A vending machine for the sale of both food and non-food products has a plurality of adjustable shelves and adjustable product dividers. Products are dispensed from the shelves by the action of a computer controlled transporter mounted on carriages permitting movement of the transporter both horizontally and vertically in an X-Z plane across the face of the product shelving. rotation of the transporter in front of a selected product engages a product delivery mechanism which gently and safely slides the product off the shelf onto the transporter. A movable wall within the transporter pushes the delivered product aside, thereby clearing the way for the dispensing of additional products. Multiple products may safely be collected in each cycle. Products are carried to a delivery station for retrieval by the customer. After product delivery, the transporter is discharged of any residual items.
|
1. A vending machine in which products to be dispensed are arranged, separated by product dividers, across a plurality of vertically disposed shelves and are retrieved by means of a product transporter mounted on a movable gantry carriage, which gantry moves the product transporter in an X-Z plane across the face of the shelving into opposition with a product and a product divider, said product transporter comprising:
a) a transporter bin; b) means for rotating the transporter bin about a substantially horizontal axis of rotation; c) means for engaging product divider; d) means for actuating product divider; and e) means for detecting product dispensing.
13. A vending machine in which products, which may be dispersed singly or multiply in one vend cycle, are arranged, separated by product dividers, across a plurality of vertically disposed shelves and are retrieved by means of a product transporter mounted on a movable gantry carriage, which gantry moves the product transporter in an X-Z plane across the face of the shelving into opposition with a product and a product divider, said product transporter comprising:
a) a transporter bin; b) means for rotating the transporter bin about a substantially horizontal axis of rotation; c) means for engaging product divider; d) means for actuating product divider; and e) means for detecting product dispensing.
12. A computer controlled vending machine in which products to be dispensed are arranged across a plurality of vertically arranged shelves and are horizontally separated by product dividers comprising:
a) a control computer; b) a transaction center for inputting a selection of products to the control computer; c) a carriage for X-Z movement of a product transporter in front of the shelves; d) a product transporter further comprising: (1) a transporter bin; (2) means for rotating the transporter bin about a substantially horizontal axis of rotation; (3) means for engaging a product divider; (4) means for actuating a product divider; (5) means for detecting product dispensing; (6) means for moving dispensed products across the transporter bin; and e) a product delivery area.
11. A vending machine in which products to be dispensed are arranged separated by product dividers across a plurality of vertically disposed shelves and are retrieved by means of a product transporter mounted on a movable gantry carriage, which gantry moves the product transporter in an X-Z plane across the face of the shelving into opposition with a product and a product divider, said product transporter comprising:
a) a transporter bin comprising: (1) a front wall; (2) a bottom wall; (3) two side walls; wherein one edge of the front wall is rigidly connected to one edge of the bottom wall and each of the two side walls are rigidly connected to both the front wall and the bottom wall at opposite ends of the front and bottom walls to form a transporter bin substantially triangular in cross section, and wherein the unattached edge of the bottom wall is the edge over which products are dispensed; b) a means for rotating the transporter bin about a substantially horizontal axis of rotation comprising: (1) a shaft supported in a substantially horizontal position; (2) means for rigidly attaching the shaft to the transporter bin; and (3) means for rotating the shaft; c) a means for rotatably engaging product divider comprising: (1) an arm; (2) means for connecting the arm to the transporter bin; (3) a rotatable gear at one end of the arm; and (4) a biasing means for ensuring firm contact between the gear and a product dispensing means; d) a means for actuating product divider comprising a means for rotating the gear at the end of the engaging product divider arm; e) a means for detecting product dispensing further comprising a sensor located at the dispensing edge of the transporter bin; and f) a means for moving dispensed products across the transporter bin comprising: (1) a movable plate mounted between and substantially parallel to the opposing side walls of the transporter bin; and (2) a means for moving the movable plate between the opposing side walls of the transporter bin. 2. The vending machine product transporter of
3. The vending machine product transporter of
a) a movable plate mounted between and substantially parallel to the opposing side walls of the transporter bin; and b) a means for moving the movable plate between the opposing side walls of the transporter bin.
4. The vending machine product transporter of
5. The vending machine product transporter of
a) a front wall; b) a bottom wall; c) two side walls; wherein one edge of the front wall is rigidly connected to one edge of the bottom wall and each of the two side walls are rigidly connected to both the front wall and the bottom wall at opposite ends of the front and bottom walls to form a transporter bin substantially triangular in cross section. 6. The vending machine product transporter of
a) a shaft supported in a substantially horizontal position; b) means for rigidly attaching the shaft to the transporter bin; and c) means for rotating the shaft.
7. The vending machine product transporter of
8. The vending machine product transporter of
a) an arm; b) means for connecting the arm to the transporter bin; c) a rotatable gear at one end of the arm; and d) a biasing means for ensuring firm contact between the gear and a product dispensing means.
9. The vending machine product transporter of
10. The vending machine product transporter of
14. The vending machine product transporter of
15. The vending machine product transporter of
a) a movable plate mounted between and substantially parallel to the opposing side walls of the transporter bin; and b) a means for moving the movable plate between the opposing side walls of the transporter bin.
16. The vending machine product transporter of
17. The vending machine product transporter of
a) a front wall; b) a bottom wall; c) two side walls; wherein one edge of the front wall is rigidly connected to one edge of the bottom wall and each of the two side walls are rigidly connected to both the front wall and the bottom wall at opposite ends of the front and bottom walls to form a transporter bin substantially triangular in cross section.
18. The vending machine product transporter of
a) a shaft supported in a substantially horizontal position; b) means for rigidly attaching the shaft to the transporter bin; and c) means for rotating the shaft.
19. The vending machine product transporter of
20. The vending machine product transporter of
a) an arm; b) means for connecting the arm to the transporter bin; c) a rotatable gear at one end of the arm; and d) a biasing means for ensuring firm contact between the gear and a product dispensing means.
21. The vending machine product transporter of
22. The vending machine product transporter of
|
Benefit of U.S. Provisional Patent Application No. 60/184,123 filed Feb. 22, 2000 is hereby claimed.
1. Field of the Invention
The present invention is a large scale vending machine permitting unattended purchase of a wide variety of food and non-food products, including those requiring refrigeration, typically found in convenience, grocery, and other retail stores. More specifically, the vending machine utilizes a transporter to remove both large and small products of different shapes and packaging materials, including fragile products, from the shelving for delivery to a customer access door.
2. Background of the Invention
Vending machines have always served the purpose of providing an around-the-clock shopping alternative, but until recently, the quantity and assortment of items has been limited. Small packages of cigarettes, candy, beverages, and snack foods have traditionally made up over 90% of all vended products. Vending machines allow retailers to offer products for sale without the necessity of a clerk or cashier present in locations where it is not physically possible or economically sensible to establish a store. Vending machines offer the consumer quick and convenient access to products around-the-clock.
Over the years, vending machines have been designed and constructed to deliver a specific item or a small range of items. Generally, the products vended were relatively small and uniform in size and were dispensed by gravity feed to a customer access area. Alternative delivery systems, which could handle a variety of product sizes, moved the products into alignment with a customer access door.
Convenience is a driving factor in consumer's decisions where to purchase goods and services, and they want speed and efficiency in performing basic tasks so that they have more leisure time. Providing a large variety of products required for daily living in a vending machine where the consumer lives, works, or plays, and delivering them without damage, would satisfy consumer demand for more convenient shopping. However, the number, variety, and differing size of articles requires a vending machine capable of individualized handling of the articles. Several prior art systems have been developed to deliver articles from shelving to a customer access area. Generally the articles are arranged on vertically stacked shelves with individual article types separated into rows. Thus, a matrix of accessible articles is formed. Articles are ordered through input devices which also have associated devices to charge for the purchase. Generally, credit cards, debit cards, and cash are accepted. The location of each article is provided to an electronic controller, typically a microprocessor, which directs the retrieval of the articles by a transporter system.
In U.S. Pat. No. 3,294,282 Brown discloses storage of articles between parallel adjustable spaced guide rails on each vertically stacked shelf. To retrieve an article an elevator rises to the appropriate shelf level. The selected article is moved by a motor driven tape which pushes the end article in a row onto the elevator. The elevator surface is itself a conveyor belt which moves the article to a delivery platform at one end of the elevator. The elevator then lowers so that the delivery platform is adjacent a customer delivery access door. One article at a time can be delivered. Different articles are accommodated either on different levels or in different racks on the same levels if separate drive tapes are provided.
In U.S. Pat. No. 4,108,333 endless conveyor belts running rear to front on each shelf support the articles to be dispensed. Multiple belts may be located on each shelf. An elevator which is as wide as the shelves is moved vertically. The elevator has a bottom which is inclined downwardly rear to front forming a gentle slope with a stopping barrier at its lowermost edge. The elevator can swing through a small arc and is held upright for vertical travel. A spring bias permits the elevator mechanism to detent at the selected level to stop. The elevator is swung slightly towards the shelf so that its rear edge is closely adjacent the forward end of the conveyor belt and the elevator engages a clutch which activates the conveyor belt. Articles are dispensed onto the elevator by the movement of the conveyor belt. On the elevator articles slide down the inclined bottom until stopped. The elevator then returns to the customer access area. A sensor which detects articles on the elevator may be used to lock further elevator movement until the article is removed.
For a vending machine designed to heat and deliver food, Friberg in U.S. Pat. No. 4,762,250 discloses a carriage which is moved vertically and laterally by motor drive screw spindles so that a tilted chute is aligned with the edge of a storage shelf adjacent the row of a selected item. A pusher mechanism propels the item off the end of the shelf so that it slides down the chute to a stop. The carriage returns to a delivery position where the article is deposited on a shelf and subsequently moved into a microwave oven cavity. After heating, the article is delivered to a customer access door.
To dispense video cassettes, O'Neil, in U.S. Pat. No. 4,812,629, teaches arranging the cassettes in specialized boxes stored in a 2D array in which only one box occupies each matrix position. Horizontal and vertical motors move a carriage into alignment with each position. On the carriage grasping fingers located on a shuttle belt engage a bar on the special cases. Movement of the belt withdraws the cassette onto the carriage which then returns to position opposite a customer access door.
For a kiosk designed to dispense a large number of non-uniformly packaged goods, Steury discloses in U.S. Pat. No. 5,499,707 a carriage driven by X-Y drive motors to a point opposite an appropriate article-containing drawer on a shelf. Specialized drawers, sized to the article to be dispensed, have no bottoms and dividers to separate the articles in each drawer. An electromagnet on the carriage engages a steel plate on the drawer and pulls the drawer out from the edge of the shelf. Articles in the drawer fall into the carriage receptacle. The control electronics withdraw the drawer a distance sufficient to obtain only the number of items needed. Several items can be obtained from different drawers before the carriage is returned to a customer accessible door.
A room sized vending machine capable of storing a large variety of differently sized articles is disclosed by Kanatsuka in U.S. Pat. No. 5,791,512. Again, articles are arranged in rows from front to back on a matrix of shelves. Each shelf is tilted downward at its front so that the articles slide against a stop at the lowest position of the shelf. A bucket is moved by X-Y motors across the array until opposite a selected item. Actuation of a motor on the bucket presses a stopper on the shelf which releases one article into the bucket. Additional articles are prevented from sliding off the shelf by a second stopper which is simultaneously inserted behind the article being dispensed. Several articles may be dispensed into the bucket before the bucket returns to a customer access area where the items are dropped into the access area by the opening of a bottom plate in the bucket.
The vending machine of the present invention has the capability of vending products from display shelves where the product size varies over a wide range from relatively small to fairly large. Examples of small products would be photographic film, medicine boxes, and cans of juice. Examples of larger products would be 12 pack cases of soda, gallon milk containers, and 2 liter upright beverage containers. The design of the vending machine permits products of different sizes to be vended on the same product delivery cycle. In addition, the vending machine can deliver products which are fragile such as packs of eggs or glass containers. Further, the vending machine can vend just one product or many products at a time. Food as well as non-food products can be vended. These capabilities are made possible by use of the transporter bin and the associated product pusher of this invention.
A transaction center is provided at which a customer may input his/her selection of products and pay for them either in cash or by use of a credit card. Communication access is provided to: 1) verify and authorize customer credit transactions; 2) to report sales, cash and inventory status; and 3) to report any trouble encountered by the machine. Once the products are selected, a computer controls the movement of the transporter assembly to obtain and deliver the selected products to the customer. The arrangement of the elements of the vending machine will first be described followed by a description of its mode of operation.
Since the vending machine is designed to vend larger sized products, the storage shelves to contain these items must necessarily be relatively large. Accordingly, the vending machine may occupy a small room, typically about 18 ft. long, 9 feet deep, and 10 feet high. The dimensions may vary according to the number and size of the items to be vended. The machine may be built into an existing room or stand alone. In the preferred embodiment, the machine consists of a stand-alone self-contained unit. The unit may be refrigerated if items are vended which would spoil if not cooled. Power and communication lines are provided. All references to front, back, left, and right in the following description refer to the vending machine elements as seen from the purchaser's viewpoint facing the vending machine.
In the following figures, like reference numerals in the various figures refer to the same part.
As seen in
As shown in
Pusher motor 433 is mounted to right hand motor mount plate 410 and drives pusher gear box 508. One end 509 of dive shaft 511 extending from gear box 508 has a pulley 510 keyed to shaft 511. Pulley 510 is connected to one end 506 of idler pulley 505 by timing belt 512.
Pusher gear drive arm 434 is mounted on shaft 407 through bearing 516. A shaft 513 passes through a bearing (not shown) in the upper end 517 of pusher gear drive arm 434. Pulley 514 is keyed to one end of shaft 513 on one side of pusher gear arm 434. Pusher gear 515 is pinned to the other end of shaft 513 on the opposite side of pusher arm 434. Timing belt 519 connects one end 504 of idler pulley 505 to pulley 514. By these means, rotation of pulley 510 by motor 433 and gear box 508 is transferred through belt 512, idler pulley 505, belt 519, and pulley 514 to pusher gear 515.
A light source and photo detector unit 609 is mounted to side wall 404 of transporter bin 401. Detector unit 609 directs a light beam parallel to and substantially along rear edge 438 of transporter bin bottom 405 toward reflector 610. Another light source and photo detector unit 611 directs a light beam past pusher gear 515 across bottom edge 438 towards a position where reflector 318 mounted on pusher arm 317 would be positioned when transporter assembly 400 is in the dispensing position and no products remain on the shelf to block the light beam in front of pusher arm 317.
Referring to FIG. 4 and
FIG. 7A and
FIG. 8A and
FIG. 12A and
Typically several horizontal shelves are arranged on the shelf frame 214 across the full width of the frame. Starting at the right hand edge of each shelf a product divider 301 is mounted in the holes in the shelf. The next divider 301 over is mounted so that the product to be vended by the first divider is loosely confined between the two dividers. Additional dividers 301 are placed on the shelf with spacing to accommodate each of the items to be vended. No restriction is placed by the design of the vending machine of the invention on the size of any item which may be adjacent to any other item. However, since the vertical spacing between shelves will depend on the height of the tallest product placed on any shelf, general consideration of maximizing the number of shelves which can be placed in the shelf frame, requires that the taller items be dispensed from the same shelf or shelves. In the preferred embodiment, products which could contaminate food products, i.e., motor oils, cleaning agents, etc., are dispensed in a separate delivery cycle from food products. Also in the preferred embodiment, the control computer can be set to: 1) selectively dispense any particular product in a separate delivery cycle; 2) not dispense products with designated expiration dates after their date of expiration; and 3) not dispense products which require refrigeration if the temperature rises at any time above an established limit.
Once the positions of the dividers 301 have been determined, the shelves 105 and dividers 301 define an X-Z matrix of products which may be dispensed. Each product can be identified by a matrix position notation. One such notation frequently used in the vending industry labels columns alphabetically and rows numerically. A product is defined by a column/row label. Alternatively, each matrix position may be assigned a numerical value which may or may not follow any particular scheme. For ease of customer use, adjacent products are usually numbered consecutively.
The identification of each product, the number of product items in a divider row, the width of each product, the price of each product, and the product matrix position are provided to the vending machine control computer. The positional information necessary for a product to be selected is the position of the divider which will dispense the product. This position is determined as a distance from a home (reference) position of the transporter assembly. Rotary encoders on the horizontal and vertical carriage motors provide positional information of the transporter assembly to the control computer. Control means for directing a carrier to a defined matrix position are well understood in the art. With this information, the computer directs the movement of the transporter assembly so that the pusher gear on the transporter assembly will engage the gear pulley on the divider.
The operation of the vending machine through a dispensing cycle begins with the insertion of a credit car, debit card or currency by the customer. In the preferred embodiment of the invention, a touch sensitive computer screens serves as the input device by which a customer communicates with the vending machine. Noting the matrix reference positions of the desired products, the customer inputs the selected items and quantity of each on the touch screen. Once the selections have been made, the customer then indicates acceptance by pressing "GO" on the touch screen. The entire transaction or any item selected may be canceled at any time prior to pressing "GO."
The control computer first ascertains that the transporter assembly 400 is at its reference location adjacent the delivery shroud 1201. The transporter bin 401 is rotated by motor 417 to its travel position shown in
At this point the movement of the transporter bin assembly 400 is stopped, and transporter bin 401 is rotated by motor 417 to the dispensing position shown in
Before pusher motor 433 is activated, the status of photo detector 611 is checked. If light reflection from reflector 318 is detected, the dispensing operation is stopped, no charge is made to the customer for that product, and the system goes on to obtain the next product selected by the customer. Detection of a reflection by photo detector 611 occurs if no product rests in front of pusher arm 317 to be dispensed. The control computer will not attempt to dispense a product if the count in its available product register for a given matrix position indicates that all products from that position have been dispensed. The operation of photo detector 611 also prevents the system from attempting a dispensing operation from an empty product position.
If no signal from detector 611 is found, the control computer activates pusher motor 433. Pusher motor 433 drives pusher gear 515 to rotate gear pulley 304 thereby turning bead chain 311 and advancing pusher arm 317. Pusher arm 317 pushes product forward off the shelf onto transporter bin 401 as shown in FIG. 9. As the product is pushed off the shelf, the product interrupts the light beam between directed along edge 438 by light source and photo detector 609 which is reflected by reflector 610 located on the opposite side 403 of transporter bin 401. The interruption of the light beam indicates to the control computer that product is being dispensed. Once the product has left the shelf and moved into transporter bin 401, the light beam is no longer interrupted. Return of the light signal indicates to the control computer that the product has been dispensed into bin 401.
Movable wall motor 431 is activated driving movable wall 425 across transporter bin 401. The movement of movable wall 425 pushes the most recently dispensed product towards side wall 403 of transporter bin 401. There are two limitations to the extent of movement of movable wall 425. The first limitation is a limit on the extent of movement which can be achieved by the rack 420 and pinion gear 432 and length of slot 427. In the preferred embodiment, the extent of movement is sufficient to displace the widest object which will be dispensed from the shelves out of the way for the next object.
A second limitation is the total width of all products dispensed on a single cycle. This limitation only applies for dispensing cycles which obtain more than one product before delivery to the customer. The control computer tracks the accumulated width of all products dispensed in a cycle and will not move the movable wall closer to side wall 403 than the accumulated widths. After pushing the dispensed products towards side wall 403, motor 431 is reversed to return movable wall 425 to its home position adjacent side wall 404.
The dispensing action of the present invention which slides, rather than drops, products off the shelves and into the transporter bin allows for the dispensing of fragile products, as well as sturdy products, and the maintenance of the original quality and appearance of the products. Multiple products can be dispensed in a single collection cycle since each dispensed product is moved out of the way of the next dispensed product. No product is dropped upon another previously dispensed product. No more products are dispensed in a single collection cycle than can be safely accommodated by the width of the transporter bin; instead, the transporter will make multiple collection cycles to complete the customer order. Since products are delivered directly from the transporter bin to the customer through the access door, no damage is done to the products by delivery. In addition, the mechanism of the present invention with its wide transporter bin treats large and small products similarly.
After movable wall 425 returns to its home position, motor 417 rotates transporter bin 401 to its travel position. If more products are to be retrieved on the collection cycle, the transporter assembly 400 is moved to the next product position and the dispensing operation repeated. When all products have been retrieved, or when the transporter bin is full, the transporter assembly is moved underneath shroud 1201, motor 417 rotates transporter bin 401 so that its front side 402 is horizontal as shown in FIG. 12. The transporter assembly 400 is then raised and docked with shroud 1201. In this docked position, shroud 1201 and transporter bin 401 define an enclosed volume 1208. When customer access door 112 is then opened, the customer has access to the dispensed products but can not access the interior of the vending machine. The control computer leaves customer access door 112 open for a sufficient time for retrieval of the dispensed products. If the customer is still in the process of removing products when door 112 begins to close, pressure on bar 1205 activates a pressure switch which causes door 112 to cycle open again.
After delivery of dispensed products to the customer, transporter assembly 400 is lowered away from shroud 1201 and motor 417 rotates transporter bin 401 so that the edge 438 of bottom side 405 is declined below the horizontal. In the preferred embodiment, bottom side 405 is tipped approximately 30 degrees. Any products or trash inadvertently or deliberately left in transporter bin 401 are discharged into a collection area of the vending machine 101. By this action, transporter bin 401 is kept clean and free of products and debris for the next collection cycle. The transporter bin 401 is maintained in the discharge attitude for a sufficient time to clear it and then returned to its travel position. If additional items still need to be obtained to complete the customer order, the collection cycle is repeated. Once all items have been delivered and the final discharge completed, the rotational position of transporter bin 401 is homed through information provided by proximity sensors 615 and 616, and transporter assembly 400 is returned to its docked position to await the next vending order.
Those skilled in the vending arts will recognize that various modifications, additions, substitutions and variations of the illustrative examples set forth herein can be made without departing from the spirit of the invention and are, therefore, considered within the scope of the invention.
Mitman, David W., Holder, Thomas L., Herzog, Hettie J., Hardwick, Bradley R., Sproul, Brian K.
Patent | Priority | Assignee | Title |
10223503, | Jun 08 2000 | InstyMeds Corporation | Automatic prescription drug dispenser |
10399774, | Mar 05 2014 | Swisslog Logistics, Inc. | Automated lifting storage cart |
10431034, | Sep 18 2017 | HONGFUJIN PRECISION INDUSTRY (WUHAN) CO., LTD.; Hon Hai Precision Industry Co., Ltd. | Elevator and vending machine using such elevator |
10499658, | Aug 13 2015 | R WEISS VERPACKUNGSTECHNIK GMBH & CO KG | Foodstuff-conveying and -discharging apparatus |
10604344, | Feb 27 2017 | SAVOYE | Automatic locker device and corresponding methods of distribution and insertion |
11103091, | Jun 22 2015 | The Coca-Cola Company | Merchandiser with flexible temperature controlled columns |
11348397, | Aug 09 2018 | SHANDONG NEW BEIYANG INFORMATON TECHNOLOGY CO , LTD ; WEIHAI NEW BEIYANG DIGITAL TECHNOLOGY CO , LTD | Vending machine |
11417164, | Dec 29 2017 | SHANDONG NEW BEIYANG INFORMATION TECHNOLOGY CO , LTD | Bucket and vending machine |
11462072, | Aug 18 2020 | T3 MICRO, INC | Autonomous food station |
11501595, | Nov 13 2018 | SANDEN RETAIL SYSTEMS CORPORATION | Dispensing mechanism for article vending machine |
11605260, | Aug 18 2020 | T3 MICRO, INC | Autonomous food station |
11620868, | Jul 22 2021 | Trinity Axis Inc. | Techniques to dispense an item and release a jammed item from a dispensing system |
11640743, | Aug 03 2018 | WEIHAI NEW BEIYANG DIGITAL TECHNOLOGY CO , LTD ; SHANDONG NEW BEIYANG INFORMATION TECHNOLOGY CO , LTD | Cabinet and vending machine |
11776351, | Aug 18 2020 | T3 MICRO, INC | Autonomous food station |
11830310, | Jul 22 2021 | Trinity Axis Inc. | Techniques to dispense an item and release a jammed item from a dispensing system |
7128237, | Sep 26 2003 | Clear door vending machine | |
7222748, | Sep 26 2003 | Royal Vendors, Inc.; ROYAL VENDORS, INC | Clear door vending machine |
7222749, | Sep 26 2003 | Royal Vendors, Inc. | Clear door vending machine |
7604145, | Oct 14 2005 | CRANE PAYMENT INNOVATIONS, INC | Drive system for a vending machine dispensing assembly |
7686185, | Jun 02 2005 | Coin Acceptors, Inc.; COIN ACCEPTORS, INC | Dispenser tray for a vending machine |
7837058, | Oct 14 2005 | CRANE PAYMENT INNOVATIONS, INC | Product transport system for a vending machine |
7997553, | Jan 14 2005 | Indiana University Research & Technology Corporati | Automatic retractable floor system for a rotating gantry |
8033424, | Jun 08 2000 | InstyMeds Corporation | Automatic prescription drug dispenser |
8086350, | Sep 28 2007 | INNOSPENSE CAPITAL B V | Dispenser and method for dispensing individual goods, in particular packages containing a medicament |
8260456, | Mar 25 2009 | Antares Capital LP | Retail shelf supply monitoring system |
8308414, | Feb 09 2007 | Cerner Innovation, Inc. | Medication dispensing apparatus with bulk bin loading |
8469230, | Oct 10 2006 | CRANE PAYMENT INNOVATIONS, INC | Product delivery and discharge system for a vending machine |
8534494, | Oct 26 2006 | CRANE PAYMENT INNOVATIONS, INC | Product detection system for a vending machine |
8556119, | Mar 24 2009 | CRANE PAYMENT INNOVATIONS, INC | Horizontal product discharge system for a vending machine |
8676377, | Mar 25 2008 | Fasteners for Retail, Inc. | Retail shelf supply monitoring system |
8744619, | Jun 08 2000 | InstyMeds Corporation | Automatic prescription drug dispenser |
9056718, | May 13 2010 | Murata Machinery, Ltd | Transfer device |
9436803, | Jun 08 2000 | InstyMeds Corporation | Automatic prescription drug dispenser |
9779215, | Jun 08 2000 | InstyMeds Corporation | Automatic prescription drug dispenser |
D748196, | Aug 27 2014 | COINSTAR SPV GUARANTOR, LLC; COINSTAR FUNDING, LLC; Coinstar Asset Holdings, LLC | Consumer operated kiosk for sampling products |
Patent | Priority | Assignee | Title |
4108333, | May 14 1975 | UMC Industries, Inc. | Article vendor with elevator |
4483459, | Jul 24 1981 | Mars Limited | Dispensing machine |
4560088, | May 11 1984 | Vending machine with dispensing operating system movable in X-Y coordinate axes | |
4687119, | Oct 23 1985 | Dispenser for hot and cold products | |
6415950, | Jun 19 1997 | SHOP 24 GLOBAL LLC | Distribution installation for packets |
6499627, | Jun 05 2000 | Sanden Corp. | Automatic vending machine |
6513677, | Oct 14 1997 | CRANE MERCHANDISING SYSTEMS, INC | Apparatus and method for vending products |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Jan 07 2008 | REM: Maintenance Fee Reminder Mailed. |
Jun 29 2008 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 29 2007 | 4 years fee payment window open |
Dec 29 2007 | 6 months grace period start (w surcharge) |
Jun 29 2008 | patent expiry (for year 4) |
Jun 29 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 29 2011 | 8 years fee payment window open |
Dec 29 2011 | 6 months grace period start (w surcharge) |
Jun 29 2012 | patent expiry (for year 8) |
Jun 29 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 29 2015 | 12 years fee payment window open |
Dec 29 2015 | 6 months grace period start (w surcharge) |
Jun 29 2016 | patent expiry (for year 12) |
Jun 29 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |