A method is provided for forming quantum holes of nanometer levels. In an ion beam scanner, ions are projected from an ion gun onto a semiconductor substrate. During the projection, ions are focused into an ion beam whose focal point is controlled to determine the diameter of the ion beam, and the ion beam is accelerated. When being incident upon the semiconductor substrate, the ion beam is deflected so as to form a plurality of quantum holes. Also provided is a light-emitting device with quantum dots. Impurities are doped onto a semiconductor substrate to form a p-type semiconductor layer on which a undoped, intrinsic semiconductor is grown to a certain thickness. A plurality of quantum holes are provided for the intrinsic semiconductor layer, followed by filling materials smaller in energy band gap than the intrinsic semiconductor in annealed quantum holes through recrystallization growth. Next, an N-type semiconductor layer is overlaid on the quantum hole layer. Composition of the materials filled in the quantum holes determines the color of the light emitted from the light-emitting device. Thus, the semiconductor device is fabricated to emit light of the three primary colors or one of them. By cutting the semiconductor device, unit display panels or elements can be prepared which emit radiation at wavelengths corresponding to red, green and blue colors.
|
1. A light-emitting device, comprising:
a p-type semiconductor layer for supplying holes; a quantum hole layer with a plurality of quantum holes, formed on an intrinsic semiconductor layer which is grown to a certain thickness on said p-type semiconductor layer, said quantum holes being filled with a material smaller in energy band gap than said intrinsic semiconductor by single crystal growth for forming quantum dots, wherein said materials filled in said quantum holes shows an energy band gap corresponding to one of three primary colors of light, whereby said light-emitting device can emit light of the three primary colors; and an N-type semiconductor layer, formed on said quantum hole layer, for supplying electrons.
2. The light-emitting device as set forth in
3. The light-emitting device as set forth in
4. The light-emitting device as set forth in
5. The light-emitting device as set forth in
6. The light-emitting device as set forth in
7. The light-emitting device as set forth in
8. The light-emitting device as set forth in
projecting ions at high speeds from an ion gun; focusing said ions to give an ion beam; accelerating said ion beam at a suitable voltage; making said focused ion beam incident on a plurality of spots, which quantum hole would be formed on, of a semiconductor substrate in front of a scanner to impact the surface of said semiconductor substrate while deflecting said ion beam up and down, right and left by use of deflecting means, said impact being controlled by acceleration voltage in such a way that said ions are not implanted into said semiconductor substrate, but physically destroy only the atomic structure on the surface of said semiconductor substrate; and controlling said ion beam according to preset values for the incidence time period and diameter of said ion beam to thereby adjust the size of the quantum holes.
9. The light-emitting device as set forth in
10. The light-emitting device as set forth in
11. The light-emitting device as set forth in
12. The light-emitting device as set forth in
|
This application is a divisional of U.S. application Ser. No.: 09/798,062, filed Mar. 2, 2001, now U.S. Pat. No. 6,544,808 entitled "A Light-Emitting Device with Quantum Dots and Holes, and its Fabricating Method".
1. Field of the Invention
The present invention relates to a method of forming a plurality of quantum holes of nanometer scale, a light-emitting device utilizing quantum dots, which is able to emit light of a predetermined color, and its fabricating method.
2. Description of the Prior Art
There are various lamps which convert electrical energy into electromagnetic radiation at visible wavelengths, that is, electric lamps such as incandescent lamps, halogen lamps, etc. Generally, such electric lamps can radiate monochromatic light only. Accordingly, they require various color filters and gels for the emission of light with various colors. However, such a radiation system as depends on many filters and gels for the expression of various colors of light has the significant drawback of a need to substitute filters or gels of new or different colors or exchange them with pre-existing ones whenever new or different colors are needed. Not only is the substitution or exchange inconvenient, but also it is impossible to express various colors precisely through color filters or gels.
Therefore, there was a need to develop new technology by which various colors of light can be expressed precisely and conveniently. Complying with such a need, light emitting diodes, which take advantage of semiconductors in emitting light of desired colors, have been developed and extensively used.
Representative of the light emitting diodes is a bulk-type light emitting diode, which comprises a PN junction layer between a P-type semiconductor and an N-type semiconductor, each of which has an electrode. When an electric field is applied across the electrodes, holes of the P-type semiconductor and the electrons of the N-type semiconductor move toward the PN junction layer and are combined with each other thereat, excited and transited, emitting the light corresponding to the energy difference.
In order to better understand the background of the invention, a conventional bulk type light emitting diode will be explained in conjunction with the accompanying drawings.
Referring to
The expression of a desired color of light is accomplished by a combination of three primary colors of light. In order to emit light of a desired color, thus, there are needed three bulk type light emitting diodes 10, 10a and 10b which can radiate at red, green and blue wavelengths, respectively.
The three light emitting diodes which radiate wavelengths corresponding to red, green and blue colors, respectively, differ from one another in the composition of the PN junction layer 16, particularly, the Indium(In) portion of the InGaN composition. That is, when PN junction layers are formed of single crystals of InGaN, they are grown with different Indium (In) compositions suitable for use in the emission of red, green and blue light, respectively. The reason why different Indium (In) compositions are used is that indium (In) is used to regulate the recombination energy between the carriers of electrons and holes.
Bulk type light emitting diodes 10, 10a and 10b, which emit light of three primary colors, are cut into individual light emitting diode elements of red 18, green 18a and blue 18b. Such light emitting diode elements are used individually or in a combined manner on a display panel.
With reference to
With reference to
Accordingly, the display panel 20 consisting of a plurality of conventional bulk type light emitting diodes 10, 10a and 10b can expresses a color only vaguely, with a broad range of wavelengths around the wavelength pertinent to the color, but not correctly with the precisely pertinent wavelength. That is, the conventional display panel 20 generates radiation at a wide range of wavelengths of light to express a color, so that viewers can only recognize a color not identical, but similar to the intended color due to limitations of human vision. Consequently, it is impossible for the conventional display to display a color of light entirely at the wavelength intrinsic to the color.
Besides, because of its large size, such a conventional bulk type light emitting diode is difficult to apply to a small size display device which is capable of expressing various colors and delicate images.
It is, therefore, an object of the present invention to provide a method of forming quantum holes of nanometer scale on semiconductor substrates.
To form such quantum holes, an ion beam scanner is utilized in the present invention. In the ion beam scanner, ions are projected from an ion gun onto a semiconductor substrate. During the projection, ions are focused into an ion beam whose focal point is controlled to determine the diameter of the ion beam, and the ion beam is accelerated. When being incident upon the semiconductor substrate, the ion beam is deflected so as to form a plurality of quantum holes.
It is another object of the present invention to provide a light-emitting device with quantum dots, capable of expressing colors of light clearly.
It is a further object of the present invention to provide a method for fabricating such a light-emitting device.
The light-emitting device can be fabricated by growing an intrinsic semiconductor layer on a P-type semiconductor layer, forming a plurality of quantum holes on the grown intrinsic semiconductor layer, filling the quantum holes with a material smaller in energy band gap than the intrinsic semiconductor by single crystal growth, and overlaying an N-type semiconductor layer on the quantum hole layer.
Advantageously, the light-emitting devices can be cut into unit light emitting elements of micron sizes. Also, the semiconductor can selectively emit light of the three primary colors according to the materials by which single crystal are grown within the quantum holes. When being integrated, the unit light emitting elements can find various applications in the image display industry, such as illumination apparatuses, electric signs, and advertising panels.
In addition, the illumination using the light emitting elements of the present invention can be varied in color and intensity under digital control. Further, the light emitting elements of the present invention make image display free from size limitation. For instance, a matrix on which unit light emitting elements capable of emitting red, green and blue light separately are integrated can be applied to digital illumination in which predetermined colors are expressed under digital control. Therefore, the present invention can make a contribution to the development of illumination technology from the simplest level, e.g., simply brightening; to more complex levels, e.g., varying the color and intensity of light according to the rhythm and tone of music.
In association with digital technology, the light emitting elements of the present invention can express images very clearly and regulate colors precisely. In addition to generating neither heat nor infrared light, the light emitting elements of the present invention are almost semi-permanent. Since the three primary colors of light can be expressed clearly using only three unit light emitting elements, they can reduce sizes of displays, such as electric display panels, as well as enabling the displays to express clear images. Wavelengths of the light emitted from the semiconductor for use in a light emitting device of the present invention are distributed in a narrow range with the wavelength distribution curve having a sharp peak, so that complete images can be achieved on screens which use the semiconductor of the present invention.
Another feature of the present invention resides in the representation of bright images because the unit light emitting elements of the present invention are of micron sizes and can express pure colors and increase the intensity of the light emitted. In aspects of the intensity of light energy and the coherence of light wavelengths for a color, the unit light emitting elements of the present invention are closer to laser light emitting devices than to currently commercialized bulk type light emitting diodes. Further, the semiconductor allows the fabrication of a light emitting device which is able to emit radiation in a highly coherent range of wavelengths intrinsic to an intended color.
The above and other objects, features and other advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
The application of the preferred embodiments of the present invention is best understood with reference to the accompanying drawings, wherein like reference numerals are used for like and corresponding parts, respectively. In the present invention, focused ion beams are employed to form a plurality of quantum holes with desired small sizes.
Referring to
In front of the ion gun 40 is arranged condenser lenses 42 and 42a. A predetermined size of a slit is provided for these lenses 42 and 42a which generate an electric field and a magnetic field according to the voltage applied thereto. Ions emitted from the ion gun 40 are focused to form an ion beam during their passage through the condenser lenses 42 and 42a and the ion beam is incident on a substrate 44 situated at a site in front of the scanner 40. Means 46 and 48 for deflecting the ion beam up and down, right and left are disposed around the path through which the ion beam passes, between the condenser lens 42a and the substrate 44. The traveling velocity of the ion beam can be controlled by adjusting the acceleration voltage applied to acceleration means (not shown).
Once the substrate is impacted at predetermined spots by the ion beam from the ion beam scanner, the atomic structure on the surface of the substrate is destroyed and disrupted at the spots to form quantum holes.
In order to form quantum holes with desired diameters and depths, quantitative analysis is required to be made of the ion beam. It is difficult to achieve the formation of desirable quantum holes without accurate control of the magnitude and application time of the voltage, and the incidence time and intensity of the ion beam.
For instance, when the acceleration voltage is too low to sufficiently accelerate the ion beam, its forward progression is so weak that it cannot reach the surface 44 or separate the outermost atoms of the substrate 44, resulting in the formation of no quantum holes. On the other hand, at an acceleration voltage higher than a desired value, the incident ions are too fast and thus implanted into the substrate 44. Accordingly, it is necessary to accelerate the ion beam at proper acceleration voltages to form quantum holes with desirable diameters and depths.
As for the incidence time period of the ion beam, its control is also important in the formation of suitable quantum holes. For example, if the ion beam is incident for too long a period of time on the predetermined spots of the substrate, too large quantum holes result. Therefore, precise control must be imposed on the voltage at which the ion beam is accelerated, the focal points of the condenser lenses 42 and 42a, at which ions are focused, and the period of time for which the ion beam is incident on predetermined spots of the surface in order to achieve the formation of quantum holes with suitable diameters.
As explained above, various conditions for the ion beam scanner must be satisfied in forming quantum holes with desired diameters and depths.
In one embodiment of the present invention, an ion beam with a diameter of 100 nm is incident on an area of 1 mm×1 mm in an amount of 1×1016 CM-2 at an acceleration voltage of 25-35 kV for 5 sec or shorter to form a plurality of fine quantum holes on the substrate 44. In regard to the diameter of the ion beam, it can be diversely changed under the control of the focal points of the condenser lenses 42 and 42a.
Herein, it should be understood that the values suggested above are illustrative only, and not intended to limit the scope of the present invention. Changes in each condition are indispensably made according to the dimensions of quantum holes and other requirements and thus, the present invention is not limited thereto.
Turning now to
For instance, when the ion beam is incident for a short period of time, as seen in
With reference to
When being moved to a position at which to form a quantum hole, the ion beam stays for the predetermined period of time, for example, about 1-5 ms. After the predetermined period of time, the ion beam is moved to the next position and stays to form a quantum hole thereat. This transposition of the ion beam is repeated to the last position 62.
After completion of irradiation of the ion beam to the last position 62, the ion beam is returned to the first position 60 and moved again according to the travel trace so that the ion beam is repeatedly incident on the same positions, that is, positions at which quantum holes are formed.
At this time, the focal points of the condenser lenses are controlled to set the diameter of the ion beam at a size of nanometers to hundreds of nanometers. Accordingly, while being controlled in diameter by use of the condenser lenses, the incident ion beam is accelerated at an acceleration voltage and moved from position to position under the influence of a magnetic field as if it scans an ultra thin film, giving impacts to the substrate. As a result, spot-like quantum holes with the same size as the ion beam's diameter are formed regularly on the substrate along the trace which the ion beam has traveled.
Under high vacuum, the incidence of the ion beam can result in the formation of millions of quantum holes within a short period of time. For instance, about 4 millions of quantum holes can be formed at a depth of 100 nm in an area of 1 mm×1 mm on a thin semiconductor substrate within several tens of minutes.
Of course, the depth of the formed quantum holes varies depending on the type of the substrate and the acceleration voltage used. The diameter of the quantum holes is determined by the diameter of the ion beam, which is controlled by the focal points of the condenser lenses, and the incidence time period of the ion beam.
In accordance with the present invention, quantum holes can be formed at desired sizes, depths and spacings, as described above, by controlling the acceleration voltage, the incidence time period, and the focal point. Using the focused ion beam, numerous quantum holes can be successfully formed on a substrate within a short period of time.
With reference to
Using the ion beam scanner which operates in the same manner as described above, numerous, very minute quantum holes are formed on the intrinsic semiconductor layer. The quantum holes on the quantum hole layer 72 are clarified by rapid thermal annealing at 800-1,000°C C. for 10 sec.
Next, a material which is smaller in band gap than the intrinsic semiconductor of the quantum hole layer 72 is grown in a recrystallization manner within each of the quantum holes. Further, a material which is smaller in band gap than the intrinsic semiconductor of the quantum hole layer 72, is filled in the quantum holes to form a plurality of quantum dots. When the quantum dots are formed, materials lying over all surfaces except the quantum holes, are moved into the quantum holes through thermal diffusion.
After the quantum dot layer 72 is converted from the quantum hole layer 72, an intrinsic semiconductor is grown to a certain thickness on the quantum dot layer 72, followed by growing an impurity-doped, N-type semiconductor layer 74 on the intrinsic semiconductor layer thus formed.
Afterwards, the P-type semiconductor layer 70 and the N-type semiconductor layer 74 are separately provided with an electrode. Application of an electric field across the electrodes formed in the P-type and the N-type semiconductor layers 70 and 74 causes the holes of the P-type semiconductor layer 70 and the electrons of the N-type semiconductor layer 74 to move toward the quantum hole layer 72. The carriers of holes and electrons moved to the quantum hole layer 72, that is, the quantum dot layer 72 are concentratively recombined thereat, emitting light with a high energy. Because this light has an intrinsic wavelength, the light emitting device formed according to the present invention can produce radiation at an intrinsic wavelength, expressing a predetermined characteristic color.
Therefore, light-emitting devices can be fabricated, which emit light at wavelengths corresponding to the three primary colors, that is, red, green and blue, according to the present invention.
As seen in
To give unit light-emitting devices, the semiconductor laminar structure consisting of the P-type semiconductor layer 70, the quantum hole layer 72 which comprises a plurality of quantum holes filled with a material smaller in band gap than the base material through recrystallization growth, and the N-type semiconductor layer 74, is cut into suitable sizes. In this case, because not only the semiconductor laminar structure, but also the cut pieces can serve as light-emitting devices, the present invention will be explained without clear discrimination therebetween, below.
Referring to
In conjunction with
Herein, GaAs and InAs may be used instead of GaN and InGaN, respectively. Of course, other alternatives may be found. In this embodiment, when the P-type semiconductor layer 70 and the N-type semiconductor layer 74 are connected to respective electrodes and electrically conducted, the quantum dots in the quantum hole layer 72 emit light at intrinsic wavelengths corresponding to their colors.
Turning now to
There are three light-emitting devices 100, 102 and 104, which are responsible for the three primary colors, red, green and blue, respectively. Which color of the three primary colors is selected for a light-emitting device is determined by the indium (In) composition of the quantum hole layer 72. That is, the indium (In) compositions of the quantum hole layer 72 determine the characteristic colors of the light-emitting devices. In this regard, when InGaN is filled within the quantum holes by single crystal growth, the composition of indium (In) may be controlled to select a color from the three primary colors.
The light-emitting device, fabricated according to the present invention, is cut into unit elements of suitable sizes, that is, unit red light emitting elements 100a, unit green light emitting elements 102 and unit blue light emitting elements 104a.
Referring to
With reference to
As seen in
With reference to
With reference to
With reference to
Therefore, a light-emitting device, which is able to provide radiation at wavelengths corresponding to red, green and blue colors, that is, at different energies, can be fabricated by controlling the size of the quantum holes in accordance with another embodiment of the present invention.
With reference to
The light-emitting devices 180, 182 and 184 are cut into different sizes to control light brightness according to the color of the light emitted. For example, the light-emitting device 180, responsible for red light, is cut into unit light emitting elements 180b with a large size, the semiconductor device 182 responsible for green light into unit light emitting elements 182b with a medium size, and the semiconductor device 184 responsible for blue light into unit light emitting elements 184b with a small size. The unit light emitting elements 180b, 182b and 184b are different in size and thus in light intensity, that is, light brightness from one another. Therefore, the unit light emitting elements can be controlled in light brightness according to their sizes.
With reference to
With reference to
However, difference is found in the sizes of unit light emitting elements between the structures of
Consisting of the unit light emitting elements responsible for red, green and blue light, which are cut to be the same size or different sizes, a light emitting unit can control the light brightness. It is also possible to provide another characteristic by cutting the unit light emitting elements to different sizes.
As described hereinbefore, the light emitting devices of the present invention can express precise colors of light because their light emitting elements which use semiconductors emit radiation in a narrow range of wavelengths corresponding to red, green and blue light. In addition, unit light emitting elements of very small sizes can be fabricated in accordance with the present invention. Accordingly, displays can be manufactured to be small in size without loss of image definition and color purity.
The present invention has been described in an illustrative manner, and it is to be understood that the terminology used is intended to be in the nature of description rather than of limitation. Many modifications and variations of the present invention are possible in light of the above teachings. Therefore, it is to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
Patent | Priority | Assignee | Title |
8530883, | Mar 11 2010 | Lumileds LLC | Manufacture of quantum dot-enabled solid-state light emitters |
8860041, | Dec 01 2005 | Samsung Electronics Co., Ltd. | Method for producing nanowires using a porous template |
Patent | Priority | Assignee | Title |
5354707, | Mar 25 1993 | GLOBALFOUNDRIES Inc | Method of making semiconductor quantum dot light emitting/detecting devices |
5710436, | Sep 27 1994 | Kabushiki Kaisha Toshiba | Quantum effect device |
5812574, | Dec 19 1994 | Fujitsu Limited | Quantum optical semiconductor device producing output optical emission with sharply defined spectrum |
5827754, | May 22 1996 | Korea Institute of Science and Technology | Fabrication method for high-output quantum wire array diode structure |
6033972, | Nov 15 1997 | Electronics and Telecommunications Research Institute | Growing method of GaAs quantum dots using chemical beam epitaxy |
6291132, | Dec 05 1996 | D DATA INC | Fluorescent optical memory |
6329668, | Jul 27 2000 | MP Technologies L.L.C. | Quantum dots for optoelecronic devices |
20020162995, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 05 2002 | NMCTek Co. Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Dec 31 2007 | REM: Maintenance Fee Reminder Mailed. |
Jun 22 2008 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 22 2007 | 4 years fee payment window open |
Dec 22 2007 | 6 months grace period start (w surcharge) |
Jun 22 2008 | patent expiry (for year 4) |
Jun 22 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 22 2011 | 8 years fee payment window open |
Dec 22 2011 | 6 months grace period start (w surcharge) |
Jun 22 2012 | patent expiry (for year 8) |
Jun 22 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 22 2015 | 12 years fee payment window open |
Dec 22 2015 | 6 months grace period start (w surcharge) |
Jun 22 2016 | patent expiry (for year 12) |
Jun 22 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |