherein the web resides on a fabric that can have deflection conduits (openings) and elevated regions (including the fabrics of the present invention), and the fabric is pressed against a surface such as the surface of a Yankee dryer to transfer the web from the fabric to the surface, thereby imparting densification to portions of the web that were in contact with the elevated regions of the fabric, whereafter the selectively densified web can be creped from or otherwise removed from the surface;
creping the web from a drum dryer, optionally after application of a strength agent such as latex to one or more sides of the web, as exemplified by the methods disclosed in U.S. Pat. No. 3,879,257, issued on Apr. 22, 1975 to Gentile et al.; U.S. Pat. No. 5,885,418, issued on Mar. 23, 1999 to Anderson et al.; U.S. Pat. No. 6,149,768, issued on Nov. 21, 2000 to Hepford, all of which are herein incorporated by reference to the extent they are not contradictory herewith;
creping with serrated crepe blades (e.g., see U.S. Pat. No. 5,885,416, issued on Mar. 23, 1999 to Marinack et al.) or any other known creping or foreshortening method; and,
converting the web with known operations such as calendering, embossing, slitting, printing, forming a multiply structure having two, three, four, or more plies, putting on a roll or in a box or adapting for other dispensing means, packaging in any known form, and the like.
The fabrics 30 of the present invention can also be used to impart texture to airlaid webs, either serving as a substrate for forming a web, for embossing or imprinting an airlaid web, or for thermal molding of a web.
Fabric Structure
In a first background region 38 of the woven sculpted fabric 30, the floats 60 define a first elevated region 40 comprising first elevated strands 41. Between each pair of neighboring first elevated strands 41 in the first background region 38 is a first depressed region 42. The depressed warps 44 in the first depressed region 42 are not shown for clarity. The combination of machine-direction oriented, alternating elevated and depressed regions forms a first background texture 39.
In a second background region 50 of the woven sculpted fabric 30, there are second elevated strands 53 defining a second elevated region 52. Between each pair of the neighboring second elevated strands 53 in the second background region 50 is a second depressed region 54. The depressed warps 44 in the second depressed region 54 are not shown for clarity. The combination of machine-direction oriented, alternating second elevated and depressed regions 52 and 54 forms a second background texture 51.
Between the first background region 38 and the second background region 50 is a transition zone 62 where the floats 44 from either the first background region 38 or the second background region 50 descend to become sinkers (not shown) or depressed regions 54 and 42 in the second background region 50 or first background region 38, respectively. In the transition region 62, ends or beginning sections of the floats 60 from different background texture regions 38 and 50 overlap, creating a texture comprising adjacent floats 60 rather than the first or second background textures 39 and 51 which have alternating floats 60 and first or second depressed regions 42 and 54, respectively. Thus, the transition region 62 provides a visually distinctive interruption to the first and second background textures 39 and 51 of the first and second background regions 38 and 50, respectively, and form a substantially continuous transition region to provide a macroscopic, visually distinctive curvilinear decorative element that extends in directions other than solely the machine direction orientation of the floats 60. In
The overall visual effect created by a repeating unit cell comprising the curvilinear transition region 62 of
Likewise, the second background region 50 has second elevated strands 53a, 53b, and 53c which define the second elevated regions 52a, 52b, and 52c, and the second depressed strands 55a, 55b, and 55c which define the second depressed regions 54 (only one of which is labeled).
The alternation of second elevated regions 52a, 52b, and 52c with the second depressed regions 54 creates a second background texture 51 in the second background region 50. The warps 44a, 44b, and 44c forming the first elevated regions 40a, 40b, and 40c in the first background region 38 become the second depressed regions 54 (second depressed strands 55a, 55b, and 55c) in the second background region 50, and visa versa.
In general, the warps 44 in either of the first and second background region 38 and 50 alternate in the cross-machine direction between being floats 60 and sinkers 61, providing a background texture 39 or 51 dominated by machine direction elongated features which become inverted (floats 60 become sinkers 61 and visa versa) after passing through the transition zone 62.
Three crossover zones 65a, 65b, and 65c occur in the transition region 62 where a first elevated strand 41a, 41b, or 41c descends below a shute 45a, 45b, or 45c in the vicinity where a second elevated strand 53a, 53b, or 53c also descends below a shute 45a, 45b, or 45c. In the crossover zone 65a, the warps 44a and 44d both descend from their status as floats 60 in the first and second background regions 38 and 50, respectively, to become sinkers 61, with the descent occurring between the shutes 45b and 45c.
The crossover zone 65c differs from the crossover zones 65a and 65b in that the two adjacent warps 44c and 44f descend on opposite sides of a single shute 45a. The tension in the warps 44c and 44f can act in the crossover zone 65c to bend the shute 45a downward more than normally encountered in the first and second background regions 38 and 50, resulting in a depression in the woven sculpted fabric 30 that can result in increased depth of molding in the vicinity of the crossover zone 65c. Overall, the various crossover zones 65a, 65b, and 65c in the transition region 62 provide increased molding depth in the woven sculpted fabric 30 that can impart visually distinctive curvilinear decorative elements to an absorbent tissue product 27 molded thereon, with the visually distinct nature of the curvilinear decorative elements being achieved by means of the interruption in the texture dominated by the MD-oriented floats 60 between two adjacent background regions 38 and 50 and optionally by the increased molding depth in the transition region 62 due to pockets or depressions in the woven sculpted fabric 30 created by the crossover zones 65a, 65b, and 65c.
The first and second depressed strands 43 and 55 can be classified as sinkers 61, while the first and second elevated strands 41 and 53 can be classified as floats 60.
The shutes 45 depicted in
In the crossover zone 65, the two adjacent warps 44a and 44b descend on opposite sides of a single shute 45c. The tension in the warps 44c and 44f can act in the crossover zone 65 to bend the shute 45c downward relative to the neighboring shutes 45a, 45b, 45d, and 45e, and particularly relative to the adjacent shutes 45b and 45d, resulting in a depression in the woven sculpted fabric 30 having a depression depth D relative to the maximum plane difference of the float 60 portions of the warps 44a and 44b in the adjacent first and second background regions 38 and 50, respectively, that can result in increased depth of molding in the vicinity of the crossover zone 65.
The maximum plane difference of the floats 60 may be at least about 30% of the width of at least one of the floats 60. In other embodiments, the maximum plane difference of the floats 60 may be at least about 70%, more specifically at least about 90%. The maximum plane difference of the floats 60 may be at least about 0.12 millimeter (mm). In other embodiments, the maximum plane difference of the floats 60 may be at least about 0.25 mm, more specifically at least about 0.37 mm, and more specifically at least about 0.63 mm.
The two warps 44a and 44b serve as a first elevated strand 41 and second elevated strand 53, respectively, in a first background region 38 and second background region 50, respectively, where the warps 44a and 44b are floats 60 defining a first elevated region 40 and second elevated region 52, respectively. The transition region 62 spans three shutes 45c, 45d and 45e. Proceeding from right to left, the first elevated strand 41 enters the transition region 62 between the shutes 45f and 45e, descending from its status as a float 60 in first background region 38 as it passes beneath the float 45e. It then passes over the shute 45d and then descends below the shute 45c, continuing on into the second background region 50 where it becomes a sinker 61. The second elevated strand 53 is a mirror image of the first elevated strand 41 (reflected about an imaginary vertical axis, not shown, passing through the center of the shute 45d) in the portion of the woven sculpted fabric 30 depicted in FIG. 4. Thus, the second elevated strand 53 enters the transition region 62 between the shutes 45b and 45c, passes over the shute 45d, and then descends beneath the shute 45e to become a sinker 61 in the first background region 38. The first elevated strand 41 and the second elevated strand 53 cross over each other in a crossover region 65 above the shute 45d, which may be deflected downward by tension in the warps 44a and 44b.
Also depicted is the topmost layer of CD shutes 33 of the woven sculpted fabric 30, which can define an upper plane 32 of the topmost layer of CD shutes 33 when the fabric 30 is resting on a substantially flat surface. Not all shutes 45 in the topmost layer of CD shutes 33 sit at the same height; the uppermost shutes 45 of the topmost layer of CD shutes 33 determine the elevation of the upper plane 32 of the topmost layer of CD shutes 33. The difference in elevation between the upper plane 32 of the topmost layer of CD shutes 33 and the highest portion of a float 60 is the "Upper Plane Difference," as used herein, which can be 30% or greater of the diameter of the float 60, or can be about 0.1 mm or greater; about 0.2 mm or greater; or, about 0.3 mm or greater.
The sheets of the absorbent tissue products 27 (shown in
A second transition region 62b is shown in
Tissue Description
A second background region 50 of the woven sculpted fabric 30 may have a second background texture 51 with a similar or different characteristic depth compared to the first background texture 39 of the first background region 38. The first and second background regions 38 and 50 are separated by a transition region 62 which forms a visually noticeable border 63 between the first and second background regions 38 and 50 and which provides a surface structure molding the wet tissue web 15 to a different depth or pattern than is possible in the first and second background regions 38 and 50. The transition region 62 created is preferably oriented at an angle to the warp or shute directions. Thus, a wet tissue web 15 molded against the woven sculpted fabric 62 is provided with a distinctive texture corresponding to the first and/or second background textures 39 and/or 51 and substantially continuous curvilinear decorative elements corresponding to the transition region 62, which can stand out from the surrounding first and second background texture regions 39 and 51 of the first and second background regions 38 and 50 of the wet tissue web 15 by virtue of having a different elevation (higher or lower as well as equal) or a visually distinctive area of interruption between the first and second background texture regions 39 and 51 of the first and second background regions 38 and 50, respectively.
In one embodiment, the transition region 62 provides a surface structure wherein the wet tissue web 15 is molded to a greater depth than is possible in the first and second background regions 38 and 50. Thus, a wet tissue web 15 molded against the woven sculpted fabric 30 is provided with greater indentation (higher surface depth) in the transition region 62 than in the first and second background regions 38 and 50.
In other embodiments, the transition region 62 can have a surface depth that is substantially the same as the surface depth of either the first or second background regions 38 and 50, or that is between the surface depths of the first and second background regions 38 and 50 (an intermediate surface depth), or that is within plus or minus 50% of the average surface depth of the first and second background regions 38 and 50, or more specifically within plus or minus 20% of the average surface depth of the first and second background regions 38 and 50.
When the surface depth of the transition region 62 is not greater than that of the first and second background regions 38 and 50, the curvilinear decorative elements corresponding to the transition region 62 imparted to the wet tissue web 15 by molding against the transition region 62 is at least partially due to the interruption in the curvilinear decorative elements provided by the first and second background regions 38 and 50 which creates a visible border 63 or marking extending along the transition region 62. The curvilinear decorative elements imparted to the wet tissue web 15 in the transition region 62 may simply be the result of a distinctive texture interrupting the first and second background regions 38 and 50.
In one embodiment of the present invention, the first and second background regions 38 and 50 both have substantially parallel woven first and second elevated strands 41 and 53, respectively, with a dominant direction (e.g., machine direction, cross-machine direction, or an angle therebetween), wherein first background texture 39 in the first background region 38 is offset from the second background texture 51 in the second background region 50 such that as one moves horizontally (parallel to the plane of the woven sculpted fabric 30) along a woven first elevated strand 41 in the first background region 38 toward the transition region 62 and continues in a straight line into the second background region 50, a second depressed region 54 rather than a second elevated strand 58 is encountered in the second background region 50.
Likewise, a first depressed region 42 that approaches the transition region 62 in the first background region 38 becomes a second elevated strand 53 in the second background region 50. When the woven sculpted fabric 30 is comprised of woven warps 44 (machine direction strands) and shutes 45 (cross-machine direction strands), the first and second elevated regions 40 and 52 are floats 60 rising above the topmost layer of CD shutes 33 of the woven sculpted fabric 30 and crossing over a plurality of roughly orthogonal strands before descending into the topmost layer of CD shutes 33 of the woven sculpted fabric 30 again.
For example, a warp 44 rising above the topmost layer of CD shutes 33 of the woven sculpted fabric 30 can pass over 4 or more shutes 45 before descending into the woven sculpted fabric 30 again, such as at least any of the following number of shutes 45: 5, 6, 7, 8, 9, 10, 15, 20, and 30. While the warp 44 in question is above the topmost layer of CD shutes 33, the immediately adjacent warps 44 are generally lower, passing into the topmost layer of CD shutes 33. As the warp 44 in question then sinks into the topmost layer of CD shutes 33, the adjacent warps 44 rise and extend over a plurality of shutes 45. Generally, over much of the woven sculpted fabric 30, four adjacent warps 44 arbitrarily numbered in order 1, 2, 3, and 4, can have warps 441 and 3 rise above the topmost layer of CD shutes 33 to descend below the topmost layer of CD shutes 33 after a distance, at which point warps 442 and 4 are initially primarily below the surface of the warps 44 in the topmost layer of CD shutes 33 but rise in the region where warps 441 and 3 descend.
In another embodiment of the present invention, the first and second background regions 38 and 50 both have substantially parallel woven first and second elevated strands 41 and 53 with a dominant direction (e.g., machine direction, cross-machine direction, or an angle therebetween), wherein first background texture 39 in the first background region 38 is offset from the second background texture 51 in the second background region 50 such that as one moves horizontally (parallel to the plane of the woven sculpted fabric 30) along a woven first elevated strand 41 in the first background region 38 toward the transition region 62 and continues in a straight line into the second background region 50, a woven second elevated strand 53 rather than a second depressed region 54 is encountered in the second background region 50. Likewise, a first depressed region 42 that approaches the transition region 62 in the first background region 38 becomes a second depressed region 54 in the second background region 50.
In another embodiment of the present invention, the woven sculpted fabric 30 is a woven fabric having a tissue contacting surface including at least two groups of strands, a first group of strands 46 extending in a first direction, and a second group of strands 58 extending in a second direction which can be substantially orthogonal to the first direction, wherein the first group of strands 46 provides elevated floats 60 defining a three-dimensional fabric surface comprising:
a) a first background region 38 comprising a plurality of substantially parallel first elevated strands 41 separated by substantially parallel first depressed strands 43, wherein each first depressed strand 43 is surrounded by an adjacent first elevated strand 41 on each side, and each first elevated strand 41 is surrounded by an adjacent first depressed strand 43 on each side;
b) a second background region 50 comprising a plurality of substantially parallel second elevated strands 53 separated by substantially parallel second depressed strands 55, wherein each second depressed strand 55 is surrounded by an adjacent second elevated strand 53 on each side, and each second elevated strand 53 is surrounded by an adjacent second depressed strand 55 on each side; and,
c) a transition region 62 between the first and second background regions 38 and 50, wherein the first and second elevated strands 41 and 53 of both the first and second background regions 38 and 50 descend to become, respectively, the first and second depressed strands 43 and 55 of the second and first background regions 38 and 50.
In the transition region 62, the first group of strands 46 may overlap with a number of strands in the second group of strands 58, such as any of the following: 1, 2, 3, 4, 5, 10, two or more, two or less, and three or less.
Each pair of first elevated floats 41 is separated by a distance of at least about 0.3 mm. In other embodiments, each pair of first elevated floats 41 is separated by a distance ranging between about 0.3 mm to about 25 mm, more specifically between about 0.3 mm to about 8 mm, more specifically between about 0.3 mm to about 3 mm, more specifically between about 0.3 mm to about 1 mm, more specifically between about 0.8 mm to about 1 mm. Each pair of second elevated floats 53 is separated by a distance of at least about 0.3 mm. In other embodiments, each pair of second elevated floats 53 is separated by a distance ranging between about 0.3 mm to about 25 mm, more specifically between about 0.3 mm to about 8 mm, more specifically between about 0.3 mm to about 3 mm, more specifically between about 0.3 mm to about 1 mm, more specifically between about 0.8 mm to about 1 mm.
The resulting surface topography of the dried tissue web 23 may comprise a primary pattern 64 having a regular repeating unit cell that can be a parallelogram with sides between 2 and 180 mm in length. For wetlaid materials, these three-dimensional basesheet structures can be created by molding the wet tissue web 15 against the woven sculpted fabrics 30 of the present invention, typically with a pneumatic pressure differential, followed by drying. In this manner, the three-dimensional structure of the dried tissue web 23 is more likely to be retained upon wetting of the dried tissue web 23, helping to provide high wet resiliency.
In addition to the regular geometrical patterns (resulting from the first and second background texture regions 39 and 51, and the curvilinear decorative elements of the primary pattern 64, imparted by the woven sculpted fabrics 30 and other typical fabrics used in creating a dried tissue web 23, additional fine structure, with an in-plane length scale less than about 1 mm, can be present in the dried tissue web 23. Such a fine structure may stem from microfolds created during differential velocity transfer of the wet tissue web 15 from one fabric or wire to another fabric or wire prior to drying. Some of the absorbent tissue products 27 of the present invention, for example, appear to have a fine structure with a fine surface depth of 0.1 mm or greater, and sometimes 0.2 mm or greater, when height profiles are measured using a commercial moiré interferometer system. These fine peaks have a typical half-width less than 1 mm. The fine structure from differential velocity transfer and other treatments may be useful in providing additional softness, flexibility, and bulk. Measurement of the fine surface structures and the geometrical patterns is described below.
One measure of the degree of molding created in a wet tissue web 15 using the woven sculpted fabrics 30 of the present invention involves the concept of optically measured surface depth. As used herein, "surface depth" refers to the characteristic height of peaks relative to surrounding valleys in a portion of a structure such as a wet tissue web 15 or putty impression of a woven sculpted fabric 30. In many embodiments of the present invention, topographical measurements along a particular line will reveal many valleys having a relatively uniform elevation, with peaks of different heights corresponding to the first and second background texture regions 39 and 51 and a more prominent primary pattern 64. The characteristic elevation relative to a baseline defined by surrounding valleys is the surface depth of a particular portion of the structure being measured. For example, the surface depth of a first or second background regions 39 or 51 of a wet tissue web 15 may be 0.4 mm or less, while the surface depth of the primary pattern 66 may be 0.5 mm or greater, allowing the primary pattern 64 to stand out from the first or second background texture regions 39 or 51.
The wet tissue webs 15 created in the present invention possess three-dimensional structures and can have a Surface Depth for the first or second background texture regions 39 or 51 and/or primary pattern 64 of about 0.15 mm. or greater, more specifically about 0.3 mm. or greater, still more specifically about 0.4 mm. or greater, still more specifically about 0.5 mm. or greater, and most specifically from about 0.4 to about 0.8 mm. The primary pattern 64 may have a surface depth that is greater than the surface depth of the first or second background texture regions 39 or 51 by at least about 10%, more specifically at least about 25%, more specifically still at least about 50%, and most specifically at least about 80%, with an exemplary range of from about 30% to about 100%. Obviously, elevated molded structures on one side of a wet tissue web 15 can correspond to depressed molded structures on the opposite of the wet tissue web 15. The side of the wet tissue web 15 giving the highest Surface Depth for the primary pattern 64 generally is the side that should be measured.
A suitable method for measurement of Surface Depth is moiré interferometry, which permits accurate measurement without deformation of the surface of the wet tissue webs 15. For reference to the wet tissue webs 15 of the present invention, the surface topography of the wet tissue webs 15 should be measured using a computer-controlled white-light field-shifted moiré interferometer with about a 38 mm field of view. The principles of a useful implementation of such a system are described in Bieman et al. (L. Bieman, K. Harding, and A. Boehnlein, "Absolute Measurement Using Field-Shifted Moiré," SPIE Optical Conference Proceedings, Vol. 1614, pp. 259-264, 1991). A suitable commercial instrument for moiré interferometry is the CADEYES® interferometer produced by Integral Vision (Farmington Hills, Mich.), constructed for a 38-mm field-of-view (a field of view within the range of 37 to 39.5 mm is adequate). The CADEYES® system uses white light which is projected through a grid to project fine black lines onto the sample surface. The surface is viewed through a similar grid, creating moiré fringes that are viewed by a CCD camera. Suitable lenses and a stepper motor adjust the optical configuration for field shifting (a technique described below). A video processor sends captured fringe images to a PC computer for processing, allowing details of surface height to be back-calculated from the fringe patterns viewed by the video camera.
In the CADEYES moiré interferometry system, each pixel in the CCD video image is said to belong to a moiré fringe that is associated with a particular height range. The method of field-shifting, as described by Bieman et al. (L. Bieman, K. Harding, and A. Boehnlein, "Absolute Measurement Using Field-Shifted Moiré," SPIE Optical Conference Proceedings, Vol. 1614, pp. 259-264, 1991) and as originally patented by Boehnlein (U.S. Pat. No. 5,069,548, herein incorporated by reference), is used to identify the fringe number for each point in the video image (indicating which fringe a point belongs). The fringe number is needed to determine the absolute height at the measurement point relative to a reference plane. A field-shifting technique (sometimes termed phase-shifting in the art) is also used for sub-fringe analysis (accurate determination of the height of the measurement point within the height range occupied by its fringe). These field-shifting methods coupled with a camera-based interferometry approach allows accurate and rapid absolute height measurement, permitting measurement to be made in spite of possible height discontinuities in the surface. The technique allows absolute height of each of the roughly 250,000 discrete points (pixels) on the sample surface to be obtained, if suitable optics, video hardware, data acquisition equipment, and software are used that incorporates the principles of moiré interferometry with field-shifting. Each point measured has a resolution of approximately 1.5 microns in its height measurement.
The computerized interferometer system is used to acquire topographical data and then to generate a grayscale image of the topographical data, said image to be hereinafter called "the height map". The height map is displayed on a computer monitor, typically in 256 shades of gray and is quantitatively based on the topographical data obtained for the sample being measured. The resulting height map for the 38-mm square measurement area should contain approximately 250,000 data points corresponding to approximately 500 pixels in both the horizontal and vertical directions of the displayed height map. The pixel dimensions of the height map are based on a 512×512 CCD camera which provides images of moiré patterns on the sample which can be analyzed by computer software. Each pixel in the height map represents a height measurement at the corresponding x- and y-location on the sample. In the recommended system, each pixel has a width of approximately 70 microns, i.e. represents a region on the sample surface about 70 microns long in both orthogonal in-plane directions). This level of resolution prevents single fibers projecting above the surface from having a significant effect on the surface height measurement. The z-direction height measurement must have a nominal accuracy of less than 2 microns and a z-direction range of at least 1.5 mm. (For further background on the measurement method, see the CADEYES Product Guide, Integral Vision, Farmington Hills, Mich., 1994, or other CADEYES manuals and publications of Integral Vision, formerly known as Medar, Inc.).
The CADEYES system can measure up to 8 moiré fringes, with each fringe being divided into 256 depth counts (sub-fringe height increments, the smallest resolvable height difference). There will be 2048 height counts over the measurement range. This determines the total z-direction range, which is approximately 3 mm in the 38-mm field-of-view instrument. If the height variation in the field of view covers more than eight fringes, a wrap-around effect occurs, in which the ninth fringe is labeled as if it were the first fringe and the tenth fringe is labeled as the second, etc. In other words, the measured height will be shifted by 2048 depth counts. Accurate measurement is limited to the main field of 8 fringes.
The moiré interferometer system, once installed and factory calibrated to provide the accuracy and z-direction range stated above, can provide accurate topographical data for materials such as paper towels. (Those skilled in the art may confirm the accuracy of factory calibration by performing measurements on surfaces with known dimensions). Tests are performed in a room under Tappi conditions (23°C C., 50% relative humidity). The sample must be placed flat on a surface lying aligned or nearly aligned with the measurement plane of the instrument and should be at such a height that both the lowest and highest regions of interest are within the measurement region of the instrument.
Once properly placed, data acquisition is initiated using Integral Visions's PC software and a height map of 250,000 data points is acquired and displayed, typically within 30 seconds from the time data acquisition was initiated. (Using the CADEYES® system, the "contrast threshold level" for noise rejection is set to 1, providing some noise rejection without excessive rejection of data points). Data reduction and display are achieved using CADEYES® software for PCs, which incorporates a customizable interface based on Microsoft Visual Basic Professional for Windows (version 3.0). The Visual Basic interface allows users to add custom analysis tools.
The height map of the topographical data can then be used by those skilled in the art to identify characteristic unit cell structures (in the case of structures created by fabric patterns; these are typically parallelograms arranged like tiles to cover a larger two-dimensional area) and to measure the typical peak to valley depth of such structures. A simple method of doing this is to extract two-dimensional height profiles from lines drawn on the topographical height map which pass through the highest and lowest areas of the unit cells. These height profiles can then be analyzed for the peak to valley distance, if the profiles are taken from a sheet or portion of the sheet that was lying relatively flat when measured. To eliminate the effect of occasional optical noise and possible outliers, the highest 10% and the lowest 10% of the profile should be excluded, and the height range of the remaining points is taken as the surface depth. Technically, the procedure requires calculating the variable which we term "P10," defined at the height difference between the 10% and 90% material lines, with the concept of material lines being well known in the art, as explained by L. Mummery, in Surface Texture Analysis: The Handbook, Hommelwerke GmbH, Mühlhausen, Germany, 1990. In this approach, which will be illustrated with respect to
Once the material ratio curve 76 is established, one can use it to define a characteristic peak height of the profile 73. The P10 "typical peak-to-valley height" parameter is defined as the difference 77 between the heights of the 10% material line 78 and the 90% material line 79. This parameter is relatively robust in that outliers or unusual excursions from the typical profile structure have little influence on the P10 height. The units of P10 are mm. The Overall Surface Depth of a material 72 is reported as the P10 surface depth value for profile lines encompassing the height extremes of the typical unit cell of that surface 70. "Fine surface depth" is the P10 value for a profile 73 taken along a plateau region of the surface 70 which is relatively uniform in height relative to profiles 73 encompassing a maxima and minima of the unit cells. Unless otherwise specified, measurements are reported for the surface 70 that is the most textured side of the wet tissue webs 15 of the present invention, which is typically the side that was in contact with the through-drying fabric 19 when air flow is toward the throughdryer 21.
In the height map 80 in
The height map 80 contains some optical noise distorting the image along the left border of the height map 80, and occasional spikes from optical noise in other portions of the image. Nevertheless, the structure of the putty impression is clearly discernible. The profile display 81 below the height map 80 shows the topography in the form of a profile 82 taken along a vertical profile line 87. The topographical features of the profile 82 include peaks and valleys corresponding to first and second elevated regions 40' and 52' (the peaks) and first and second depressed regions 42' and 54' (the valleys), respectively, and the elevated transition regions 62' that form the repeating curvilinear primary pattern 64.
The profile 82 along a vertical profile line 87 on the height map 80 is shown in the profile display 81 below the height map 80, in which two depressed transition regions 62' can be seen in the midst of the otherwise regular peaks and valleys, wherein the peaks correspond to first and second elevated regions 40' and 52', respectively, and the valleys correspond to first and second depressed regions 42' and 54', respectively.
In a first background region 38, the machine-direction oriented, elongated raised elements 108 act as floats 60 that serve as first elevated regions 40, with first depressed regions 42 therebetween that reside substantially on the underlying base fabric 102, which can be a woven fabric. In a second background region 50, the raised elements 108 act as floats 60 that serve as second elevated regions 52, with second depressed regions 54 therebetween that reside substantially on the underlying base fabric 102.
A transition region 62 is formed when a first elevated region 40 from a first background region 38 of the composite sculpted fabric 100 has an end 122 in the vicinity of the beginning 124 of two adjacent second elevated regions 52 in a second background region 50 of the composite sculpted fabric 100, with the end 122 disposed in the cross-machine direction 118 at a position intermediate to the respective cross-machine direction locations of the two adjacent second elevated regions 52, wherein the end 122 of raised elements 108 (either a first elevated region 40 or second elevated region 52) refers to the termination of the raised element 108 encountered while moving along the composite sculpted fabric 100 in the machine direction 120, and the beginning 124 of a raised element 108 refers to the initial portion of the raised element 108 encountered while moving along the composite sculpted fabric 100 in the same direction. Were the raised elements 108 oriented in another direction, the direction of orientation for each raised element 108 is the direction one moves along in identifying ends 122 and beginnings 124 of raised elements 108 in order to identify their relationship in a consistent manner. Generally, features of the raised elements 108 can be successfully identified when either of the two possible directions (forward and reverse, for example) along the raised element 108 is defined as the positive direction for travel.
The transition region 62 separates the first and second background regions 38 and 50. The shifting of the cross-machine directional locations of the raised elements 108 in the transition region 62 creates a break in the patterns of the first and second background regions 38 and 50, contributing to the visual distinctiveness of the portion of the wet tissue web 15 molded against the transition region 62 of the composite sculpted fabric 100 relative to the portion of the wet tissue web 15 molded against the surrounding first and second background regions 38 and 50. In the embodiment shown in
A base fabric 102 can be woven or nonwoven, or a composite of woven and nonwoven elements or layers. The embodiment of the base fabric 102 depicted in
The raised elements 108 can be integral with the base fabric 102. For example, a composite sculpted fabric 100 can be formed by photocuring of elevated resinous elements which encompass portions of the warps 44 and shutes 45 of the base fabric 102. Photocuring methods can include UV curing, visible light curing, electron beam curing, gamma radiation curing, radiofrequency curing, microwave curing, infrared curing, or other known curing methods involving application of radiation to cure a resin. Curing can also occur via chemical reaction without the need for added radiation as in the curing of an epoxy resin, extrusion of an autocuring polymer such as polyurethane mixture, thermal curing, solidifying of an applied hotmelt or molten thermoplastic, sintering of a powder in place on a fabric, and application of material to the base fabric 102 in a pattern by known rapid prototyping methods or methods of sculpting a fabric. Photocured resin and other polymeric forms of the raised elements 108 can be attached to a base fabric 102 according to the methods in any of the following patents: U.S. Pat. No. 5,679,222, issued on Oct. 21, 1997 to Rasch et al.; U.S. Pat. No. 4,514,345, issued on Apr. 30, 1985 to Johnson et al.; U.S. Pat. No. 5,334,289, issued on Aug. 2, 1994 to Trokhan et al.; U.S. Pat. No. 4,528,239, issued on Jul. 9, 1985 to Trokhan; U.S. Pat. No. 4,637,859, issued on Jan. 20, 1987 to Trokhan; commonly owned U.S. Pat. No. 6,120,642, issued on Sep. 19, 2000 to Lindsay and Burazin; and, commonly owned patent applications Ser. Nos. 09/705,684 and 09/706,149, both filed on Nov. 3, 2000 by Lindsay et al.; all of which are herein incorporated by reference to the extent they are not contradictory herewith.
U.S. Pat. No. 6,120,642, issued on Sep. 19, 2000 to Lindsay and Burazin, discloses methods of producing sculpted nonwoven throughdrying fabrics, and such methods can be applied in general to create composite sculpted fabrics 100 of the present invention. In one embodiment, such composite sculpted fabrics 100 comprise an upper porous nonwoven member and an underlying porous member supporting the upper porous member, wherein the upper porous nonwoven member comprises a nonwoven material (e.g., a fibrous nonwoven, an extruded polymeric network, or a foam-based material) that is substantially deformable. More specifically, the can have a High Pressure Compressive Compliance (hereinafter defined) greater than 0.05, more specifically greater than 0.1, and wherein the permeability of the wet molding substrate is sufficient to permit an air pressure differential across the wet molding substrate to effectively mold said web onto said upper porous nonwoven member to impart a three-dimensional structure to said web.
As used herein, "High Pressure Compressive Compliance" is a measure of the deformability of a substantially planar sample of the material having a basis weight above 50 gsm compressed by a weighted platen of 3-inches in diameter to impart mechanical loads of 0.2 psi and then 2.0 psi, measuring the thickness of the sample while under such compressive loads. Subtracting the ratio of thickness at 2.0 psi to thickness at 0.2 psi from 1 yields the High Pressure Compressive Compliance. In other word, High Pressure Compressive Compliance=1-(thickness at 2.0 psi/thickness at 0.2 psi). The High Pressure Compressive Compliance can be greater than about 0.05, specifically greater than about 0.15, more specifically greater than about 0.25, still more specifically greater than about 0.35, and most specifically between about 0.1 and about 0.5. In another embodiment, the High Pressure Compressive Compliance can be less than about 0.05, in cases where a less deformable composite sculpted fabric 100 is desired.
Other known methods can be used to created the composite sculpted fabrics 100 of the present invention, including laser drilling of a polymeric web to impart elevated and depressed regions, ablation, extrusion molding or other molding operations to impart a three-dimensional structure to a nonwoven material, stamping, and the like, as disclosed in commonly owned patent applications Ser. Nos. 09/705,684 and 09/706,149, both filed on Nov. 3, 2000 by Lindsay et al.; previously incorporated by reference.
It is recognized that other topographical elements may be present on the surface of the composite sculpted fabric 100 as long as the ability of the raised elements 108 and the transition region 62 to create a visually distinctive molded wet tissue web 15 is not compromised. For example, the composite sculpted fabric 100 could further comprise a plurality of minor raised elements (not shown) such as ovals or lines having a height less than, for example, about 50% of the minimum height H1 of the raised elements 108.
It will be recognized that the shapes and dimensions of the raised elements 108 need not be similar throughout the composite sculpted fabric 100, but can differ from any of the first and second background region 38 or 50 to another or even within a first or second background region 38 or 50. Thus, there may be a first background region 38 comprising cured resin first raised elements 108' having a shape and dimensions (W, L, H, and S, for example) different from those of the second raised elements 108" of the second background region 50.
The raised elements 108 need not be straight, as generally depicted in the previous figures, but may be curvilinear.
In
The Product
In the woven sculpted fabric 30 shown in
In the woven sculpted fabric 30 shown in
In yet another advantage, the increased uniformity in spacing of the raised MD floats 60 possible with the present invention, while still producing distinctive background textures 39 and 51 and curvilinear line primary patterns 64, maintains higher levels of caliper and CD stretch compared to decorative webs produced by the fabrics disclosed in U.S. Pat. No. 5,429,686. The possibility of optimizing the uniformity and spacing of the raised MD floats 60 in the CD direction, without regard to spacing considerations in order to form the distinctive background textures 39 and 51 and curvilinear decorative elements in the dried tissue web 23, is a significant advantage within the art of papermaking. The present invention allows for improved uniformity of the raised MD floats 60 in the CD direction, and the flexibility to form a multitude of complex distinctive background textures 39 and 51 and curvilinear decorative elements in the dried tissue web 23 within a single processing step.
In order to further illustrate the absorbent tissue products of the present invention, an uncreped throughdried tissue product was produced using the method substantially as illustrated in FIG. 27. More specifically, a blended single-ply towel basesheet was made in which the fiber furnish comprised about 53% bleached recycled fiber (100% post consumer content), about 31% bleached northern softwood Kraft fiber, and about 16% bleached southern softwood Kraft fiber. The fiber was pulped for 30 minutes at about 4-5 percent consistency and diluted to about 2.7 percent consistency after pulping. Kymene 557LX (commercially available from Hercules in Wilmington, Del.) was added to the fiber at about 9 kilograms per tonne of pulp.
The headbox net slice opening was about 23 millimeters. The consistency of the stock fed to the headbox was about 0.26 weight percent.
The resulting wet tissue web 15 (shown in
The wet tissue web 15 was then transferred to a throughdrying fabric 19 (Voith Fabrics t4803-7, substantially as shown in FIG. 28). The throughdrying fabric 19 was traveling at a speed of about 6.3 meters per second. The wet tissue web 15 was carried over a pair of Honeycomb throughdryers (like the throughdryer 21 and commercially available from Valmet, Inc. (Honeycomb Div.) in Biddeford, Me.) operating at a temperature of about 195 degrees C. and dried to final dryness of at least about 97 percent consistency. The resulting uncreped dried tissue web 23 was then tested for physical properties without conditioning.
The fabric side of the resulting towel basesheet may appear substantially as shown in FIG. 29. The air side of the resulting towel basesheet may appear substantially as shown in FIG. 30.
The resulting dried tissue web 23 had the following properties: Basis Weight, 42 grams per square meter; CD Stretch, 5.5 percent; CD Tensile Strength, 1524 grams per 25.4 millimeters of sample width; Single Sheet Caliper, 0.55 millimeters; MD Stretch, 8.0 percent; MD Tensile Strength, 1765 grams per 25.4 millimeters of sample width; and, an wedding ring pattern as shown in
The rate at which water is absorbed and/or wicked into an absorbent tissue sheet in the z-direction, i.e. the thickness of the sheet, as opposed to being laterally wicked in the x- or y-directions, i.e. length and width of the sheet, is an important physical attribute for many absorbent products. By way of example only, z-directional wicking is an important physical attribute for tissue products used for drying the hands as well as other surfaces. A suitable test method and apparatus for determining z-direction wicking properties is, therefore, provided and discussed below in reference to FIG. 31. Z-wicking testing system 130 includes main body 132 that includes a reservoir 134. The main body 132 also defines a circular testing plane and surface 136. Forming a central portion of the testing surface 136 is apertured plate 138. The apertured plate 138 spans the reservoir 134 within the main body 132. The apertured plate 138 is circular in shape and has a diameter of 4.13 cm (1.625 inches). The apertured plate 138 has one-hundred and seventy-five apertures (not shown) therein. The apertures are evenly spaced 0.25 cm×0.25 cm apart and form a rectangular pattern centrally located within the plate 138. The plate 138 comprises a low surface energy plastic in which distilled water will not readily wet-out the surface. The main body 132 also forms a raised stop 140 configured to cooperate with a sample-mounting device 142. When placed in the main body 132 the sample-mounting device 142 rests upon the stop 140 thereby placing the sample 144 adjacent the testing surface 136 without compressing the sample 144. More specifically, the sample mounting device 142 can be configured such that the platen 143 rests a distance above the test surface 136 that is substantially equal to the thickness of the sample 144. The reservoir 134 is in fluid communication, via conduit 146, with a container 148. The container 148 rests upon a scale 150. The scale 150 is an automatic balance capable of taking seven measurements per second such as a METTLER PM400 digital balance. The scale 150 communicates with a recording device to record the weight measurements taken during the procedure.
In carrying out the test, material is first conditioned for 24 hours at 23°C C. at 50% relative humidity. The conditioned material is cut to a diameter of 8.5 cm, forming sample 144, and weighed to determine the sample weight (W). The cut sample 144 is then placed within the sample-mounting device 142 and placed into the main body 132. The reservoir 134 and container 148 contain distilled water 152 and the level of water 152 is adjusted so that water extends slightly above the apertures in the plate 138 and test surface 136 in a meniscus but does not extend across the non-apertured portion of the plate 138. Thus, when the sample-mounting device 142 is placed into the main body 132 and rests upon the stop 140, the sample 144 is positioned immediately above the test surface 136 and in contact with the water. As water 152 (in grams) is absorbed into sample 144, a corresponding amount of water 152 is removed from the container 148 upon the scale 150. The weight of the container 148 is measured every seven seconds for the first five seconds that the sample 144 is positioned adjacent the test surface 136. The weight of water 152 (in grams) removed from the container 148 is plotted versus time (in seconds). The greatest slope for three consecutive data points within the five second period is the slope (S) used for calculating z-wicking. The z-direction wicking is calculated by dividing S by W which yields a value in units of grams water per grams tissue per second (g/g/s).
It will be appreciated that the foregoing examples and description, given for purposes of illustration, are not to be construed as limiting the scope of this invention, which is defined by the following claims and all equivalents thereto.
Burazin, Mark Alan, Chiu, Kai F., Lindsay, Jeffrey Dean
Patent | Priority | Assignee | Title |
10023999, | Feb 29 2008 | The Procter & Gamble Company | Fibrous structures |
10092145, | Feb 04 2010 | The Procter & Gamble Company | Fibrous structures |
10132042, | Mar 10 2015 | The Procter & Gamble Company | Fibrous structures |
10174458, | Feb 29 2008 | The Procter & Gamble Company | Multi-ply embossed toilet tissue |
10301778, | Feb 29 2008 | The Procter & Gamble Company | Fibrous structures |
10323358, | Feb 04 2010 | The Procter & Gamble Company | Fibrous structures |
10342717, | Nov 18 2014 | The Procter & Gamble Company | Absorbent article and distribution material |
10435845, | Feb 29 2008 | The Procter & Gamble Company | Fibrous structures |
10435846, | Feb 29 2008 | The Procter & Gamble Company | Fibrous structures |
10435847, | Feb 29 2008 | The Procter & Gamble Company | Fibrous structures |
10458069, | Aug 05 2014 | The Procter & Gamble Compay | Fibrous structures |
10472771, | Aug 05 2014 | The Procter & Gamble Company | Fibrous structures |
10517775, | Nov 18 2014 | The Procter & Gamble Company | Absorbent articles having distribution materials |
10542853, | Feb 04 2010 | The Procter & Gamble Company | Fibrous structures |
10577749, | Feb 04 2010 | The Procter & Gamble Company | Fibrous structures |
10648134, | Feb 29 2008 | The Procter & Gamble Company | Fibrous structures |
10648135, | Feb 29 2008 | The Procter & Gamble Company | Fibrous structures |
10716618, | May 21 2010 | Stratus Medical, LLC | Systems and methods for tissue ablation |
10736688, | Nov 05 2009 | Stratus Medical, LLC | Methods and systems for spinal radio frequency neurotomy |
10765570, | Nov 18 2014 | The Procter & Gamble Company | Absorbent articles having distribution materials |
10822745, | Aug 05 2014 | The Procter & Gamble Company | Fibrous structures |
10895041, | Feb 29 2008 | The Procter & Gamble Company | Fibrous structures |
10925664, | Nov 05 2009 | Stratus Medical, LLC | Methods for radio frequency neurotomy |
10966782, | May 21 2010 | Stratus Medical, LLC | Needles and systems for radiofrequency neurotomy |
10968570, | Feb 29 2008 | The Procter & Gamble Company | Multi-ply embossed toilet tissue |
11000428, | Mar 11 2016 | The Procter & Gamble Company | Three-dimensional substrate comprising a tissue layer |
11091880, | Feb 04 2010 | The Procter & Gamble Company | Fibrous structures |
11255051, | Nov 29 2017 | Kimberly-Clark Worldwide, Inc. | Fibrous sheet with improved properties |
11313061, | Jul 25 2018 | Kimberly-Clark Worldwide, Inc. | Process for making three-dimensional foam-laid nonwovens |
11408129, | Dec 10 2018 | The Procter & Gamble Company | Fibrous structures |
11427966, | Feb 29 2008 | The Procter & Gamble Company | Fibrous structures |
11591755, | Nov 03 2015 | Kimberly-Clark Worldwide, Inc. | Paper tissue with high bulk and low lint |
11725346, | Aug 05 2014 | The Procter & Gamble Company | Fibrous structures |
11732420, | Dec 10 2018 | The Procter & Gamble Company | Fibrous structures |
11788221, | Jul 25 2018 | Process for making three-dimensional foam-laid nonwovens | |
11806070, | Nov 05 2009 | Stratus Medical, LLC | Methods and systems for spinal radio frequency neurotomy |
6887348, | Nov 27 2002 | Kimberly-Clark Worldwide, Inc | Rolled single ply tissue product having high bulk, softness, and firmness |
6893535, | Nov 27 2002 | Kimberly-Clark Worldwide, Inc | Rolled tissue products having high bulk, softness, and firmness |
7435316, | Jun 08 2005 | Procter & Gamble Company, The | Embossing process including discrete and linear embossing elements |
7497925, | Nov 27 2002 | Kimberly-Clark Worldwide, Inc | Shear-calendering processes for making rolled tissue products having high bulk, softness and firmness |
7497926, | Nov 27 2002 | Kimberly-Clark Worldwide, Inc | Shear-calendering process for producing tissue webs |
7524399, | Dec 22 2004 | Kimberly-Clark Worldwide, Inc | Multiple ply tissue products having enhanced interply liquid capacity |
7524404, | Jun 08 2005 | Procter & Gamble Company, The | Embossing process including discrete and linear embossing elements |
7785696, | Jun 08 2005 | The Procter & Gamble Company | Embossed product including discrete and linear embossments |
7828932, | Dec 22 2004 | Kimberly-Clark Worldwide, Inc | Multiple ply tissue products having enhanced interply liquid capacity |
7887676, | Jun 08 2005 | The Procter & Gamble Company | Embossing process including discrete and linear embossing elements |
7918972, | Jun 08 2005 | The Procter & Gamble Company | Embossing process including discrete and linear embossing elements |
7939168, | Feb 29 2008 | The Procter & Gamble Company | Fibrous structures |
7960020, | Feb 29 2008 | Procter & Gamble Company, The | Embossed fibrous structures |
7989058, | Feb 29 2008 | The Procter & Gamble Company | Fibrous structures |
8007640, | Jun 08 2005 | The Procter & Gamble Company | Embossing process including discrete and linear embossing elements |
8025966, | Feb 29 2008 | THR PROCTER & GAMBLE COMPANY ATTENTION: CHEIF PATENT COUNSEL | Fibrous structures |
8083893, | Jun 08 2005 | The Procter & Gamble Company | Embossing process including discrete and linear embossing elements |
8178196, | Feb 29 2008 | The Procter & Gamble Company | Fibrous structures |
8192836, | Feb 29 2008 | The Procter & Gamble Company | Fibrous structures |
8334049, | Feb 04 2010 | The Procter & Gamble Company | Fibrous structures |
8334050, | Feb 04 2010 | The Procter & Gamble Company | Fibrous structures |
8383235, | Feb 04 2010 | The Procter & Gamble Company | Fibrous structures |
8449976, | Feb 04 2010 | The Procter & Gamble Company | Fibrous structures |
8460786, | Feb 29 2008 | The Procter & Gamble Company | Embossed fibrous structures |
8491995, | Feb 29 2008 | The Procter & Gamble Company | Fibrous structures |
8507083, | Feb 29 2008 | The Procter & Gamble Company | Embossed fibrous structures |
8545976, | Feb 04 2010 | The Procter & Gamble Company | Fibrous structures |
8597781, | Feb 29 2008 | The Proctor & Gamble Company | Fibrous structures |
8652634, | Feb 29 2008 | The Procter & Gamble Company | Fibrous structures |
9085855, | Feb 29 2008 | The Procter & Gamble Company | Embossed fibrous structures |
9089452, | Feb 29 2008 | The Procter & Gamble Company | Fibrous structures |
9243368, | May 19 2009 | Procter & Gamble Company, The | Embossed fibrous structures and methods for making same |
9408503, | Feb 04 2010 | The Procter & Gamble Company | Fibrous structures |
9435081, | Feb 29 2008 | The Procter & Gamble Company | Fibrous structures |
9458574, | Feb 10 2012 | The Procter & Gamble Company | Fibrous structures |
9463605, | Feb 29 2008 | The Procter & Gamble Company | Fibrous structures |
9593452, | Feb 04 2010 | The Procter & Gamble Company | Fibrous structures |
9677226, | Feb 29 2008 | The Procter & Gamble Company | Embossed fibrous structures |
9701101, | May 19 2009 | The Procter & Gamble Company | Multi-ply fibrous structures and methods for making same |
9752281, | Oct 27 2010 | The Procter & Gamble Company | Fibrous structures and methods for making same |
9937694, | May 19 2009 | The Procter & Gamble Company | Method for making multi-ply fibrous structures |
D826577, | Aug 16 2017 | Quantum Materials, LLC | Woven fabric |
D845650, | May 24 2016 | Toray Industries, Inc. | Textile fabric |
Patent | Priority | Assignee | Title |
1616222, | |||
2038712, | |||
241522, | |||
3121660, | |||
3309263, | |||
3705079, | |||
3817827, | |||
3832758, | |||
3866277, | |||
3879257, | |||
3915202, | |||
3974025, | Jun 08 1973 | The Procter & Gamble Company | Absorbent paper having imprinted thereon a semi-twill, fabric knuckle pattern prior to final drying |
4072557, | Dec 23 1974 | J. M. Voith GmbH | Method and apparatus for shrinking a travelling web of fibrous material |
4149571, | Mar 03 1978 | HUYCK LICENSCO, INC , A DELAWARE CORPORATION | Papermaking fabrics |
4154883, | Oct 20 1976 | Johnson & Johnson | Emboss laminated fibrous material |
4161195, | Feb 16 1978 | Albany International Corp. | Non-twill paperforming fabric |
4171009, | Apr 02 1976 | Etablissements Martel, Catala & Cie S.A. | Forming fabrics for paper-making machines and methods of manufacture thereof |
4191609, | Mar 09 1979 | The Procter & Gamble Company | Soft absorbent imprinted paper sheet and method of manufacture thereof |
4212703, | Jan 15 1974 | ANIC, S.p.A. | Process for the manufacture of laminated sheets of cellulosic and polymeric fibrous materials |
4239065, | Mar 09 1979 | The Procter & Gamble Company | Papermachine clothing having a surface comprising a bilaterally staggered array of wicker-basket-like cavities |
4382987, | Jul 30 1982 | Huyck Corporation | Papermaker's grooved back felt |
4440597, | Mar 15 1982 | The Procter & Gamble Company | Wet-microcontracted paper and concomitant process |
4514345, | Aug 23 1983 | The Procter & Gamble Company; PROCTER & GAMBLE COMPANY, THE, A CORP OF OHIO | Method of making a foraminous member |
4515853, | Jan 20 1983 | Hermann Wangner GmbH & Co KG | Composite fabric for use as clothing for the sheet forming section of a papermaking machine |
4528239, | Aug 23 1983 | The Procter & Gamble Company; PROCTER & GAMBLE COMPANY, THE AN OH CORP | Deflection member |
4529480, | Aug 23 1983 | The Procter & Gamble Company; PROCTER & GAMBLE COMPANY THE, A CORP OF OH | Tissue paper |
4533437, | Nov 16 1982 | Scott Paper Company | Papermaking machine |
4541895, | Oct 29 1982 | SCAPA INC | Papermakers fabric of nonwoven layers in a laminated construction |
4551199, | Jul 01 1982 | CROWN ZELLERBACH CORPORATION A CORP OF NV | Apparatus and process for treating web material |
4552620, | Sep 19 1983 | Beloit Technologies, Inc | Paper machine belt |
4556451, | Dec 18 1980 | VALMET TECHNOLOGIES, INC | Method of and apparatus for substantially equal compacting and dewatering of both faces of freshly felted paper web |
4588632, | Oct 19 1983 | Madison Filter 981 Limited | Industrial fabrics |
4592395, | Mar 01 1983 | HERMANN WANGNER GMBH & CO , KG , A W GERMANY CORP | Papermachine clothing in a fabric weave having no axis of symmetry in the length direction |
4637859, | Aug 23 1983 | The Procter & Gamble Company | Tissue paper |
4671983, | Jun 12 1985 | MARCAL PAPER MILLS, INC A CORP OF NJ | Embossments for minimizing nesting in roll material |
4680873, | Feb 09 1984 | Andritz Technology and Asset Management GmbH | Method for controlling shrinkage and/or stretching of a paper web in the drying section of paper machine, in the form of a cylinder drier and/or fan dryer, transversely to the feed direction of the web and arrangements for carrying out the method |
4741376, | Mar 30 1983 | KORSNAS INDUSTRIAKTIEBOLAG | Manufacturing of kraft paper |
4759391, | Jan 10 1986 | ALBANY INTERNATIONAL CORP , 1373 BROADWAY, ALBANY, NY 12204, A CORP OF DE | Two layer papermachine embossing fabric with depressions in the upper fabric layer for the production of tissue paper |
4799318, | Mar 19 1986 | FLAKT AB, A CORP OF SWEDEN | Arrangement in the drying section of a paper machine |
4849054, | Dec 04 1985 | James River-Norwalk, Inc. | High bulk, embossed fiber sheet material and apparatus and method of manufacturing the same |
4919877, | Sep 17 1986 | Kimberly-Clark Worldwide, Inc | Process for softening webs |
4921750, | May 25 1988 | ASTENJOHNSON, INC | Papermaker's thru-dryer embossing fabric |
4942077, | May 23 1989 | Kimberly-Clark Worldwide, Inc | Tissue webs having a regular pattern of densified areas |
4967805, | May 23 1989 | VOITH FABRICS SHREVEPORT, INC | Multi-ply forming fabric providing varying widths of machine direction drainage channels |
5013330, | Dec 04 1989 | ASTENJOHNSON, INC | Multi-layered papermakers fabric for thru-dryer application |
5048589, | May 18 1988 | Kimberly-Clark Worldwide, Inc | Non-creped hand or wiper towel |
5066532, | Aug 05 1985 | WANGNER SYSTEMS CORPORATION | Woven multilayer papermaking fabric having increased stability and permeability and method |
5069548, | Aug 08 1990 | General Electric Company | Field shift moire system |
5071697, | Jan 22 1990 | Appleton Mills | Structure for extracting water from a paper web in a papermaking process |
5098522, | Jun 29 1990 | Procter & Gamble Company, The | Papermaking belt and method of making the same using a textured casting surface |
5114777, | Aug 05 1985 | WANGNER SYSTEMS CORPORATION; WANGNER SYSTEMS CORPORATION, A S C CORP | Woven multilayer papermaking fabric having increased stability and permeability and method |
5126015, | Dec 12 1990 | James River Corporation of Virginia | Method for simultaneously drying and imprinting moist fibrous webs |
5151316, | Dec 04 1989 | ASTENJOHNSON, INC | Multi-layered papermaker's fabric for thru-dryer application |
5161207, | Mar 18 1991 | Hughes Aircraft Company | Optical fiber circumferentialy symmetric fusion splicing and progressive fire polishing |
5178729, | Jan 15 1991 | James River Corporation of Virginia | High purity stratified tissue and method of making same |
5219004, | Feb 06 1992 | VOITH FABRICS SHREVEPORT, INC | Multi-ply papermaking fabric with binder warps |
5223092, | Apr 05 1988 | James River Corporation | Fibrous paper cover stock with textured surface pattern and method of manufacturing the same |
5227424, | Nov 14 1988 | The Yokohama Rubber Co., Ltd. | Rubber composition for use as a tire tread |
5230776, | Oct 25 1988 | VALMET TECHNOLOGIES, INC | Paper machine for manufacturing a soft crepe paper web |
5233733, | Apr 12 1990 | MacDermid Printing Solutions, LLC | Sheet material shrinkage apparatus |
5245025, | Jun 28 1991 | The Procter & Gamble Company; Procter & Gamble Company, The | Method and apparatus for making cellulosic fibrous structures by selectively obturated drainage and cellulosic fibrous structures produced thereby |
5254398, | Aug 05 1985 | Wangner Systems Corporation | Woven multilayer papermaking fabric having increased stability and permeability and method |
5260171, | Jun 29 1990 | The Procter & Gamble Company | Papermaking belt and method of making the same using a textured casting surface |
5275700, | Jun 29 1990 | The Procter & Gamble Company; Procter & Gamble Company, The | Papermaking belt and method of making the same using a deformable casting surface |
5277761, | Jun 28 1991 | The Procter & Gamble Company; Procter & Gamble Company, The | Cellulosic fibrous structures having at least three regions distinguished by intensive properties |
5300347, | Mar 01 1991 | Kimberly-Clark Worldwide, Inc | Embossed facial tissue |
5314584, | Apr 05 1988 | James River Corporation | Fibrous paper cover stock with textured surface pattern and method of manufacturing the same |
5328565, | Jun 19 1991 | The Procter & Gamble Company | Tissue paper having large scale, aesthetically discernible patterns |
5330604, | Apr 05 1991 | VOITH FABRICS HEIDENHEIM GMBH & CO KG | Edge jointing of fabrics |
5334289, | Jun 29 1990 | The Procter & Gamble Company | Papermaking belt and method of making the same using differential light transmission techniques |
5348620, | Apr 17 1992 | Kimberly-Clark Worldwide, Inc | Method of treating papermaking fibers for making tissue |
5353521, | Oct 15 1989 | Georgia Tech Research Corporation | Method and apparatus for drying web |
5364504, | Jun 29 1990 | The Procter & Gamble Company | Papermaking belt and method of making the same using a textured casting surface |
5366785, | Nov 27 1991 | The Procter & Gamble Company | Cellulosic fibrous structures having pressure differential induced protuberances and a process of making such cellulosic fibrous structures |
5366786, | May 15 1992 | Kimberly-Clark Worldwide, Inc | Garment of durable nonwoven fabric |
5372876, | Jun 02 1993 | Appleton Mills | Papermaking felt with hydrophobic layer |
5391419, | Aug 17 1989 | Albany International Corp. | Loop formation in on-machine-seamed press fabrics using unique yarns |
5399412, | May 21 1993 | Kimberly-Clark Worldwide, Inc | Uncreped throughdried towels and wipers having high strength and absorbency |
5401557, | Jul 17 1992 | Lintec Corporation | Thread-reinforced paper sheet and thread-reinforced gummed tape |
5429686, | Apr 12 1994 | VOITH FABRICS SHREVEPORT, INC | Apparatus for making soft tissue products |
5431786, | Jun 19 1991 | The Procter & Gamble Company | A papermaking belt |
5437908, | Sep 02 1991 | CRECIA CORPORATION | Bathroom tissue and process for producing the same |
5443691, | Jun 28 1991 | The Procter & Gamble Company | Method for making cellulosic fibrous structures having at least three regions distinguished by intensive properties |
5449548, | Nov 28 1994 | Table, reduced permeability papermaker's fabrics containing fibers with fins designed to distort at lower force levels by having a reduced cross sectional area within the fin | |
5456293, | Aug 01 1994 | GESCHMAY CORP | Woven papermaking fabric with diagonally arranged pockets and troughs |
5462642, | Sep 16 1993 | SCHULLER INTERNATIONAL, INC | Method of forming a fibrous mat |
5496624, | Jun 02 1994 | The Procter & Gamble Company; Procter & Gamble Company, The | Multiple layer papermaking belt providing improved fiber support for cellulosic fibrous structures, and cellulosic fibrous structures produced thereby |
5500277, | Jun 02 1994 | The Procter & Gamble Company; Procter & Gamble Company, The | Multiple layer, multiple opacity backside textured belt |
5501768, | Apr 17 1992 | Kimberly-Clark Worldwide, Inc | Method of treating papermaking fibers for making tissue |
5503715, | Jun 28 1991 | The Procter & Gamble Company | Method and apparatus for making cellulosic fibrous structures by selectively obturated drainage and cellulosic fibrous structures produced thereby |
5507915, | Dec 04 1989 | ASTENJOHNSON, INC | Multi-layered papermakers fabric for thru-dryer application |
5508095, | Nov 16 1993 | VOITH FABRICS HEIDENHEIM GMBH & CO KG | Papermachine clothing |
5510002, | May 21 1993 | Kimberly-Clark Worldwide, Inc | Method for increasing the internal bulk of wet-pressed tissue |
5512319, | Aug 22 1994 | BASF Corporation; BASF Aktiengesellschaft; BASFSCHWARZHEIDE GMBH | Polyurethane foam composite |
5514523, | Jun 29 1990 | The Procter & Gamble Company | Papermaking belt and method of making the same using differential light transmission techniques |
5520225, | Jan 23 1995 | GESCHMAY CORP | Pocket arrangement in the support surface of a woven papermaking fabric |
5527429, | Mar 08 1990 | Papeteries de Cascadec | Method of preparing paper for filter bags, apparatus for implementing the method, and product obtained thereby |
5545295, | Sep 04 1991 | Mitsubishi Jukogyo Kabushiki Kaisha | Web transfer device |
5549790, | Jun 29 1994 | The Procter & Gamble Company; Procter & Gamble Company, The | Multi-region paper structures having a transition region interconnecting relatively thinner regions disposed at different elevations, and apparatus and process for making the same |
5554467, | Jun 29 1990 | The Proctor & Gamble Company | Papermaking belt and method of making the same using differential light transmission techniques |
5556509, | Jun 29 1994 | The Procter & Gamble Company; Procter & Gamble Company, The | Paper structures having at least three regions including a transition region interconnecting relatively thinner regions disposed at different elevations, and apparatus and process for making the same |
5565132, | Jun 06 1995 | The University of Dayton; UNIVERSITY OF DAYTON, THE | Thermoplastic, moldable, non-exuding phase change materials |
5566724, | Jun 02 1994 | The Procter & Gamble Company | Multiple layer, multiple opacity backside textured belt |
5573637, | Dec 19 1994 | Procter & Gamble Company, The | Tissue paper product comprising a quaternary ammonium compound, a polysiloxane compound and binder materials |
5580423, | Dec 19 1994 | The Procter & Gamble Company | Wet pressed paper web and method of making the same |
5591309, | Feb 06 1995 | Kimberly-Clark Worldwide, Inc | Papermaking machine for making uncreped throughdried tissue sheets |
5593545, | Feb 06 1995 | Kimberly-Clark Worldwide, Inc | Method for making uncreped throughdried tissue products without an open draw |
5598642, | May 12 1995 | Georgia Tech Research Corporation | Method and apparatus for drying a fiber web at elevated ambient pressures |
5598643, | Nov 23 1994 | Kimberly-Clark Worldwide, Inc | Capillary dewatering method and apparatus |
5607551, | Jun 24 1993 | Kimberly-Clark Worldwide, Inc | Soft tissue |
5607980, | Jul 24 1995 | PROCTOR & GAMBLE COMPANY, THE | Topical compositions having improved skin feel |
5609725, | Jun 29 1994 | The Procter & Gamble Company | Multi-region paper structures having a transition region interconnecting relatively thinner regions disposed at different elevations, and apparatus and process for making the same |
5614061, | Jul 10 1987 | The Procter & Gamble Company | Apparatus for forming a cellulosic fibrous structures having at least three regions distinguished by intensive properties |
5614293, | Feb 06 1995 | Kimberly-Clark Worldwide, Inc | Soft treated uncreped throughdried tissue |
5624790, | Jun 29 1990 | The Procter & Gamble Company | Papermaking belt and method of making the same using differential light transmission techniques |
5628876, | Aug 26 1992 | The Procter & Gamble Company | Papermaking belt having semicontinuous pattern and paper made thereon |
5637106, | Nov 16 1988 | Carol M., Stocking | Absorbent product for personal use |
5637194, | Dec 20 1993 | The Procter & Gamble Company; Procter & Gamble Company, The | Wet pressed paper web and method of making the same |
5643588, | Nov 28 1994 | The Procter & Gamble Company; Procter & Gamble Company, The | Diaper having a lotioned topsheet |
5650218, | Feb 06 1995 | Kimberly-Clark Worldwide, Inc | Soft treated tissue |
5656132, | Jun 24 1993 | Kimberly-Clark Worldwide, Inc | Soft tissue |
5667636, | Mar 24 1993 | Kimberly-Clark Worldwide, Inc | Method for making smooth uncreped throughdried sheets |
5672248, | Apr 12 1994 | Kimberly-Clark Worldwide, Inc | Method of making soft tissue products |
5679222, | Jun 29 1990 | The Procter & Gamble Company; Procter & Gamble Company, The | Paper having improved pinhole characteristics and papermaking belt for making the same |
5693187, | Apr 30 1996 | Procter & Gamble Company, The | High absorbance/low reflectance felts with a pattern layer |
5699626, | Nov 23 1994 | Kimberly-Clark Worldwide, Inc | Capillary dewatering method |
5701682, | Nov 23 1994 | Kimberly-Clark Worldwide, Inc | Capillary dewatering method and apparatus |
5709775, | Jun 29 1994 | The Procter & Gamble Company | Paper structures having at least three regions including a transition region interconnecting relatively thinner regions disposed at different elevations, and apparatus and process for making the same |
5714041, | Aug 26 1992 | The Procter & Gamble Company | Papermaking belt having semicontinuous pattern and paper made thereon |
5716692, | Jun 17 1994 | The Procter & Gamble Co. | Lotioned tissue paper |
5746887, | Apr 12 1994 | Kimberly-Clark Worldwide, Inc | Method of making soft tissue products |
5772845, | Jun 24 1993 | Kimberly-Clark Worldwide, Inc | Soft tissue |
5776307, | Dec 20 1993 | The Procter & Gamble Company; PROCTOR & GAMBLE COMPANY, THE | Method of making wet pressed tissue paper with felts having selected permeabilities |
5776312, | Jun 29 1994 | The Procter & Gamble Company | Paper structures having at least three regions including a transition region interconnecting relatively thinner regions disposed at different elevations, and apparatus and process for making the same |
5779965, | Sep 03 1996 | Kimberly-Clark Worldwide, Inc | Double nip embossing |
5795440, | Dec 20 1993 | The Procter & Gamble Company; Procter & Gamble Company, The | Method of making wet pressed tissue paper |
5804036, | Jul 10 1987 | The Procter & Gamble Company; Procter & Gamble Company, The | Paper structures having at least three regions including decorative indicia comprising low basis weight regions |
5804281, | Jun 28 1991 | The Proctor & Gamble Company | Cellulosic fibrous structures having at least three regions distinguished by intensive properties |
5814190, | Jun 29 1994 | The Procter & Gamble Company; Procter & Gamble Company, The | Method for making paper web having both bulk and smoothness |
5820730, | Jun 28 1991 | The Procter & Gamble Company; Procter & Gamble Company, The | Paper structures having at least three regions including decorative indicia comprising low basis weight regions |
5830316, | May 16 1997 | The Procter & Gamble Company; Procter & Gamble Company, The | Method of wet pressing tissue paper with three felt layers |
5830321, | Jan 29 1997 | Kimberly-Clark Worldwide, Inc. | Method for improved rush transfer to produce high bulk without macrofolds |
5832962, | Dec 29 1995 | Kimberly-Clark Worldwide, Inc | System for making absorbent paper products |
5837102, | Apr 24 1997 | Voith Sulzer Paper Technology North America, Inc. | Perforated and embossed sheet forming fabric |
5840403, | Jun 14 1996 | Procter & Gamble Company, The | Multi-elevational tissue paper containing selectively disposed chemical papermaking additive |
5840411, | Jun 02 1994 | The Procter & Gamble Company | Multiple layer papermaking belt providing improved fiber support for cellulosic fibrous structures, and cellulosic fibrous structures produced thereby |
5843279, | Jul 10 1987 | The Procter & Gamble Company | Cellulosic fibrous structures having at least three regions distinguished by intensive properties |
5846379, | Dec 20 1993 | The Procter & Gamble Company | Wet pressed paper web and method of making the same |
5855739, | Dec 20 1993 | The Procter & Gamble Co. | Pressed paper web and method of making the same |
5857497, | Aug 05 1985 | Wangner Systems Corporation | Woven multilayer papermaking fabric having increased stability and permeability |
5861082, | Dec 20 1993 | The Procter & Gamble Company | Wet pressed paper web and method of making the same |
5871763, | Apr 24 1997 | Georgia-Pacific Consumer Products LP | Substrate treated with lotion |
5874156, | Dec 24 1992 | Fort James Corporation | High softness embossed tissue |
5885416, | Oct 11 1994 | Fort James Corporation | Creping process using undulatory blade |
5885418, | Jun 07 1995 | Kimberly-Clark Worldwide, Inc | High water absorbent double-recreped fibrous webs |
5888347, | Mar 24 1993 | Kimberly-Clark World Wide, Inc. | Method for making smooth uncreped throughdried sheets |
5893965, | Jun 06 1997 | The Procter & Gamble Company | Method of making paper web using flexible sheet of material |
5897745, | Jun 29 1994 | Procter & Gamble Company, The | Method of wet pressing tissue paper |
5900122, | May 19 1997 | The Procter & Gamble Company | Cellulosic web, method and apparatus for making the same using papermaking belt having angled cross-sectional structure, and method of making the belt |
5904811, | Dec 20 1993 | The Procter & Gamble Company | Wet pressed paper web and method of making the same |
5906710, | Jun 23 1997 | The Procter & Gamble Company; Procter & Gamble Company, The | Paper having penninsular segments |
5925217, | Dec 29 1995 | Kimberly-Clark Worldwide, Inc | System for making absorbent paper products |
5935381, | Jun 06 1997 | The Procter & Gamble Company | Differential density cellulosic structure and process for making same |
5938893, | Aug 15 1997 | The Procter & Gamble Company; Procter & Gamble Company, The | Fibrous structure and process for making same |
5948210, | May 19 1997 | The Procter & Gamble Company | Cellulosic web, method and apparatus for making the same using papermaking belt having angled cross-sectional structure, and method of making the belt |
5954097, | Aug 14 1996 | The Procter & Gamble Company; Procter & Gamble Company, The | Papermaking fabric having bilaterally alternating tie yarns |
5972813, | Dec 17 1997 | The Procter & Gamble Company; Procter & Gamble Company, The | Textured impermeable papermaking belt, process of making, and process of making paper therewith |
5990377, | Mar 21 1997 | Kimberly-Clark Worldwide, Inc | Dual-zoned absorbent webs |
6010598, | May 08 1997 | Procter & Gamble Company, The | Papermaking belt with improved life |
6017417, | Apr 12 1994 | Kimberly-Clark Worldwide, Inc. | Method of making soft tissue products |
6039838, | Dec 29 1995 | Kimberly-Clark Worldwide, Inc | System for making absorbent paper products |
6039839, | Feb 03 1998 | The Procter & Gamble Company; Procter & Gamble Company, The | Method for making paper structures having a decorative pattern |
6074527, | Jun 29 1994 | The Research Foundation of State University of New York; Research Foundation of State University of New York, The | Production of soft paper products from coarse cellulosic fibers |
6096169, | May 14 1996 | Kimberly-Clark Worldwide, Inc | Method for making cellulosic web with reduced energy input |
6103060, | Feb 01 1994 | Fort James France | Method for manufacturing a sheet of paper or non-woven in a foam medium using a nonionic surfactant |
6120642, | Sep 06 1996 | Kimberly-Clark Worldwide, Inc | Process for producing high-bulk tissue webs using nonwoven substrates |
6140260, | May 16 1997 | Appleton Mills | Papermaking felt having hydrophobic layer |
6143135, | May 14 1996 | Kimberly-Clark Worldwide, Inc | Air press for dewatering a wet web |
6149768, | Jun 07 1995 | Kimberly-Clark Worldwide, Inc | Recreped absorbent paper product and method for making |
6197154, | Oct 31 1997 | Kimberly-Clark Worldwide, Inc | Low density resilient webs and methods of making such webs |
6455129, | Nov 12 1999 | GPCP IP HOLDINGS LLC | Single-ply embossed absorbent paper products |
6458447, | Apr 16 1998 | Procter & Gamble Company, The | Extensible paper web and method of forming |
20020056536, | |||
CA809923, | |||
CA873651, | |||
CA919467, | |||
D381811, | Oct 25 1995 | Georgia-Pacific Consumer Products LP | Pattern for absorbent sheet material |
D382162, | Sep 15 1995 | Georgia-Pacific Consumer Products LP | Paper towel product |
D384210, | Apr 26 1995 | Georgia-Pacific Consumer Products LP | Pattern for absorbent sheet material |
D395955, | Oct 25 1995 | Fort James Corporation | Pattern for absorbent sheet material |
D416393, | Jan 15 1999 | Kimberly-Clark Worldwide, Inc.; KIMBELY-CLARK WORLDWIDE, INC | Embossed towel |
D419782, | Nov 02 1998 | Georgia-Pacific Consumer Products LP | Pattern for absorbent sheet material |
DE19917869, | |||
EP140404, | |||
EP566775, | |||
EP667612, | |||
EP837179, | |||
GB1059983, | |||
GB2006296, | |||
GB2228594, | |||
GB2254288, | |||
GB2279372, | |||
WO8253, | |||
WO12818, | |||
WO39393, | |||
WO39394, | |||
WO63489, | |||
WO148310, | |||
WO3040450, | |||
WO9517548, | |||
WO9635018, | |||
WO9724487, | |||
WO9732081, | |||
WO9801618, | |||
WO9821404, | |||
WO9821405, | |||
WO9821406, | |||
WO9821409, | |||
WO9859110, | |||
WO9910597, | |||
WO9939050, | |||
WO9949131, | |||
WO9951814, | |||
WO9954547, | |||
WO9966124, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 08 2002 | Kimberly-Clark Worldwide, Inc. | (assignment on the face of the patent) | / | |||
Feb 11 2003 | BURAZIN, MARK ALAN | Kimberly-Clark Worldwide, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013903 | /0121 | |
Feb 13 2003 | LINDSAY, JEFFREY DEAN | Kimberly-Clark Worldwide, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013903 | /0121 | |
Mar 01 2003 | CHIU, KAI F | Kimberly-Clark Worldwide, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013903 | /0121 | |
Jan 01 2015 | Kimberly-Clark Worldwide, Inc | Kimberly-Clark Worldwide, Inc | NAME CHANGE | 034880 | /0742 |
Date | Maintenance Fee Events |
Sep 14 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 23 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 08 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 08 2007 | 4 years fee payment window open |
Dec 08 2007 | 6 months grace period start (w surcharge) |
Jun 08 2008 | patent expiry (for year 4) |
Jun 08 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 08 2011 | 8 years fee payment window open |
Dec 08 2011 | 6 months grace period start (w surcharge) |
Jun 08 2012 | patent expiry (for year 8) |
Jun 08 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 08 2015 | 12 years fee payment window open |
Dec 08 2015 | 6 months grace period start (w surcharge) |
Jun 08 2016 | patent expiry (for year 12) |
Jun 08 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |