A heated element assembly and method of manufacturing heated element assemblies is provided. The heated element assembly including a first and second molded sections shaped to mate with each other is provided. A resistance heating element is secured between the first and second molded sections by an interference fit. The resistance heating element includes a piercable supporting substrate and a resistance wire sewn thereon. The resistance wire is disposed in a predetermined circuit path which is substantially encompassed by the first and second molded sections. The resistance heating element is easily fixed in a position between the first and second molded sections and is capable of providing heat on vertical, horizontal and contoured surfaces.
|
9. A method of manufacturing a heated element assembly, comprising the steps of:
(a) providing a first molded polymeric section; (b) providing a second molded polymeric section shaped to mate with said first molded section; (c) providing a resistance heating element, comprising: (i) a supporting substrate having a first surface thereon; and (ii) an electrical resistance heating material fastened to said supporting substrate, said electrical resistance heating material forming a predetermined circuit path having a pair of terminal end portions; and (d) securing said first molded section to said second molded section, such that said first and second molded sections substantially encompass said circuit path and at least a portion of said heating element is secured in a gapped area defined between said first and second molded sections by a mechanical fit between said molded sections.
1. A method of manufacturing a heated element assembly, comprising the steps of:
(a) providing a first molded polymeric section; (b) providing a second molded polymeric section shaped to mate with said first molded section; (c) providing a resistance heating element, comprising: (i) a first heat resistant supporting substrate having a first surface thereon; (ii) an electrical resistance heating material sewn with a thread to said first heat resistant supporting substrate, said electrical resistance heating material forming a predetermined circuit path having a pair of terminal end portions; and (iii) a pair of electrical conductors fixed to said terminal end portions of said electrical resistance heating material; and (d) securing said first molded polymeric section to said second molded polymeric section, such that said first and second molded sections substantially encompass said circuit path and at least a portion of said heating element is secured between said first and second molded sections by a mechanical fit between said molded sections and said electrical resistance heating material is spaced apart from said first and second molded sections by an air gap.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
10. The method of
11. The method of
12. The method of
13. The method of
14. The method of
15. The method of
16. The method of
17. The method of
18. The method of
19. The method of
20. The method of
21. The method of
22. The method of
|
This application is a divisional application of U.S. patent application Ser. No. 09/544,873 of Theodore Von Ar, Keith Laken, John Schlesselman and Ronald Papenfuss, filed Apr. 7, 2000, entitled "Molded Assembly with Heating Element Captured Therein."
This application is related to U.S. application Ser. No. 09/369,779 of Theodore Von Arx, filed Aug. 6, 1999, entitled "Electrofusing of Thermoplastic Heating Elements and Elements Made Thereby"; U.S. application Ser. No. 09/416,731 of John Schlesselman and Ronald Papenfuss, filed Oct. 13, 1999. entitled "Heating Element Containing Sewn Resistance Material"; and U.S. application Ser. No. 09/275,161 of Theodore Von Arx, James Rutherford and Charles Eckman, filed Mar. 24, 1999, entitled "Heating Element Suitable for Preconditioning Print Media," now U.S. Pat. No. 6,233,398, which are all hereby incorporated by reference. This application is also related to U.S. Provisional Application No. 60/177,330, filed Jan. 21, 2000, entitled "Improved Cooking Grill," which is also hereby incorporated by reference.
This invention relates to electrical resistance heating elements, and more particularly, to molded heating assemblies including heating elements.
Electrical resistance heating elements are available in many forms. A typical construction includes a pair of terminal pins brazed to the ends of a Ni--Cr coil, which is then axially disposed through a U-shaped tubular metal sheath. The resistance coil is insulated from the metal sheath by a powdered ceramic material, usually magnesium oxide. While such conventional heating elements have been the workhorse for the heating element industry for decades, there have been some widely-recognized deficiencies. For example, galvanic currents occurring between the metal sheath and any exposed metal surfaces of a hot water tank can create corrosion of the various anodic metal components of the system. The metal sheath of the heating element, which is typically copper or copper alloy, also attracts lime deposits from the water, which can lead to premature failure of the heating element. Additionally, the use of brass fittings and copper tubing has become increasingly more expensive as the price of copper has increased over the years. What's more, metal tubular elements present limited design capabilities, since their shape can not be significantly altered without losing performance.
As an alternative to metal elements, polymeric heating elements have been designed, such as those disclosed in U.S. Pat. No. 5,586,214. The '214 patent describes a process of making a polymeric heater in which an inner mold is used having a plurality of threaded grooves for receiving a resistance wire. The assembly is first wound with a wire and thereafter injection molded with an additional coating of thermoplastic material, containing a large amount of ceramic powder for improving the thermal conductivity of the coating.
It has been discovered that injection molding a layer of thermoplastic material loaded with large amounts of ceramic powder can be difficult. The viscous polymeric material often fails to fill the mold details and can leave portions of resistance wire coil exposed. Additionally, there can be insufficient wetting between the over molded thermoplastic coating and the resistance wire, with minimal thermoplastic bonding between the inner mold and the over molded thermoplastic coating. This has led to failure of such elements during thermal cycling, since entrapped air and insufficient bonding create crack initiation sites. Crack initiation sites lead to stress cracks that can lead to shorts in emersion applications. Cracks and entrapped air also limit the heating element's ability to generate heat homogeneously, which tends to create hot and cold spots along the length of the element.
Efforts have been made to minimize hot and cold spots and insufficient bonding between layers of plastic materials having electrical resistance heaters disposed between their layers. In U.S. Pat. No. 5,389,184, for example, a pair of thermosetting composite structures are bonded together using a heating element containing a resistance heating material embedded within two layers of thermoplastic adhesive material. The two thermosetting components are permitted to cure, and then while applying pressure to the joint, electrical energy is passed through the heating element sufficient to heat the joint to above the melting temperature of the thermoplastic adhesive material. This heat fuses the layers of the thermoplastic adhesive to join the thermosetting materials together. The heating element remains within the joint after bonding and provides a mechanism to reheat the joint and reverse the bonding process in the field. While these procedures have met with some success, there remains a need for a less expensive, and more structurally sound, electrical resistance heating element.
The thermoplastic injection molding process has existed for several years. The plastic molding process has evolved to a point where the standard is high quality detailed, complex shapes, and smooth aesthetic surfaces. In addition, injection molding using plastic part tooling and molding equipment has evolved into a precise science capable of mass producing high quality plastic products.
Typical injection molding processes require that molten plastic be shot into a tool at an extreme high velocity. It is the interaction between the viscosity of the molten plastic, the molding pressure, and the tool geometry that creates a high quality, high detailed plastic part. Another common practice of injection molding incorporates the use of rigid inserts (i.e. insert molding) such as threaded bosses and ancillary mechanical parts. The required material fill velocity and mold pressure, however, are not conducive to accurate placement of element precursors within complex designs. The inability to overcome the adverse effects of mold flow on precursor element placement has limited molded heated part geometries to primarily flat shapes.
Therefore, along with the need for a less expensive, and more structurally sound, electrical resistance heating elements, there remains a need to implement element precursors into molded contoured shapes beyond geometries that are primarily flat surfaces.
The present invention comprises a heated element assembly and method of manufacturing heated element assemblies. The heated element assembly according to the present invention includes a first molded section and a second molded section shaped to mate with the first molded section. The assembly also includes a resistance heating element comprising a supporting substrate having an electrical resistance heating material fastened to the supporting substrate. The electrical resistance heating material forms a predetermined circuit path having a pair of terminal end portions. The first and second molded sections are connected to substantially encompass the circuit path such that the heating element is secured between the first and second molded sections by an interference fit.
The present invention provides several benefits while opening infinite design opportunities. Cost effective complex assembly shapes are easily formed while accurately positioning resistance heating elements. This allows for the ability to provide heat on horizontal planes, vertical planes, and along complex contoured shapes. The supporting substrate is also capable of functioning as a thermal buffer between the resistance heating material and a molded section. Additionally, the supporting substrate serves as a mechanical stress buffer between the resistance heating material and a selected polymer in a heated element assembly. Further, the seam formed between the molded sections allows air to be evacuated from the area formed between the molded sections and a hermetic seal to be formed at the seam, such as by electro-fusing, spin welding, sonic welding, hot air welding, vibration welding, diffusion bonding, or o-ring snap fitting the mated sections together. The heat distribution of a heated element assembly may also be improved by back-filling an inert gas, such as argon, into the area formed between the two mated sections before hermetically sealing the seam.
In another embodiment of the invention, the electrical resistance heating material of the resistance heating element is prevented from contacting the molded sections. The resistance heating element may include a second supporting substrate, and the electrical resistance heating material is fastened between the first and second supporting substrates. Alternatively, the resistance heating element may be suspended between the molded sections along the edges of the supporting substrate. By doing so, the molded sections are buffered by a supporting substrate and/or separation from the resistance heating material, allowing for the transfer of heat to the molded sections without compromising the integrity of the molded sections. This, in turn, permits the use of less heat resilient, but less expensive, polymers to construct the molded sections. Further, different supporting substrates or substrate thicknesses may be selected to bias generated heat to a selected molded sections. This provides for the ability to design and predict heat flow in heated element assemblies.
In still another embodiment of the invention, at least one of the molded sections includes a protrusion extending from a surface facing the resistance heating element. The protrusion contacts the resistance heating element and may extend to contact only the supporting substrate or substrates in order to further locally secure the heating element in a preselected location. Alternatively, the protrusion may contact the electrical resistance material and partially yield to the resistance material to secure the heating element in its selected position.
The invention also provides the ability to selectively control heat distribution through the design of the molded sections. The molded sections may have different thicknesses, be constructed of different materials or include different conductive additives, or a combinations thereof. This ability allows for a design to control the heat transfer and direct generated thermal energy in an application specific manner, such as for cooking, biological processing, or printing applications.
The above and other features of the present invention will be better understood from the following detailed description of the preferred embodiments of the invention which is provided in connection with the accompanying drawings.
The accompanying drawings illustrate preferred embodiments of the invention, as well as other information pertinent to the disclosure, in which:
The present invention provides molded heated element assemblies including resistance heating elements adapted to conform to assemblies of numerous different geometric shapes and sizes. As used herein, the following terms are defined:
"Substantially Encapsulating" means that at least 85 percent of the surface area of the designated member is provided with polymeric material, but does not necessarily mean that the coating is hermetic;
"Serpentine Path" means a path which has one or more curves for increasing the amount of electrical resistance material in a given volume of polymeric matrix, for example, for controlling the thermal expansion of the element;
"Melting Temperature" means the point at which a fusible substance begins to melt;
"Melting Temperature Range" means the temperature range over which a fusible substance starts to melt and then becomes a liquid or semi-liquid;
"Degradation Temperature" means the temperature at which a thermoplastic or thermosetting polymer begins to permanently lose its mechanical or physical properties because of thermal damage to the polymer's molecular chains;
"Evacuating" means reducing air or trapped air bubbles by, for example, vacuum or pressurized inert gas, such as argon, or by bubbling the gas through a liquid polymer.
"Fusion Bond" means the bond between two fusible members integrally joined, whereby the polymer molecules of one member mix with the molecules of the other. A Fusion Bond can occur, even in the absence of any direct or chemical bond between individual polymer chains contained within said members;
"Fused" means the physical flowing of a material, such as ceramic, glass, metal or polymer, hot or cold, caused by heat, pressure or both;
"Electrofused" means to cause a portion of a fusible material to flow and fuse by resistance heating;
"Stress Relief" means reducing internal stresses in a fusible material by raising the temperature of the material or material portion above its stress relief temperature, but preferably below its Heat Deflection Temperature.
Element Embodiment
With reference to the Figures, and particularly
As shown in
Fusible and Polymeric Layers
A heating element may include fusible layers that are preferably polymeric, but can contain any heat resistant, thermally conductive and preferably non-electrically conductive materials, such as ceramics, (such as those discussed herein), clays, glasses, and semi-conductive materials, such as gallium arsenide or silicon. Additionally, cast or wrought metals, such as aluminum, copper, brass, zinc and tin, or combinations thereof, could be used, if the resistance wire or material is insulated in a coating such as glass, ceramic, or high temperature polymer.
Preferred polymeric layers, including top and bottom polymeric layers 26 and 28 of
It is further understood that, although thermoplastic plastics are most desirable for fusible layers because they are generally heat-flowable, some thermoplastics, notably polytetraflouroethylene (PTFE) and ultra high-molecular-weight polyethylene (UHMWPE) do not flow under heat alone. Also, many thermoplastics are capable of flowing without heat, under mechanical pressure only. On the other hand, thermosetting polymers are usually heat-settable, yet many thermosetting plastics such as silicone, epoxy and polyester, can be set without being heated. Another thermosetting material, phenolic, must first be made to flow under heat, like a thermoplastic, before it can be heat-set.
As stated above, polymeric layers preferably also include reinforcing fibers, such as glass, carbon, aramid, steel, boron, silicon carbide, polyethylene, polyamide, or graphite fibers. The fibers can be disposed throughout the polymeric material in amounts of about 5-75 wt % prior to molding or forming the final heating element 25, and can be provided in single filament, multifilament thread, yarn, roving, non-woven or woven fabric.
In addition to reinforcing fibers, this invention contemplates the use of thermally conducting, preferably non-electrically conducting, additives in amounts of about 5-80 wt %. The thermally-conducting additives desirably include ceramic powder such as, for example, Al2O3, MgO, ZrO2, Boron nitride, silicon nitride, Y2O3, SiC, SiO2, TiO2, etc., or a thermoplastic or thermosetting polymer which is more thermally conductive than the polymer suggested to be used with the top and bottom polymeric layers 26 and 28. For example, small amounts of liquid-crystal polymer or polyphenylene sulfide particles can be added to a less expensive base polymer such as epoxy or polyvinyl chloride, to improve thermal conductivity. Alternatively copolymers, alloys, blends, and interpenetrating polymer networks (IPNs) could be employed for providing improved thermal conductivity, better resistance to heat cycles and creep.
Substrates
As used herein, the term "supporting substrate" refers to the base material on which the resistance material, such as wires, are applied. The supporting substrate 11 of this invention should be capable of being pierced, penetrated, or surrounded, by a sewing needle for permitting the sewing operation. Other than this mechanical limitation, the substrates of this invention can take on many shapes and sizes. Flat flexible substrates can be used for attaching electrical resistance wire with a thread, prior to bending the substrate in a mold and overmolding with a thermoplastic or thermosetting material. Non-plastic materials, such as ceramics, glasses, semiconductive materials, and metals, can be employed so long as they have a piercable cross-sectional thickness, e.g., less than 10-20 mil, or a high degree of porosity or openings therethrough, such as a grid, scrim, woven or nonwoven fabric, for permitting the sewing needle of this invention to form an adequate stitch. The supporting substrate 11 of this invention need not necessarily contribute to the mechanical properties of the final heating element 25, but may contain high strength fibers such as those described above for reinforcing the polymeric layers 26 and 28 of this invention. Such fibers could contain carbon, glass, aramid fibers melt-bonded or joined with an adhesive to form a woven or non-woven mat. Alternatively, the supporting substrate 11 of this invention may contain ordinary, natural, or synthetic fibers, such as cotton, wool, silk, rayon, nylon, polyester, polypropylene, polyethylene, etc. The supporting substrate may also comprise a synthetic fiber such as Kevlar or carbon fibers that have good thermal uniformity and strength. The advantage of using ordinary textile fibers, is that they are available in many thicknesses and textures and can provide an infinite variety of chemistry, porosity and melt-bonding ability. The fibers of this invention, whether they be plastic, natural, ceramic or metal, can be woven, or spun-bonded to produce non-woven textile fabrics, alternatively, clay, such as modeling clay can be used and later fired to provide an element precursor after an electrical resistance material is bonded to the clay surface.
Specific examples of supporting substrates 11 useful in this invention include non-woven fiberglass mats bonded with an adhesive or sizing material such as model 8440 glass mat available from Johns Manville, Inc. Additional substrates can include polymer impregnated fabric, such as raw printed circuit board laminate, polymer or organic fabric weaves, such as those containing nylon, rayon, hemp or rubber, etc., porous ceramic wafers, porous mica-filled plate or sheet, and thermoplastic or thermosetting sheet film material. In one preferred embodiment, the supporting substrate 11 contains a polymeric resin which is also used in either the top polymeric layer 26 or bottom polymeric layer 28, or both. Such a resin can be provided in woven or non-woven fibrous form, or in thin sheet material having a thickness of 20 mil. or less. Thermosetting and thermoplastic material can be used for the supporting substrate 11 which will melt-bond or liquefy in the subsequent molding operation with the polymeric material of the top or bottom polymeric layers 26 and 28, so as to blend into a substantially uniform composition, preferably without a visible seam at 10×magnification.
Sewing Operation
With reference to
The programmable sewing machine 20 includes a series of bobbins for loading thread and resistance heating wire or fine resistance heating ribbon. Desirably, the bobbins are prewound to control tension since tension, without excessive slack, in both the top and bottom bobbins is very important to the successful capturing of resistance heating wire on a substrate. The thread used should be of a size recommended for the preferred programmable sewing machine. It must have consistent thickness since thread breakage is a common mode of failure in using programmable sewing machines. An industrial quality nylon, polyester or rayon thread is highly desirable. Also, a high heat resistant thread may be used, such as a Kevlar thread or Nomex thread known to be stable up to 500°C F. and available from Saunders Thread Co. of Gastonia, N.C.
The programmable sewing machine of this invention preferably has up to 6-20 heads and can measure 6 foot in width by 19 feet long. The sewing range of each head is about 10.6 inches by 26 inches, and with every other head shut off, the sewing range is about 21 inches by 26 inches. A desirable programmable sewing machine is the Tajima Model No. TMLG116-627W (LT Version) from Tajima, Inc., Japan.
The preferred method of capturing a resistance heating wire 12 onto a supporting substrate 11 in this invention will now be described. First, an operator selects a proper resistive element material, for example, Ni--Cr wire, in its proper form. Next, a proper supporting substrate 11, such as 8440 glass mat, is provided in a form suitable for sewing. The design for the element is preprogrammed into the computer 22 prior to initiating operation of the programmable sewing machine 20. As with any ordinary sewing machine, the programmable sewing machine 20 of this invention contains at least two threads, one thread is directed through the top surface of the supporting substrate, and the other is directed from below. The two threads are intertwined or knotted, ideally somewhere in the thickness of the supporting substrate 11, so that one cannot view the knot when looking at the stitch and the resulting element precursor 10. As the top needle penetrates the substrate 11 and picks up a loop of thread mechanically with the aid of the mechanical device underneath, it then pulls it upward toward the center of the substrate 11 and if the substrate is consistent and the thread tension is consistent, the knots will be relatively hidden. In a preferred embodiment of this invention, the resistance heating wire 12 is provided from a bobbin in tension. The preferred programmable sewing machine 20 of this invention provides a third thread bobbin for the electrical resistance wire 12 so that the programmable sewing machine 20 can lay the resistance wire 12 down just in front of the top needle. The preferred operation of this invention provides a zig zag or cross stitch, as shown in
The programmable sewing machine 20 of this invention can sew an electrical resistance wire 12, 5 mil-0.25 inch in diameter or thickness, onto a supporting substrate 11 at a rate of about 10-500 stitches per minute, saving valuable time and associated cost in making element precursors. One application envisioned is to create a heated toilet seat. Such a seat could contain an element having about 5,800 stitches. Using the techniques of this invention an element precursor for a heated toilet seat can be fabricated in about 15-20 minutes per head, allowing for the fabrication of 8-16 element precursors for this application in about 15 minutes.
Construction Techniques
As shown in
The ability to mechanically attach resistive elements, such as wires, films and ribbons, to substrates opens up a multitude of design possibilities in both shape and material selection. The present invention permits designers to mix and match substrate materials by selecting their porosity, thickness, density and contoured shape with selected resistance heating materials ranging in cross-section from very small diameters of about 5 mil to rectangular and irregular shapes, to thin films. Alternatively, circuits, including microprocessors, fiberoptic fibers or optoelectronic devices, (LEDs, lasers) microwave devices (power amplifiers, radar) and antenna, high temperature sensors, power supply devices (power transmission, motor controls) and memory chips could be added for controlling temperature, visual inspection of environments, communications, and recording temperature cycles, for example. The overall thickness of the element precursor is merely limited by the vertical maximum position of the needle end, less the wire feed, which is presently about 0.5 inches, but may be designed in the future to be as great as 1 inch or more. Resistive element width is not nearly so limited, since the transverse motion of the needle can range up to a foot or more.
Alternatively, a spun resistance heating wire could be sewn onto a polymer impregnated sheet, such as G10 or FR4 printed circuit board substrate available in various prepreg forms. The resulting sheet can then be vacuum formed. A further embodiment can be created by embroidering a resistance wire to a thick ceramic grid substrate. An additional wire could also be attached to the substrate prior to overmolding the element precursor with a high temperature, non-conductive material, such as glass. While not containing a thermoplastic material, this high temperature design could have practical applications in harsh environments. A further embodiment could include wrapping a resistance heating wire with an insulating material, such as fiberglass yarn, prior to joining the wire to a metallic film, such as aluminum foil. This element precursor could then be placed between sheets of polymer and molded or vacuum formed into a net shape. In still a further embodiment of this invention, a wire could be sewn to a prepreg of printed circuit laminate material which is thereafter compression molded into a very thin flat shape suitable for use in a typical injection molding operation. Such a method would construct a mechanically rigid element assembly that could withstand the high velocity material flow indicative of injection molding.
A resistance wire or ribbon material may also be joined to a softer material, such as clay. The resulting element precursor can be contoured into a multi-dimensional shape, such as a tube or cup with or without overlaying similar materials, such as further layers of clay. The precursor with the overlay can be formed or molded, and then fired to cure and create a final net shape, such as self-heating pottery or food service equipment. Other designs can create multi-dimensional contoured net shapes from a flat precursor made of thermoplastic or thermosetting materials which are later formed prior to final setting. Flat sheets of heated materials could also be created for HVAC, or medical applications, such as sterilizing trays or the like.
The use of known embroidery machinery in the fabrication of element precursors allows for a wide variety of raw materials and substrates to be combined with various resistance heating materials. The above construction techniques and sewing operation also provide the ability to manufacture multi-layered substrates, including embedded metallic and thermally conductive layers with resistance wires wrapped in an electrically insulating coating, so as to avoid shorting of electric current. This permits the application of a resistance heating wire to both sides of the thermally conductive metallic layer, such as aluminum foil, for more homogeneously distributing resistance heat.
Injection Mold Dry Capture Embodiment
The present invention provides a heated element assembly that effectively and efficiently integrates the above-described element precursors into more complex geometrical shapes while overcoming the aforementioned problems associated with the accurate placement of element precursors during injection molding.
A heated cup assembly 200 includes the molded sections 150, 160 and resistance heating element 100, as shown in
Mated sections 310, 320 are shown in phantom in FIG. 8C. The molded sections 310, 320 are secured so to substantially encompass the supporting substrate 105 and secure the supporting substrate 105 and resistance wire (not shown) in a selected position by an interference fit.
In heated cup embodiments 200, 300, the resistance heating element is preferably oriented such that the surface of the supporting substrate 105 to which the resistance wire 110 is fastened faces molded section 320 or molded section 160, as the case may be. In this manner, the supporting substrate 105 acts as a thermal barrier between resistance wire 110 and molded sections 150, 310. The supporting substrate 105 helps to insulate the gripping surface of heated cup 200, 300 from the heat generated by the resistance wire 110. The resistance wire 110 is oriented toward molded section 160 or molded section 320 in order to efficiently direct generated heat towards any contents, such as a liquid, held by the heated cup 200, 300.
Referring to
The present invention also provides the ability to selectively bias generated heat toward a desired molded section. The thicknesses of the first and second supporting substrates 505, 506 may be selected to bias heat generated by resistance wire 508 toward either molded section 512 or molded section 514. For example, first supporting substrate 505 may be selected to be twice as thick as second supporting substrate 506, thereby further insulating molded section 512 from resistance wire 508 and directing heat toward molded section 514. Alternatively, the supporting substrates may be selected to have different thermal characteristics, such as by varying the porosities of the substrates.
The present invention further provides the ability to selectively control heat distribution through the design of the molded sections. The molded sections may have different thicknesses, be constructed of different materials having different k-values and/or include different conductive additives, such that one molded section is a better thermal conductor than the other molded section. Molded section design may also be supplemented with supporting substrate design to bias heat in a desired manner. This ability allows for a design to control heat transfer and bias generated thermal energy for an application's specific purpose, such as cooking, biological processing, or printing applications. In cooking applications, for example, the outer molded sections would preferably be a poor thermal conductor and the inner molded section would preferably be a good thermal conductor. The ability to bias heat in a desired manner also allows for unlimited custom designs.
The ability to control heat distribution through design also provides improved heat efficiency for heating element assemblies. By selectively biasing heat in a desired direction, e.g., toward a first molded section contacting contents of a heated container assembly, and away from a second molded section, less heat is unwontedly dissipated to the surroundings and the efficiency of a heated element assembly is increased. For example, less energy is required to maintain the contents of a heated pan or cup at a selected temperature over a period of time because the heat is selectively biased toward the contents, and not allowed to escape to the surroundings through the outer molded section.
If a snap-fit connection is used to secure a first molded section to a second molded section, or other fasteners such as screws or the like, it is possible to replace defective or non-functioning heating elements, regulatory components or circuits elements. The molded sections may simply be separated from each other and the defective, heating element, circuit ir component may be removed. Then, a replacement element, circuit, or component may be positioned in the same manner the original element, component or circuit was positioned. The molded sections may then be secured to each other.
In one embodiment of the present invention, the supporting substrate may be folded to provide a more uniform heating plane. For example, assume that a resistance heating material, such as a resistance wire, is sewn to a supporting substrate in a predetermined circuit path. A sewing machine may only be capable of sowing a resistance wire to within sixty thousandths of an inch of itself as the resistance wire loops through its circuit path. The resistance heating wire may, however, only be ten thousandths of an inch in diameter. If its desired to have a denser heat plane, the circuit path may be designed so that the a denser circuit path is formed when the supporting substrate is folded. Referring to
In this manner, section 900c insulates circuit path 915 from itself and prevents the resistance wire of circuit path 915 from shorting itself by crossing itself. Alternatively, section 910c may be eliminated from the design, and the supporting substrate 910 may be folded such that the circuit path 915 is folded away from itself and insulated from itself by the supporting substrates of sections 910a and 910b. It should be apparent from
Referring to
The resistance wire 720 is thereby secured in a selected position and pattern, in addition to being fastened to a supporting substrate (not shown). The frequency of the intersection between the ribs 710a and the resistance wire 720 may be controlled by the pattern of the protrusion 710 and the predetermined circuit path of resistance wire 720. It should be apparent that the waffle pattern shown in
The present invention, such as embodied in the heated cup assembly 200 and heated cup assembly 300, provides several benefits. Cost effective complex assembly shapes are easily formed while accurately positioning resistance heating elements. This allows for the ability to provide heat on horizontal planes, vertical planes, and along complex contoured shapes. The supporting substrate is also capable of functioning as a thermal buffer between the resistance heating material and the polymer if so desired. Additionally, the supporting substrate serves as a mechanical stress buffer minimizing the effects of thermal expansion differences between molded section polymers and metallic resistive element materials. Further, the seam formed between the molded sections allows air to be evacuated from the area formed between the molded sections and a hermetic seal to be formed at the seam, such as by electro-fusing, spin welding, sonic welding, vibration welding, hot air welding, diffusion bonding or o-ring snap fitting the mated sections together. The heat distribution of a heated element assembly may also be improved by back-filling an inert gas, such as argon, into the area formed between the two mated sections before hermetically sealing the seam. The area may also be backfilled with an expandable foam to add further support to the substrate and serve as thermal conductor, if desired. An acceptable expandable foam is the Instapak foam formed from Part A0000-015 and Part B40WB-015 and available from Sealed Air Corporation. Alternatively, the area may be backfilled with a thermally conductive liquid to enhance heat distribution. If the liquid is also electrically conductive, the resistance heating material, such as a resistance heating wire, may be insulated from the liquid by, for example, providing an extruded resistance heating wire covered with a heat resistant plastic.
Further, in one embodiment of the present invention, the area defined between the first and second molded sections may be filled or partially filled with a UV curable material such as a resin, or epoxy, preferably while pulling vacuum. Alternatively, the supporting substrate may be soaked in the UV curable material prior to inclusion in a heated element assembly, but after fastening the resistance heating material to the supporting substrate. UV curable materials have a low viscosity before being exposed to UV radiation. In this embodiment of the present invention, the supporting substrate is preferably porous enough to permit the UV curable material to flow through the substrate. The molded sections should be formed from a polymer that is transparent to UV radiation, such as a clear polymer. After the supporting substrate, and thus the heating element, is positioned between the molded sections, the heated element assembly may be exposed to UV radiation. The UV radiation causes the UV curable material to cure and harden. In this manner, the resistance heating material is further secured in a selected position and air gaps may be replaced with a heat conductor. It should be understood that the molded sections may be designed with a sealable inlet port to facilitate the addition of the UV curable material and/or a sealable outlet port for permitting a vacuum pull.
It should also be apparent that the invention is in no way limited to a heated cup assembly as described above. Rather, designs for heated assemblies including molded sections formed to mate with each other and resistive heating elements as described above are virtually unlimited. Another exemplary embodiment of such a heated element assembly is shown in
By suspending the supporting substrate between molded sections 802, 804, less expensive and less heat resilient polymers, such as polyethylene or polypropylene, may be chosen for molded sections 802, 804. The polymer does not have to be resilient to the high heat generated at the resistance wire 812 because the resistance wire 812 does not contact molded section 802. The area between heating element 808 and molded section 802 and the air, or other gas, contained therein act as a dielectric and the heat is dissipated to a level suitable for the polymer used to form molded section 802. The area between supporting substrate 810 and/or molded sections 802, 804 may also be backfilled with an expandable foam insulator to add further support the substrate and serve as thermal buffer, if desired. Electrically and thermally conductive particles 818, such as MgO, TiO2, or graphite flakes may be embedded in molded section 802 to enhance the thermal characteristics of a less expensive polymer used to construct molded section 802 without shorting the resistance wire through contact. The supporting substrate may be further secured in heating element assembly 800 by protrusions (not shown) such as described in
A heated element assembly according to the present invention may include regulating device for controlling electric current, such as, for example, a thermistor, or a thermocouple, for preventing overheating of the heated element assembly. A heated element assembly may also include a thermometer, various sensors, or other circuits, including microprocessors, fiberoptic fibers or optoelectronic devices, (LEDs, lasers) microwave devices (power amplifiers, radar) and antenna, high temperature sensors, filter, power supply devices (power transmission, motor controls) and memory chips that may be added for controlling temperature, visual inspection of environments, communications, and recording temperature cycles, for example. These secondary devices may be included on the supporting substrate, attached to a molded section, or strategically placed within the molded assembly adjacent to a heating element and secured by an interference fit by the supporting substrate, molded sections, and/or protrusions extending from the molded sections.
The above-described electrical resistance elements may be secured between two molded sections sized to mate with each other to form a heated element assembly. The molded sections may be secured to each other in a variety of manners and precision injection molding techniques allow for the production of almost unlimited designs, shapes and sizes of heating element assemblies. The molded sections may be molded polymers, metals, or ceramics. The invention is in no way limited to the aforementioned heated cup or pan assemblies, but rather includes, for example, heated shift knobs, heated throttle buttons, heated tool handles, heated handle bars, or any other molded heated articles. Although various embodiments have been illustrated, this is for the purpose of describing, but not limiting the invention. Various modifications which will become apparent to one skilled in the art, are within the scope of this invention described in the attached claims.
Von Arx, Theodore, Laken, Keith, Schlesselman, John W., Papenfuss, Ronald E.
Patent | Priority | Assignee | Title |
10264629, | May 30 2013 | Osram Sylvania Inc. | Infrared heat lamp assembly |
10677315, | Dec 03 2015 | Flexible Steel Lacing Company | Belt splicing apparatus and method |
6994124, | Jan 23 2004 | Three dimensional waffleweave and stitching method thereof | |
7047626, | Jul 15 2004 | CHASE CAPITAL CORPORATION, AS COLLATERAL AGENT | Encapsulated electrically resistive heater |
7126094, | Nov 07 2003 | MARCHI THERMAL SYSTEMS, INC | Surface mount heater |
7307247, | Nov 07 2003 | MARCHI THERMAL SYSTEMS, INC | Surface mount heater |
7538166, | Dec 24 2003 | Hitachi, LTD | Epoxy compounds and cured epoxy resins obtained by curing the compounds |
7693580, | Sep 03 2004 | CT INVESTMENTS LTD | Radiant therapeutic wrist heating pad |
7783361, | Sep 03 2004 | CT INVESTMENTS LTD | Radiant therapeutic heater |
8008606, | Oct 04 2006 | T-INK, INC | Composite heating element with an integrated switch |
8141249, | Oct 11 2007 | RAYTHEON TECHNOLOGIES CORPORATION | Heat treating apparatus and method of using same |
8170685, | Sep 03 2004 | THERMOTEX THERAPY SYSTEMS, LTD ; CT INVESTMENTS LTD | Radiant therapeutic heating apparatus |
8687952, | Oct 30 2009 | WOONGJIN COWAY CO., LTD. | Heating apparatus |
8802997, | Sep 11 2008 | DOOSAN CORPORATION | Multi layer circuit board and manufacturing method of the same |
8991638, | Aug 17 2011 | Haier US Appliance Solutions, Inc | Water seepage abatement in water heaters |
9090022, | Sep 17 2009 | Flexible Steel Lacing Company | Belt splicing apparatus for conveyor belts |
9161393, | Oct 04 2006 | T+INK, INC | Heated textiles and methods of making the same |
9642191, | Apr 16 2014 | SPECTRUM BRANDS, INC | Portable container system for heating a beverage |
9810121, | Dec 23 2010 | Plastic Omnium Advanced Innovation and Research | Engine exhaust gas additive storage system |
9854824, | Apr 16 2014 | SPECTRUM BRANDS, INC | Heating appliance |
9879754, | Dec 03 2015 | Flexible Steel Lacing Company | Belt splicing apparatus and method |
Patent | Priority | Assignee | Title |
1043922, | |||
1046465, | |||
1058270, | |||
1281157, | |||
1477602, | |||
1674488, | |||
1987119, | |||
1992593, | |||
2104848, | |||
2146402, | |||
2202095, | |||
2255527, | |||
2274445, | |||
2357906, | |||
2426976, | |||
2456343, | |||
2464052, | |||
2593087, | |||
2593459, | |||
2710909, | |||
2719907, | |||
2804533, | |||
2889439, | |||
2938992, | |||
3061501, | |||
3173419, | |||
3191005, | |||
3201738, | |||
3211203, | |||
3238489, | |||
3268846, | |||
3296415, | |||
3352999, | |||
3374338, | |||
3385959, | |||
3496517, | |||
3535494, | |||
3564589, | |||
3573430, | |||
3596057, | |||
3597591, | |||
3614386, | |||
3621566, | |||
3623471, | |||
3648659, | |||
3657516, | |||
3657517, | |||
3678248, | |||
3683361, | |||
3686472, | |||
3707618, | |||
3725645, | |||
3774299, | |||
3781526, | |||
3806701, | |||
3808403, | |||
3831129, | |||
3859504, | |||
3860787, | |||
3875373, | |||
3878362, | |||
3888711, | |||
3900654, | |||
3908749, | |||
3927300, | |||
3933550, | May 28 1970 | R W ERWIN | Heat bonding fluorocarbon and other plastic films to metal surfaces |
3943328, | Dec 11 1974 | Emerson Electric Co. | Electric heating elements |
3952182, | Jan 25 1974 | Instantaneous electric fluid heater | |
3968348, | May 31 1974 | Container heating jacket | |
3974358, | Jan 10 1975 | Teckton, Inc. | Portable food heating device |
3976855, | Aug 22 1972 | Firma Wilhelm Haupt | Electrical heating mat |
3985928, | Jun 03 1974 | Sumitomo Bakelite Company, Limited | Heat-resistant laminating resin composition and method for using same |
3987275, | Feb 02 1976 | General Electric Company | Glass plate surface heating unit with sheathed heater |
4021642, | Feb 28 1975 | General Electric Company | Oven exhaust system for range with solid cooktop |
4038519, | Nov 15 1973 | Rhone-Poulenc S.A. | Electrically heated flexible tube having temperature measuring probe |
4046989, | Jun 21 1976 | Parise & Sons, Inc. | Hot water extraction unit having electrical immersion heater |
4055526, | Mar 29 1974 | Planar heating element and production thereof | |
4058702, | Apr 26 1976 | Electro-Thermal Corporation | Fluid heating apparatus |
4060710, | Sep 27 1971 | Reuter Maschinen-and Werkzeugbau GmbH | Rigid electric surface heating element |
4068115, | May 09 1974 | SWEETHART CUP COMPANY, INC | Food serving tray |
4083355, | Aug 24 1974 | Schwank GmbH | Gas range |
4094297, | Oct 29 1974 | Ceramic-glass burner | |
4102256, | Sep 27 1972 | Engineering Inventions Inc.; Multisensors Inc. | Cooking apparatus |
4112410, | Nov 26 1976 | Watlow Electric Manufacturing Company | Heater and method of making same |
4117311, | Mar 22 1976 | WAVIN AG | Electric welding muff |
4119834, | Jul 23 1976 | Joseph D., Losch | Electrical radiant heat food warmer and organizer |
4152578, | Oct 03 1977 | Emerson Electric Co. | Electric heating elements |
4158078, | Jun 10 1977 | 60478 MANITOBA LTD | Heat strip or panel |
4176274, | Jun 03 1976 | Pont-A-Mousson S.A. | Method of coupling plastic pipes by welding and a connection piece for coupling same |
4186294, | Feb 03 1978 | 60478 MANITOBA LTD | Radiant therapeutic heater |
4201184, | May 15 1976 | JENAer Glaswerk Schott & Gen. | Glass ceramic stove and subassemblies therefor |
4217483, | Oct 27 1976 | Electro-Therm, Inc. | Terminal block for single phase or three phase wiring of an immersion heater assembly and methods of wiring |
4224505, | Jun 03 1977 | WAVIN AG | Electrically welding plastic sleeve |
4233495, | Dec 15 1978 | GALLEY INC | Food warming cabinet |
4245149, | Apr 10 1979 | Heating system for chairs | |
4250397, | Jun 01 1977 | International Paper Company | Heating element and methods of manufacturing therefor |
4272673, | Jul 06 1976 | Rhone-Poulenc Industries | Heating element |
4294643, | Sep 05 1978 | PTC AEROSPACE INC , BANTAM, CT 06750 A CORP | Heater assembly and method of forming same |
4296311, | Aug 15 1979 | The Kanthal Corporation | Electric hot plate |
4304987, | Sep 18 1978 | CDC THE GOVERNMENT OF THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE DEPARTMENT OF HEALTH AND HUMAN SERVICES | Electrical devices comprising conductive polymer compositions |
4313053, | Jan 02 1980 | WAVIN AG | Welding sleeve of thermoplastic material |
4313777, | Aug 30 1979 | The United States of America as represented by the United States | One-step dual purpose joining technique |
4321296, | Jul 13 1978 | Saint-Gobain Industries | Glazing laminates with integral electrical network |
4326121, | Mar 16 1978 | E BRAUDE LONDON LIMITED | Electric immersion heater for heating corrosive liquids |
4334146, | Apr 28 1978 | Method and apparatus for joining thermoplastic line elements | |
4337182, | Mar 26 1981 | PHILLIPS PETROLEUM COMPANY, A CORP OF DE | Poly (arylene sulfide) composition suitable for use in semi-conductor encapsulation |
4346277, | Oct 29 1979 | FLUROCARBON COMPANY, THE | Packaged electrical heating element |
4346287, | May 16 1980 | Watlow Electric Manufacturing Company | Electric heater and assembly |
4349219, | Apr 21 1978 | Wavin b v | Welding muff of thermoplastic material |
4354096, | Jan 29 1980 | GLORIA S A | Heating elements and thermostats for use in the breeding of fish for aquaria |
4358552, | Sep 10 1981 | DYNACHEM SINGAPORE PTE LTD , A CORP OF SINGAPORE | Epoxy resinous molding compositions having low coefficient of thermal expansion and high thermal conductivity |
4364308, | Sep 27 1972 | Engineering Inventions, Inc.; Multisensors Inc. | Apparatus for preparing food |
4375591, | Aug 29 1980 | Thermoplastic welding sleeve | |
4387293, | Mar 30 1981 | BELTON CORPORATION, THE | Electric heating appliance |
4388607, | Dec 16 1976 | Raychem Corporation | Conductive polymer compositions, and to devices comprising such compositions |
4390551, | Feb 09 1981 | General Foods Corporation | Heating utensil and associated circuit completing pouch |
4419567, | Mar 02 1981 | Apcom, Inc. | Heating element for electric water heater |
4429215, | Mar 27 1981 | Totoku Electric Co., Ltd. | Planar heat generator |
4436988, | Mar 01 1982 | R & G Sloane Mfg. Co., Inc. | Spiral bifilar welding sleeve |
4482239, | Apr 25 1981 | Canon Kabushiki Kaisha | Image recorder with microwave fixation |
4493985, | May 12 1982 | Geberit A.G. | Welding sleeve |
4501951, | Aug 16 1982 | E. I. du Pont de Nemours and Company | Electric heating element for sterilely cutting and welding together thermoplastic tubes |
4530521, | Mar 04 1980 | WAVIN AG | Electrically weldable socket for joining pipe members |
4534886, | Jan 15 1981 | Hollingsworth & Vose Company | Non-woven heating element |
4540479, | Mar 26 1982 | Toyota Jidosha Kabushiki Kaisha | Oxygen sensor element with a ceramic heater and a method for manufacturing it |
4606787, | Mar 04 1982 | MC GEAN-ROHCO, INC | Method and apparatus for manufacturing multi layer printed circuit boards |
4633063, | Dec 27 1984 | E. I. du Pont de Nemours and Company | Vented heating element for sterile cutting and welding together of thermoplastic tubes |
4640226, | Oct 18 1984 | Bird watering apparatus | |
4641012, | Jul 23 1984 | SHAWMUT CAPITAL CORPORATION | Thermostat sensing tube and mounting system for electric beverage making device |
4658121, | Sep 27 1974 | Tyco Electronics Corporation | Self regulating heating device employing positive temperature coefficient of resistance compositions |
4687905, | Feb 03 1986 | EMERSON ELECTRIC CO , A CORP OF MISSOURI | Electric immersion heating element assembly for use with a plastic water heater tank |
4703150, | Aug 28 1984 | Von Roll AG | Weldable connecting member for connecting or joining thermoplastic pipe elements |
4707590, | Feb 24 1986 | CLEVELAND PROCESS CORPORATION | Immersion heater device |
4725717, | Oct 28 1985 | COLLINS & AIKMAN SUBSIDIARY CORPORATION | Impact-resistant electrical heating pad with antistatic upper and lower surfaces |
4730148, | Jul 05 1984 | Mitsubishi Denki Kabushiki Kaisha | Vertical deflection circuit |
4751528, | Sep 09 1987 | SPECTRA, INC | Platen arrangement for hot melt ink jet apparatus |
4756781, | Sep 29 1986 | GRACO FLUID HANDLING H INC | Method of connecting non-contaminating fluid heating element to a power source |
4762980, | Aug 07 1986 | EEMAX, INC | Electrical resistance fluid heating apparatus |
4784054, | Aug 28 1986 | Restaurant Technology, Inc. | Equipment for holding or staging packaged sandwiches |
4797537, | Dec 13 1985 | Kanthal AB | Foil element |
4845343, | Nov 17 1983 | Raychem Corporation | Electrical devices comprising fabrics |
4860434, | Apr 19 1985 | SEB S.A. | Method of making flat electrical resistance heating element |
4865014, | Feb 16 1989 | SOLTECH, INC | Water heater and method of fabricating same |
4865674, | Oct 06 1988 | Elkhart Products Corporation | Method of connecting two thermoplastic pipes using a barbed metal welding sleeve |
4866252, | May 06 1986 | NV Raychem SA | Heat-recoverable article |
4904845, | Nov 03 1986 | Braun Aktiengesellschaft | Temperature controlled electrical continuous flow heater for beverage making appliances |
4911978, | May 30 1988 | Sekisui Kaseihin Kogyo Kabushiki Kaisha | Polyolefin resin foamed laminate sheet and double-side vacuum forming of the same |
4913666, | Aug 27 1986 | Apcom, Inc. | Wiring terminal construction |
4927999, | Oct 14 1986 | Georg Fisher AG | Apparatus for fusion joining plastic pipe |
4948948, | May 23 1989 | Water heater with multiple heating elements having different power | |
4956138, | Aug 12 1988 | Glynwed Tubes and Fittings Limited | Method of manufacturing an electrofusion coupler |
4970528, | Nov 02 1988 | Hewlett-Packard Company | Method for uniformly drying ink on paper from an ink jet printer |
4972197, | Sep 03 1987 | Lockheed Martin Corporation | Integral heater for composite structure |
4982064, | Jun 20 1989 | James River Corporation of Virginia | Microwave double-bag food container |
4983814, | Oct 29 1985 | Toray Industries, Inc. | Fibrous heating element |
4986870, | Mar 09 1984 | R.W.Q., Inc. | Apparatus for laminating multilayered printed circuit boards having both rigid and flexible portions |
4993401, | Dec 28 1988 | Cramer GmbH | Control system for glass-top cooking unit |
5003693, | Sep 04 1985 | UFE Incorporated | Manufacture of electrical circuits |
5013890, | Jul 24 1989 | Emerson Electric Co. | Immersion heater and method of manufacture |
5021805, | Aug 30 1988 | Brother Kogyo Kabushiki Kaisha | Recording device with sheet heater |
5023433, | May 25 1989 | Electrical heating unit | |
5038458, | Feb 22 1989 | Heaters Engineering, Inc. | Method of manufacture of a nonuniform heating element |
5041846, | Dec 16 1988 | Hewlett-Packard Company | Heater assembly for printers |
5051275, | Nov 09 1989 | AT&T Bell Laboratories | Silicone resin electronic device encapsulant |
5066852, | Sep 17 1990 | STILL-MAN HEATING PRODUCTS, INC | Thermoplastic end seal for electric heating elements |
5068518, | Dec 24 1988 | Self-temperature control flexible plane heater | |
5073320, | Sep 22 1989 | BASF Aktiengesellschaft | Preparation of thermoplastics containing ceramic powders as fillers |
5111025, | Feb 09 1990 | Tyco Electronics Corporation | Seat heater |
5113480, | Jun 07 1990 | STATE INDUSTRIES, INC | Fluid heater utilizing dual heating elements interconnected with conductive jumper |
5129033, | Mar 20 1990 | Disposable thermostatically controlled electric surgical-medical irrigation and lavage liquid warming bowl and method of use | |
5136143, | Jun 14 1991 | Heatron, Inc.; HEATRON, INC A CORP OF KS | Coated cartridge heater |
5155800, | Feb 27 1991 | TOM RICHARDS, INC D B A PROCESS TECHNOLOGY | Panel heater assembly for use in a corrosive environment and method of manufacturing the heater |
5162634, | Nov 15 1988 | Canon Kabushiki Kaisha | Image fixing apparatus |
5184969, | May 31 1988 | Electroluminscent Technologies Corporation | Electroluminescent lamp and method for producing the same |
5208080, | Oct 29 1990 | Automotive Components Holdings, LLC | Lamination of semi-rigid material between glass |
5221419, | Feb 19 1991 | Graphic Packaging International, Inc | Method for forming laminate for microwave oven package |
5221810, | May 14 1992 | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE NAVY | Embedded can booster |
5237155, | May 05 1987 | SHARPE-HILL, ROBERT GEORGE; SHARPE-HILL, JOAN MARGARET | Electric heating device encased in polymer cement and method of making same |
5252157, | May 01 1989 | Central Plastics Company | Electrothermal fusion of large diameter pipes by electric heating wire wrapping and sleeve connector |
5255595, | Mar 18 1992 | RIVAL MANUFACTURING COMPANY A CORP OF MISSOURI | Cookie maker |
5255942, | Jan 29 1991 | Fusion Group plc | Pipe joints |
5271085, | Feb 20 1992 | Temperature-controlled laboratory beaker comprising a heating element and temperature sensor bonded to the outer surface of the beaker by a silicone-rubber molding | |
5287123, | May 01 1992 | Hewlett-Packard Company | Preheat roller for thermal ink-jet printer |
5293446, | May 28 1991 | Two stage thermostatically controlled electric water heating tank | |
5300760, | Mar 13 1989 | Tyco Electronics Corporation | Method of making an electrical device comprising a conductive polymer |
5302807, | Jan 22 1993 | Electrically heated garment with oscillator control for heating element | |
5304778, | Nov 23 1992 | Electrofuel Manufacturing Co. | Glow plug with improved composite sintered silicon nitride ceramic heater |
5313034, | Jan 15 1992 | EDISON WELDING INSTITUTE, INC A CORPORATION OF OH | Thermoplastic welding |
5389184, | Dec 17 1990 | United Technologies Corporation | Heating means for thermoplastic bonding |
5397873, | Aug 23 1993 | BACKER EHP INC | Electric hot plate with direct contact P.T.C. sensor |
5406316, | May 01 1992 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Airflow system for ink-jet printer |
5406321, | Apr 30 1993 | Hewlett-Packard Company | Paper preconditioning heater for ink-jet printer |
5408070, | Nov 09 1992 | American Roller Company, LLC | Ceramic heater roller with thermal regulating layer |
5453599, | Feb 14 1994 | CONCEPTECH, INC | Tubular heating element with insulating core |
5461408, | Apr 30 1993 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Dual feed paper path for ink-jet printer |
5476562, | May 01 1989 | Central Plastics Company | Large diameter electrically fusible pipe methods |
5477033, | Oct 19 1993 | Ken-Bar Inc. | Encapsulated water impervious electrical heating pad |
5497883, | Feb 22 1994 | Monetti S.p.A. | Warm food isothermal container, particularly for collective catering |
5500667, | Apr 30 1993 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Method and apparatus for heating print medium in an ink-jet printer |
5520102, | Feb 22 1994 | Monetti S.p.A. | Thermoregulated assembly for the distribution of warm meals within isothermal containers |
5521357, | Nov 17 1992 | S C JOHNSON & SON, INC | Heating device for a volatile material with resistive film formed on a substrate and overmolded body |
5571435, | Apr 26 1995 | Neeco, Inc. | Welding rod having parallel electrical pathways |
5572290, | Aug 05 1994 | RICOH TECHNOLOGIES COMPANY, LTD | Electrophotographic printing system including a plurality of electrophotographic printers having adjustable printing speeds |
5581289, | Apr 30 1993 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Multi-purpose paper path component for ink-jet printer |
5582754, | Dec 08 1993 | Group Dekko, Inc; PENT TECHNOLOGIES, INC | Heated tray |
5586214, | Dec 29 1994 | Watlow Electric Manufacturing Company | Immersion heating element with electric resistance heating material and polymeric layer disposed thereon |
5618065, | Jul 21 1994 | Hitachi Metals, Ltd | Electric welding pipe joint having a two layer outer member |
5619240, | Jan 31 1995 | Xerox Corporation | Printer media path sensing apparatus |
5625398, | Apr 30 1993 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Thin, shallow-angle serrated hold-down with improved warming, for better ink control in a liquid-ink printer |
5633668, | Apr 30 1993 | Hewlett-Packard Company | Paper preconditioning heater for ink-jet printer |
5678725, | Dec 20 1994 | Nippon Sanso Corporation | Thermally insulated container |
5691756, | Nov 25 1992 | Xerox Corporation | Printer media preheater and method |
5697143, | Apr 28 1994 | GLYNWED PLASTICS LTD , A BRITISH BODY CORPORATE | Method of manufacturing an electrofusion coupler |
5703998, | Oct 20 1994 | Watlow Electric Manufacturing Company | Hot water tank assembly |
5708251, | Oct 30 1995 | Compucraft Ltd. | Method for embedding resistance heating wire in an electrofusion saddle coupler |
5714738, | Jul 10 1995 | HPS DIVISION, MKS INSTRUMENTS, INC ; Watlow Electric Manufacturing Company | Apparatus and methods of making and using heater apparatus for heating an object having two-dimensional or three-dimensional curvature |
5779870, | Mar 05 1993 | CERBERUS BUSINESS FINANCE, LLC | Method of manufacturing laminates and printed circuit boards |
5780817, | Feb 27 1996 | Watlow Electric Manufacturing Company | Retrofittable glass-top electric stove element |
5780820, | Mar 08 1995 | PHC HOLDINGS CO , LTD ; PANASONIC HEALTHCARE HOLDINGS CO , LTD | Film-like heater made of high crystalline graphite film |
5781412, | Nov 22 1996 | Parker Intangibles LLC | Conductive cooling of a heat-generating electronic component using a cured-in-place, thermally-conductive interlayer having a filler of controlled particle size |
579611, | |||
5806177, | Oct 31 1995 | Sumitomo Bakelite Company Limited | Process for producing multilayer printed circuit board |
5811769, | Oct 07 1994 | Quiclave, L.L.C. | Container for containing a metal object while being subjected to microwave radiation |
5822675, | Feb 12 1997 | Dow Corning Corporation | Heating elements and a process for their manufacture |
5824996, | May 13 1997 | Thermosoft International Corp | Electroconductive textile heating element and method of manufacture |
5829171, | Dec 30 1996 | Perfect Impression Footwear Company | Custom-fitting footwear |
5835679, | Dec 29 1994 | Watlow Electric Manufacturing Company | Polymeric immersion heating element with skeletal support and optional heat transfer fins |
5856650, | Nov 25 1992 | Xerox Corporation | Method of cleaning a printer media preheater |
5880435, | Oct 24 1996 | Vesture Corporation | Food delivery container |
5883364, | Aug 26 1996 | BRISKHEAT CORPORATION | Clean room heating jacket and grounded heating element therefor |
5902518, | Jul 29 1997 | Watlow Electric Manufacturing Company | Self-regulating polymer composite heater |
5925275, | Nov 30 1993 | AlliedSignal, Inc. | Electrically conductive composite heater and method of manufacture |
5930459, | Dec 29 1994 | Watlow Electric Manufacturing Company | Immersion heating element with highly thermally conductive polymeric coating |
5932124, | Apr 19 1996 | Thermion Systems International | Method for heating a solid surface such as a floor, wall, or countertop surface |
5940895, | Apr 16 1998 | KOHLER CO | Heated toilet seat |
5942140, | Apr 19 1996 | Thermion Systems International | Method for heating the surface of an antenna dish |
5947012, | May 11 1995 | Restaurant Technology, Inc. | Cooked food staging device and method |
5954977, | Apr 19 1996 | Thermion Systems International | Method for preventing biofouling in aquatic environments |
5961869, | Nov 13 1995 | IRGENS HOLDINGS, INC ; TECH DESIGN, L L C | Electrically insulated adhesive-coated heating element |
5966501, | Apr 19 1996 | Thermion Systems International | Method for controlling the viscosity of a fluid in a defined volume |
5981911, | Apr 19 1996 | Thermion Systems International | Method for heating the surface of a food receptacle |
6015965, | Apr 19 1996 | Thermion Systems International | Method for heating a solid surface such as a floor, wall, roof, or countertop surface |
6018141, | Apr 19 1996 | Thermion Systems International | Method for heating a tooling die |
6037574, | Nov 06 1997 | Watlow Electric Manufacturing | Quartz substrate heater |
6056157, | Mar 14 1994 | ARES CAPITAL CORPORATION, AS ADMINISTRATIVE AGENT | Device for dispensing flowable material from a flexible package |
6089406, | Jun 01 1999 | Server Products | Packaged food warmer and dispenser |
6137098, | Sep 28 1998 | Weaver Popcorn Company, Inc.; Miami Packaging Incorporated | Microwave popcorn bag with continuous susceptor arrangement |
6145787, | May 20 1997 | Thermion Systems International | Device and method for heating and deicing wind energy turbine blades |
6147332, | Jul 12 1996 | Kongsberg Automotive AB | Arrangement and method for manufacturing of a heatable seat |
6147335, | Oct 06 1997 | Watlow Electric Manufacturing Co. | Electrical components molded within a polymer composite |
6150635, | Mar 08 1999 | Single serving pizza cooker | |
6162385, | May 02 1997 | Evonik Degussa GmbH | Composite comprising a polyamide-based molding composition and vulcanized fluoroelastomers |
6229123, | Sep 25 1998 | Thermosoft International Corporation | Soft electrical textile heater and method of assembly |
DE3512659, | |||
DE3836387, | |||
FR2737380, | |||
GB1070849, | |||
GB1325084, | |||
GB14562, | |||
GB1498792, | |||
GB2244898, | |||
JP3129694, | |||
JP53134245, | |||
JP7211438, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 07 2000 | VON ARX, THEODORE | Watlow Polymer Technologies | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016580 | /0486 | |
Apr 07 2000 | LAKEN, KEITH | Watlow Polymer Technologies | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016580 | /0486 | |
Apr 07 2000 | SCHLESSELMAN, JOHN W | Watlow Polymer Technologies | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016580 | /0486 | |
Apr 07 2000 | PAPENFUSS, RONALD E | Watlow Polymer Technologies | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016580 | /0486 | |
Feb 21 2002 | Watlow Polymer Technologies | (assignment on the face of the patent) | / | |||
Oct 04 2005 | Watlow Polymer Technologies | Watlow Electric Manufacturing Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016800 | /0071 |
Date | Maintenance Fee Events |
Nov 30 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 19 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 02 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 15 2007 | 4 years fee payment window open |
Dec 15 2007 | 6 months grace period start (w surcharge) |
Jun 15 2008 | patent expiry (for year 4) |
Jun 15 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 15 2011 | 8 years fee payment window open |
Dec 15 2011 | 6 months grace period start (w surcharge) |
Jun 15 2012 | patent expiry (for year 8) |
Jun 15 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 15 2015 | 12 years fee payment window open |
Dec 15 2015 | 6 months grace period start (w surcharge) |
Jun 15 2016 | patent expiry (for year 12) |
Jun 15 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |