A circuit breaker for a multi-pole electrical distribution circuit includes a cassette associated with each pole in the multi-pole electrical distribution circuit. Each cassette includes a housing, a pair of electrical contacts disposed in the housing, and a thermal and magnetic trip unit supported by the housing. The housing includes a first compartment having the electrical contacts disposed therein and a second compartment having at least a portion of the thermal and magnetic trip unit disposed therein. A wall separates the first and second compartments for isolating the second compartment from gasses generated by separation of the first and second contacts. A duct adjacent to the second compartment allows the gasses to pass to an exterior portion of the housing. The housing includes a pair of opposing slots formed therein for receiving edges of a load terminal. A lever has a first end disposed proximate an end of a bimetallic element and a second end disposed proximate an armature in the magnetic assembly of the trip unit. The lever is rotated by at least one of the bimetallic element and the armature to unlatch an operating mechanism.
|
1. A circuit breaker for a multi-pole electrical distribution circuit, the circuit breaker including:
a cassette associated with each pole in the multi-pole electrical distribution circuit, each cassette including: a housing, a pair of electrical contacts disposed in the housing, and a thermal and magnetic trip unit supported by the housing, the thermal and magnetic trip unit initiates separation of the pair of electrical contacts in response to an overcurrent condition in the multi-pole electrical distribution circuit. 10. A circuit breaker including:
a base; a plurality of cassettes disposed in the base, each cassette including: a housing, a pair of electrical contacts disposed in the housing, a load terminal electrically coupled to a first contact in the pair of electrical contacts, the load terminal supported by the housing, and a thermal and magnetic trip unit supported by the housing; and an operating mechanism operably coupled to a second contact in the pair of electrical contacts, wherein the thermal and magnetic trip unit unlatches the operating mechanism in response to a level of current flowing through the pair of electrical contacts, and the operating mechanism separates the first and second contacts in response to being unlatched by the thermal and magnetic trip unit.
2. The circuit breaker of
a first compartment having the pair of electrical contacts disposed therein; and a second compartment having at least a portion of the thermal and magnetic trip unit disposed therein, the first and second compartments having a wall disposed therebetween for isolating the second compartment from gasses generated by separation of the pair of electrical contacts.
3. The circuit breaker of
5. The circuit breaker of
6. The circuit breaker of
7. The circuit breaker of
a bimetallic element electrically coupled to at least one of the electrical contacts; a core disposed proximate the bimetallic element, and an armature disposed proximate the core, wherein movement of at least one of the bimetallic element and the armature initiates separation of the pair of electrical contacts.
8. The circuit breaker of
an operating mechanism operably coupled to at least one of the electrical contacts, the operating mechanism separating the pair of electrical contacts in response to being unlatched; and a lever having a first end disposed proximate an end of the bimetallic element, a second end disposed proximate the armature, and wherein at least one of the bimetallic element and the armature rotate the lever to unlatch the operating mechanism.
9. The circuit breaker of
a first compartment having the pair of electrical contacts disposed therein; and a second compartment having at least a portion of the thermal and magnetic trip unit disposed therein, the first and second compartments having a wall disposed therebetween for isolating the second compartment from gasses generated by separation of the pair of electrical contacts, the lever and the bimetallic element extend into the second compartment through an opening in the top of the housing.
11. The circuit breaker of
12. The circuit breaker of
a first compartment having the pair of electrical contacts disposed therein; and a second compartment having at least a portion of the thermal and magnetic trip unit disposed therein, the first and second compartments having a wall disposed therebetween for isolating the second compartment from gasses generated by separation of the first and second contacts.
13. The circuit breaker of
15. The circuit breaker of
16. The circuit breaker of
17. The circuit breaker of
a bimetallic element electrically coupled to the first contact; a core disposed proximate the bimetallic element; and an armature disposed proximate the core, wherein movement of at least one of the bimetallic element and the armature initiates separation of the pair of electrical contacts.
18. The circuit breaker of
19. The circuit breaker of
a first compartment having the pair of electrical contacts disposed therein; and a second compartment having at least a portion of the thermal and magnetic trip unit disposed therein, the first and second compartments having a wall disposed therebetween for isolating the second compartment from gasses generated by separation of the first and second contacts, the lever and the bimetallic element extend into the second compartment through an opening in the top of the housing.
|
The present invention relates to circuit breakers and, more particularly, to circuit breakers including thermal and magnetic trip units.
Circuit breakers typically provide instantaneous, short time, and long-time protection against high currents produced by various conditions such as short-circuits, ground faults, overloads, etc. In a circuit breaker, a trip unit is the device that senses current (or other electrical condition) in the protected circuit and responds to high current conditions by tripping (unlatching) the circuit breaker's operating mechanism, which in turn separates the circuit breaker's main current-carrying contacts to stop the flow of electrical current to the protected circuit. Such trip units are required to meet certain standards, e.g., UL/ANSI/IEC, which define trip time curves specifying under what conditions a trip must occur, i.e., short time, long time, instantaneous, or ground fault, all of which are well known.
One type of trip unit is known as a thermal and magnetic trip unit. A thermal and magnetic trip unit includes a magnetic assembly and a thermal assembly. The thermal assembly typically includes a bimetallic element through which electrical current flows. As current flows through the bimetallic element, the bimetallic element heats up and bends due to the different coefficients of expansion in the metals used to form the bimetallic element. If the temperature rise is sufficient, the bimetallic element bends enough to move an associated trip latch, which unlatches the operating mechanism to separate the main current-carrying contacts. The thermal assembly is typically used to sense an overload condition.
The magnetic assembly typically includes a magnet core (yoke) disposed about a current carrying strap, an armature (lever) pivotally disposed near the core, and a spring arranged to bias the armature away from the magnet core. Upon the occurrence of a short circuit condition, very high currents pass through the strap. The increased current causes an increase in the magnetic field about the magnet core. The magnetic field acts to rapidly draw the armature towards the magnet core, against the bias of the spring. As the armature moves towards the core, the end of the armature moves an associated trip latch, which unlatches the operating mechanism causing the main current-carrying contacts to separate.
Thermal and magnetic trip units must be calibrated to ensure that the circuit breaker trips at the appropriate current conditions. Calibration typically includes adjusting a distance between the bimetal and its associated trip latch and between the armature and its associated trip latch. However, establishing and maintaining calibration can be made difficult due to relative motion of the operating mechanism and the trip unit.
The above discussed and other drawbacks and deficiencies are overcome or alleviated by a circuit breaker for a multi-pole electrical distribution circuit, the circuit breaker including a cassette associated with each pole in the multi-pole electrical distribution circuit. Each cassette includes a housing, a pair of electrical contacts disposed in the housing, and a thermal and magnetic trip unit supported by the housing. The thermal and magnetic trip unit initiates separation of the pair of electrical contacts in response to an overcurrent condition in the multi-pole electrical distribution circuit.
In one embodiment, the housing includes a first compartment having the pair of electrical contacts disposed therein and a second compartment having at least a portion of the thermal and magnetic trip unit disposed therein. The first and second compartments have a wall disposed therebetween for isolating the second compartment from gasses generated by separation of the pair of electrical contacts. The first compartment may be in fluid communication with an exterior portion of the housing through a duct adjacent the second compartment, such that the gasses pass through the channel to the exterior portion of the housing.
In another embodiment, an end of the housing includes a pair of opposing slots formed therein for receiving edges of a load terminal. The edges of the load terminal may each include a detent formed thereon for retaining the edges within the pair of opposing slots.
Another embodiment includes a lever having a first end disposed proximate an end of a bimetallic element and a second end disposed proximate an armature in the magnetic assembly of the trip unit. At least one of the bimetallic element and the armature rotate the trip lever to unlatch an operating mechanism. The lever and the bimetallic element may extend into the second compartment through an opening in the top of the housing.
Referring to the drawings wherein like elements are numbered alike in the several Figures:
Referring to
Operating mechanism 38 is shown positioned atop and supported by cassette 34, which is generally disposed intermediate to cassettes 32 and 36. It will be appreciated, however, that operating mechanism 38 may be positioned atop and supported by any number of cassettes 32, 34, and 36. Toggle handle 44 of operating mechanism 38 extends through openings 28 and 30 and allows for mating electrical contacts disposed within each of the cassettes to be separated and brought into contact by way of movement of toggle handle 44 between "open" and "closed" positions. Operating mechanism 38 also includes a trip latch system 50, which allows a spring mechanism 51 in the operating mechanism 38 to be unlatched (tripped) to separate the contacts in each of the cassettes 32, 34 and 36 by way of spring force applied to rotors in each of the cassettes 32, 34, and 36 via cross pin 40. More specifically, cross pin 40 extends through an aperture 53 in a plate 55 and through apertures 166 disposed in rotor assemblies 164 (see
Referring now to
Magnet assembly 82 includes a core 98 that extends around the bimetallic element 84, an armature 100 pivotally disposed on a leg 180 of the core 98, and a spring assembly 102 disposed on the armature 100. Spring assembly 102 acts to bias armature 100 away from a leg 188 of the core 98. A threaded set screw 104 extends through a hole in the load terminal 86 and a threaded hole in the core 98, and comes into contact with the bimetallic element 84. The set screw 104 is used for calibrating the bimetallic element 84. In some cases where a high resistance low amp bimetal is used, an insulator is inserted between the set screw 104 and bimetallic element 84 to prevent a parallel current path through the set screw 104 from damaging to the bimetal.
Referring to
The contact arm 154 is mounted within a rotor assembly 164, which is pivotally supported within the housing 60. A hole 166 in rotor assembly 164 accepts cross pin 40, which transmits the force of the operating mechanism 38 to pivot the rotor assembly 164 about its axis for separating the contacts 152, 156 to interrupt the flow of electrical current to the load terminal 86. The contact arm 154 may also pivot within the rotor assembly 164, thus allowing instantaneous separation of the contacts 152, 156 by the electromagnetic force generated in response to certain overcurrent conditions, such as dead short circuit conditions. The reverse loop shape of the line and load straps 158, 160 directs the electromagnetic force to separate the contacts 152, 156.
As the contacts 152, 156 move apart from each other to interrupt the flow of electrical current, an arc is formed between the contacts 152, 156, and the arc generates ionized gas. An arc arrestor 168 is supported in the housing proximate each pair of contacts 152, 156. The arc arrestor 168 includes a plurality of plates 170 disposed therein, which acts to attract, cool and de-ionize the arc to rapidly extinguish the arc. The gasses generated by the arc pass from a compartment 172 containing the contacts 152, 156, through the arc arrestor 168 and exhaust outside the housing 60 via ducts 72, 174. Duct 72 is formed adjacent to the compartment 54 for the integrated trip unit 80. A wall 176 extends inward from each of the sidewalls 46, 48 to form the duct 72 and to isolate the compartment 54 for the trip unit 80 from the compartment 172 including the contacts 152, 156. Other features that extend inward from each of the sidewalls 46, 48 include supports for the line and load straps 158, 160, support for the rotor assembly 164, and support for the arc arrestors 168.
Referring to
As electrical current flows through the bimetallic element 84, a magnetic flux is created across gaps (A) and (B) which draws armature 100 toward the leg 188 of the magnet core 98. As the armature 100 moves toward the leg 188, it acts on a trip lever 190. When the current exceeds a predetermined amount (e.g., 12.5 times the breaker current rating), the magnetic force on the armature 100 overcomes the spring force 186, and the armature 100 pivots to move the trip lever 190.
The calibration screw adjusts the distance between the trip lever 190 and the bimetallic element 84 to set the distance of travel of the bimetal needed to move the trip lever 190.
Movement of the trip lever 190 by either the armature 100 or the bimetallic element 84 causes the trip lever 190 to rotate in the direction indicated by the arrow about a pivot point 196. Trip lever 190 may be coupled to the trip latch system 50 of the operating mechanism 38 using any suitable arrangement such that rotation of the trip lever 190 will cause the spring mechanism 51 to become unlatched to separate the contacts 152, 156. For example, the trip latch system 50 may operate as described in U.S. Pat. No. 6,218,919 entitled "Circuit Breaker Latch Mechanism With Decreased Trip Time" where trip latch system 50 would include a primary latch 200 releasably coupled to the operating mechanism 38 via a cradle 202 and biased against a secondary latch 204 affixed to trip lever 190 such that rotation of the trip lever 190 (in the direction indicated by the arrow) by either the bimetallic element 84 or armature 100 will cause the secondary latch 204 to pivot away from and out of contact with the primary trip latch 200. Without secondary latch 204 to restrain movement of the primary latch 200, the primary latch 200 moves to release the cradle 202 and, thus, unlatch the spring mechanism 51, which, in turn, separates the electrical contact pairs 152, 156 in each of the cassettes 32, 34, and 36. As best seen in
Integrating the thermal and magnetic trip unit 80 with the cassette housing 60 provides many advantages over the prior art arrangement, in which the thermal and magnetic trip unit are mounted separately from the cassette in the base. First, integrating the trip unit 80 with the housing 60 allows for a reduction of parts, as a separate housing for the trip unit 80 is not needed. Second, integrating the trip unit 80 with the housing 60 provides for a more accurate alignment of the trip unit 80, operating mechanism 38, and cassette 32, 34 or 36 because the cassette 32, 34 or 36 is the common datum for both the operating mechanism 38 and the trip unit 80. Third, integrating the trip unit 80 with housing 60 allows for easy assembly, as the cassettes 32, 34 and 36, operating mechanism 38, and trip units 80 can be inserted into the base 26 as a unit. Finally, because the trip unit 80 is mounted in the thermoset material of the housing 60, which provides minimal deflection due to thermal heating and mechanical loading, the trip unit 80 remains aligned with the cassette 32, 34 or 36 and operating mechanism 38 under thermal heating and mechanical loading and, as a result, calibration of the trip unit 80 can be maintained under these conditions. The integrated trip unit 80 is supported in the most robust part of the breaker 20, thus making the trip unit 80 insensitive to mechanical forces on the load terminals during the attachment of cables so as to prevent changes to the calibration of the integrated trip unit 80.
The separation of compartments 54 and 172 ensures that the trip unit 80 is isolated from exposure to the hot arc gasses in the interrupter compartment 172. Without separate compartments 54 and 172, the hot arc gasses could result in damage to the bimetallic element 84 or braid 162, which could affect calibration. The hot arc gasses could also create deposits on the latch surfaces that may prevent unlatching of the trip latch system 50, or could result contamination causing dielectric breakdown between phases of opposite polarity.
It will be understood that a person skilled in the art may make modifications to the preferred embodiment shown herein within the scope and intent of the claims. While the present invention has been described as carried out in a specific embodiment thereof, it is not intended to be limited thereby but is intended to cover the invention broadly within the scope and spirit of the claims.
Ciarcia, Ronald, Macha, Narender, Subramanian, Anantharam, Kumar, Navin, Brignoni, Luis A.
Patent | Priority | Assignee | Title |
10276336, | Mar 06 2015 | ABB S P A | Circuit breaker assembly including a circuit breaker connector |
6972649, | Jan 07 2005 | ABB S P A | Method and apparatus for shielding and armature from a magnetic flux |
8542084, | Mar 13 2012 | ABB S P A | Circuit protection device and trip unit for use with a circuit protection device |
8558650, | Oct 20 2009 | LS Industrial Systems Co., Ltd. | Molded case circuit breaker having instantaneous trip mechanism |
9230768, | Feb 28 2012 | Siemens Aktiengesellschaft | Circuit breaker thermal-magnetic trip units and methods |
9287073, | Jul 23 2012 | LSIS CO., LTD. | Circuit breaker |
9318293, | Dec 28 2011 | Siemens Aktiengesellschaft | Electrical switching device, in particular compact circuit breaker |
9478373, | Apr 15 2013 | ABB Schweiz AG | Electric switch housing |
9508511, | Jan 13 2014 | Schneider Electric Industries SAS | Single-pole switching unit and switching unit comprising one such unit |
9748060, | Jun 17 2013 | SAFRAN HELICOPTER ENGINES | Hybrid cutoff member for an electric circuit |
9953789, | Sep 18 2009 | Schneider Electric Industries SAS | Single-pole breaking unit comprising a rotary contact bridge, and a switchgear device, and circuit breaker comprising such a unit |
Patent | Priority | Assignee | Title |
3631369, | |||
5103198, | May 04 1990 | Merlin Gerin | Instantaneous trip device of a circuit breaker |
6188036, | Aug 03 1999 | General Electric Company | Bottom vented circuit breaker capable of top down assembly onto equipment |
6218919, | Mar 15 2000 | General Electric Company | Circuit breaker latch mechanism with decreased trip time |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 13 2003 | General Electric Company | (assignment on the face of the patent) | / | |||
Aug 13 2003 | KUMAR, NAVIN | General Electric Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014514 | /0925 | |
Aug 29 2003 | CIARCIA, RONALD | General Electric Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014514 | /0925 | |
Sep 11 2003 | BRIGNONI, LUIS A | General Electric Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014514 | /0925 | |
Sep 16 2003 | SUBRAMANIAN, ANANTHRAM | General Electric Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014514 | /0925 | |
Sep 16 2003 | MACHA, NARENDER | General Electric Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014514 | /0925 | |
Jul 20 2018 | General Electric Company | ABB Schweiz AG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052431 | /0538 | |
Nov 08 2021 | ABB Schweiz AG | ABB S P A | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 058878 | /0740 |
Date | Maintenance Fee Events |
Oct 03 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 23 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 15 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 15 2007 | 4 years fee payment window open |
Dec 15 2007 | 6 months grace period start (w surcharge) |
Jun 15 2008 | patent expiry (for year 4) |
Jun 15 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 15 2011 | 8 years fee payment window open |
Dec 15 2011 | 6 months grace period start (w surcharge) |
Jun 15 2012 | patent expiry (for year 8) |
Jun 15 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 15 2015 | 12 years fee payment window open |
Dec 15 2015 | 6 months grace period start (w surcharge) |
Jun 15 2016 | patent expiry (for year 12) |
Jun 15 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |