An optical device for bar-code reading capable of improving the degree of freedom in design of component lenses so as to allow free positional adjustment of the lenses while ensuring downsizing and weight reduction of the device, and a method for manufacturing are disclosed. An optical device for bar-code reading comprises a light emitting element; a light projection lens for focusing light from the light emitting element so as to irradiate a bar code; a light receiving lens for focusing reflected light from the bar code and having formed therein a penetrating hole which penetrates a plane of incidence of light and a plane of outgoing of light, in which the light projection lens is inserted; and a light receiving element for receiving the light focused by the light receiving lens so as to perform photo-electric conversion.

Patent
   6766957
Priority
May 25 2001
Filed
May 23 2002
Issued
Jul 27 2004
Expiry
Jul 02 2022
Extension
40 days
Assg.orig
Entity
Large
842
9
EXPIRED
1. An optical device for bar-code reading comprising:
a light emitting element;
a light projection lens for focusing light from said light emitting element so as to irradiate a bar code;
a light receiving lens for focusing reflected light from the bar code and having formed therein a penetrating hole which penetrates a plane of incidence of light and a plane of outgoing of light, in which said light projection lens is inserted; and
a light receiving element for receiving the light focused by said light receiving lens to perform photo-electric conversion.
7. A method for manufacturing an optical device for bar-code reading, comprising the steps of:
fitting a light projection lens into a penetrating hole formed in a light receiving lens to penetrate a plane of incidence of light and a plane of outgoing of light in a manner freely movable along an optical axis of said light projection lens;
fixing said light receiving lens after positioning said light receiving relative to a light receiving element; and
fixing the light projection lens after positioning the light projection lens relative to said positioned and fixed light receiving lens.
8. A light projection/receiving package comprising:
a die pad;
a light emitting element and a light receiving element respectively mounted back to back on front and rear planes of said die pad;
an optical path bending means provided on one plane of said die pad on which said light emitting element is mounted to bend an advancing direction of the emitted light from said light emitting element approximately at right angles; and
a penetrating hole formed in said die pad to allow the light having the advancing direction bent by said optical path bending means to pass through towards the other plane of said die pad on which said receiving element is mounted.
2. The optical device for bar-code reading as claimed in claim 1, wherein said light projection lens is a compound lens in which a plurality of single lenses are combined.
3. The optical device for bar-code reading as claimed in claim 2, wherein said plurality of single lenses are fitted within a cylinder so that an optical axis of said lenses coincides with an axis of said cylinder, and said cylinder is inserted into said penetrating hole of said light receiving lens.
4. The optical device for bar-code reading as claimed in claim 3, wherein said cylinder is made of a metal.
5. The optical device for bar-code reading as claimed in claim 1, wherein said light projection lens is a cylindrical single lens.
6. The optical device for bar-code reading as claimed in any one of claim 1 to 5, further comprising a columnar heat sink provided to coincide an axis thereof with an optical axis of said light receiving lens, wherein said heat sink has fixed on one end plane thereof said light receiving element, and has fixed on a side plane thereof said light emitting element.
9. The light projection/receiving package as claimed in claim 8, further comprising an integrated light projection/receiving lens having integrated therein a light projection lens portion and a light receiving lens portion, which is provided in parallel to said die pad on the side facing the plane on which said light receiving element is mounted.
10. The light projection/receiving package as claimed in claim 9, wherein said light receiving element includes two receiving elements;
said die pad has said penetrating hole between said two receiving elements; and
said integrated light projection/receiving lens includes said light receiving lens having two receiving lenses, and said light projection lens portion is formed between said two receiving lenses.
11. The light projection/receiving package as claimed in claim 8, wherein said package has a front wall in parallel to said die pad on the side facing the plane on which said light receiving element is mounted; and
said light projection lens opposed to said penetrating hole and said light receiving lens opposed to said light receiving element are separately provided on said front wall.
12. The light projection/receiving package as claimed in claim 11, further comprising a partition wall formed between said die pad and said front wall of said package to isolate an emissive optical path space between said penetrating hole and said light projection lens from an incident optical path space between said light receiving lens and said light receiving element.

The present invention claims priority to its priority documents No. 2001-156508 and No. 2001-184725 filed in the Japanese Patent Office on May 25, 2001 and Jun. 19, 2001, respectively, the entire contents of which are expressly incorporated herein by reference.

1. Field of the Invention

The present invention relates to an optical device for bar-code reading and a method for manufacturing thereof, in particular to those capable of improving the individual degrees of freedom in design and positioning accuracy of a light projection lens and a light receiving lens in an integrated constitution and also to a light projection/receiving package for bar-code reading, and in particular for improving the downsizing of the package through minimizing an area for mounting a light emitting element and a receiving element.

2. Description of the Related Art

Many recent shops and factories practice sales management of commodities or production management of products by attaching thereto bar codes indicating digital information of the products and by reading such information through optical scanning thereof. In a general procedure using such kinds of bar codes, light is irradiated to a bar code and reflected light therefrom is processed by photo-electric conversion, depending on the intensity of the reflected light, to thereby decode the information based on a combined pattern of detected signals.

More specifically, as schematically shown in FIG. 19, a light projection lens 3 focuses light emitted from a light emitting element 1, and thus focused light is irradiated to a bar code 9 after being reflected off a mirror 7 of a scan mirror 5. Mirror 7 is swung so as to irradiate the entire area of bar code 9. The swinging of mirror 7 is based on attraction and repulsion of a magnet 11 attached to mirror 7 to or from a drive coil 13 into which magnet 11 is inserted, where drive coil 13 is applied with positive and negative currents inverting at a predetermined cycle to thereby swing mirror 7 around a fulcrum of swinging 15.

The light irradiated on a surface of bar code 9 returns back to mirror 7 with an intensity variation caused by a black-and-white pattern of bar code 9 while being affected by some irregular reflection. A condensing lens 17 then focuses the light reflected there, and a light receiving element 19 electrically converts the intensity variation to produce an output. Light receiving element 19 is provided on a front surface with a band-pass filter (BPF) 21 for improving accuracy in the reading, to thereby successfully prevent unnecessary light having a frequency other than the emission frequency from being caught.

There has been provided an optical device for bar-code reading, as shown in FIG. 20 which materializes such reading systems. As illustrated in FIG. 20 , the device comprises a light emitting assembly A having a light emitting element 1 and a light projection lens 3 housed in a casing 25, and a light receiving assembly B having a light receiving element 19, a light receiving lens 17 and a BPF 21 housed in a casing 27, both assemblies being mounted on a substrate 29. Electrical connections within individual casings 25 and 27 are accomplished through wire bonding or the like. Mirror 7 of scan mirror 5 is arranged so as to allow swinging around the fulcrum of swinging 15. Light emitting assembly A, light receiving assembly B and scan mirror 5 are housed in a housing not shown, to thereby form an optical device for bar-code reading.

The foregoing optical device for bar-code reading however, requires a large mounting space and can attain only a limited range of downsizing since light emitting assembly A having light emitting element 1 and the light projection lens 3 housed in casing 25, and light receiving assembly B having, light receiving element 19 and light receiving lens 17 in casing 27 are separately composed.

As measures for solving such non-conformity, there is known a "bar-code reader" as disclosed in Japanese Patent Application Publication No. Hei 7-93454, in which two lens portions are integrated into one transparent lens to thereby downsize a device as a whole, and a "bar-code reading device" as disclosed in Japanese Patent Application Publication No. Hei 11-15910, in which an irradiation lens and an imaging lens are formed using a transparent resin material in an integrated manner to thereby reduce the number of optical parts and save labor for assembly.

While these devices were successful in achieving a certain degree of space saving, it has not been allowable to choose different media as being optimized for the light emitting characteristics and the light receiving characteristics, since the light projection lens portion and the light receiving lens portion are molded in an integrated manner within a single kind of transparent resin used as a medium. It also has been difficult to compose either lens as a compound lens or to provide different coatings for the individual lenses, which has limited the design of such lenses. Still another problem resides in that this kind of integrated mold lens cannot allow movement of either lens once the other lens is properly positioned and fixed, which inhibits precise positioning by finely adjusting positions of both lenses on the light emitting side and the light receiving side.

An electro-optical reading device, as disclosed in, Japanese Patent Application Publication No. Hei 11-326805, is such that it has a semiconductor laser chip (light emitting element) and a photo detector (receiving element) mounted side by side on one surface of a printed circuit board, where all of which are covered with a mold resin member. To the mold resin member, a lens, a prism and an opening are molded in an integrated manner so as to allow the laser light from the semiconductor laser chip to be focused, bent in the optical path thereof and emitted, and, further, having a concave mirror for focusing the returned light towards a photodetector, to thereby achieve downsizing and weight reduction. The device, however, inevitably has a large printed circuit board due to the planar arrangement of the semiconductor laser chip and photo-detector side by side on one surface of the printed circuit board, so that downsizing cannot be attained

The present invention was proposed considering the foregoing situation and provides an optical device for barcode reading capable of improving the degree of freedom in design of the component lenses so as to allow free positional adjustment of such lenses while ensuring a small size and light weight of the device per se and a method for manufacturing thereof.

Furthermore, the present invention also was proposed considering the foregoing situation and provides a light projection/receiving package in which keeping an area sufficient for the mounting of either one of a light emitting element and a receiving element enables mounting of the other element to thereby achieve downsizing and weight reduction of the package.

As has been detailed in the above, since the light projection/receiving package according to the second aspect of the present invention is composed so that a light emitting element and a light receiving element are mounted back to back on front and rear planes of a single die pad, it is not necessary to keep both areas for mounting the light emitting element and the light receiving element on one plane (on the same plane) of the die pad. Accordingly, it will be sufficient to use a die pad affording a mounting area for either element requiring a larger mounting area, and this intrinsically allows mounting of the other element on the opposite plane. That is, only a small die pad affording a mounting area for either the light emitting element or the light receiving element allows the mounting of both. This successfully results in downsizing and weight reduction of the

An optical device for bar-code reading according to a first aspect of the present invention comprises a light emitting element; a light projection lens; a light receiving lens; and a receiving element. The light projection lens focuses light from the light emitting element so as to irradiate a bar code. The light receiving lens focuses reflected light from the bar code and has formed therein a penetrating hole penetrating a plane of incidence of light and a plane of outgoing of light, in which the light projection lens is inserted. The light receiving element receives the light focused by the light receiving lens so as to perform photo-electric conversion.

In the optical device for bar-code reading, a space for mounting the light receiving lens essentially includes a space for mounting the light projection lens by forming a penetrating hole through the light receiving lens and by inserting the light projection lens into the penetrating hole. Accordingly, it is not necessary to provide a mounting space for every lens, which results in downsizing and weight reduction. In addition, it allows the selection of a material and a coating optimized for each lens, to thereby expand the possibilities in design. It also is advantageous in that the positions of the light projection lens and the light receiving lens can be adjusted independently so that positional errors of the individual lenses relative to the individual elements (light emitting element and receiving element) can surely be absorbed.

The optical device for bar-code reading of the first aspect of the invention may be modified so that the light projection lens thereof is a compound lens in which a plurality of single lenses are combined.

In the optical device for bar-code reading, the light projection lens is composed as a compound lens. The compound lens comprises a plurality of single lenses combined with each other. In this case, typically composing the compound lens so that light can propagate almost in parallel between two lenses will ensure a large allowance for axial dislocation in a direction normal to the optical axis, which is effective in terms of improving production yield and reliability.

The optical device for bar-code reading also may be further modified so that the plurality of single lenses are fitted within a cylinder. They are arranged so that an optical axis of the lenses coincide with an axis of the cylinder, and the cylinder is inserted in the penetrating hole of the light receiving lens.

Since the optical device for bar-code reading is composed so that a plurality of single lenses are fitted within a cylinder and the cylinder is inserted in the penetrating hole of the light receiving lens, a variety of positional adjustments of the lenses will be available, for example, for moving the whole compound lens, previously fabricated so as to arrange the single lenses within the cylinder at regular intervals relative to the penetrating hole, or moving an arbitrary single lens relative to the cylinder while keeping the cylinder fixed in the penetrating hole.

The optical device for bar-code reading may be further modified so that the cylinder is made of a metal.

As for the optical device for bar-code reading, composing the cylinder with a metal can desirably prevent the light which comes from the light emitting element and goes into the compound lens from propagating from an inner circumferential surface of the penetrating hole towards a medium of the receiving lens. Accordingly, it is not probable that the light from the light emitting element will come into the receiving element to cause disturbance. In other words, the receiving element can gain a higher receiving accuracy of the reflected light.

The optical device for bar-code reading of the first aspect of the invention also may be modified so that the light projection lens is a cylindrical single lens.

As for the optical device for bar-code reading, composing the light projection lens with the cylindrical single lens can facilitate the manufacturing thereof as compared with that of the forgoing compound lens. The cylindrical shape allows the light projection lens to be inserted into the penetrating hole, so that the light projection lens is now attachable to the light receiving lens in a manner freely movable along the optical axis without using any other members (the foregoing cylinder, for example).

The optical device for bar-code reading modified as above may be further modified to have a columnar heat sink provided so as to coincide the axis thereof with an optical axis of the light receiving lens. The heat sink has fixed on one end plane thereof the light receiving element and has fixed on the side plane thereof the light emitting element.

In such optical device for bar-code reading, the light receiving element fixed on one end plane of the heat sink opposes with the light receiving lens on the optical axis thereof. This means that the optical device can receive focused light from the light receiving lens in an efficient manner. On the other hand, the light emitting element fixed on the side plane of the heat sink can desirably prevent the light from the light emitting element from going into the entire portion of the light receiving lens, which allows irradiation of the light only in a portion of the receiving lens having incorporated therein the light projection lens. Accordingly, the light emitted from the light emitting element and reflected from a bar code after irradiation can be directly received by the light receiving element attached on the heat sink without the need of a 90°C bending of the optical path using a mirror or the like.

A method for manufacturing an optical device for bar-code reading according to the first aspect of the present invention is characterized by comprising the steps of fitting a light projection lens into a penetrating hole formed in a receiving lens so as to penetrate a plane of incidence of light and a plane of outgoing light in a manner freely movable along the optical axis of the light projection lens fixing the light receiving lens after positioning it relative to a light receiving element and fixing the light projection lens after positioning it relative to the positioned and fixed light receiving lens.

In the manufacturing method, the light projection lens is positioned by moving it relative to the light receiving lens after positioning and fixing the light receiving lens relative to the light receiving element. Accordingly, moving the light projection lens to be performed later will never dislocate the light receiving lens, which is positioned in advance. In other words, the individual lenses can be positioned at optimum positions. This allows the individual lenses to be finely positioned, which has not been practical for the conventional, integrated mold lens: and, is can improve accuracy in assembly of the optical device for bar-code reading and in reading while concomitantly attaining downsizing and weight reduction.

A light projection/receiving package according to a second aspect of the present invention is such that for irradiating light emitted from a light emitting element to a target object to be irradiated, and for receiving reflected light from the target object using a light receiving element, it is characterized in that the light emitting element and light receiving element are mounted on front and rear planes of a single die pad.

Since the light projection/receiving package is composed so that the light emitting element and the light receiving element are mounted back to back on the front and rear planes of the single die pad, it is not necessary to keep both areas for mounting the light emitting element and the light receiving element on one plane (on the same plane) of the die pad. This means that it will be sufficient to use a die pad affording a mounting area for the light receiving element, which generally requires a larger mounting area, and this intrinsically allows mounting of the light emitting element on the opposite plane. Accordingly, the die pad in this case ill be smaller than that having on one plane both of the light emitting element and the light receiving element. This successfully results in downsizing and weight reduction of the light projection/receiving package.

The light projection/receiving package according to a third aspect of the present invention is characterized by comprising a die pad a light emitting element and a light receiving element respectively mounted back to back on the front and rear planes of the die pad an optical path bending means provided on one plane of the die pad on which the light emitting element is mounted so as to bend an advancing direction of the emitted light from the light emitting element approximately at right angles and a penetrating hole formed in the die pad so as to allow the light having the advancing direction bent by the optical path bending means to pass through towards the other plane of the die pad on which the light receiving element is mounted.

In the light projection/receiving package, when the light emitted from the light emitting element in a direction parallel to the plane of the die pad comes into the optical path bending means, the optical path thereof is bent approximately at right angles so as to have a direction perpendicular to the plane of the die pad. The directed light passes through the penetrating hole formed in the die pad to thereby reach the plane opposite to that having the light emitting element mounted thereon, that is the plane having mounted thereon the receiving element. Accordingly, the optical path of the light from the light emitting element can be bent towards the opposite plane within a limited area on the die pad plane, without providing any optical means for bending the optical path outside the die pad.

The light projection/receiving package may be modified further to comprise an integrated light projection/receiving lens having integrated therein a source lens portion and a light receiving lens portion that is provided in parallel to the die pad on the side facing to the plane thereof on which the light receiving element is mounted.

In the light projection/receiving package, the light emitted after passing through the penetrating hole is focused by the light projection lens portion and then irradiated to the target object to be irradiated. The reflected light returned back from the target object is focused by the light receiving lens portion and then goes into the light receiving element. In other words, only one integrated light projection/receiving lens portion is responsible for focusing the emitted light and the reflected light, which is beneficial in that it reduces the number of parts for the optical means and the man-hours for the assembly. Since the emitted light and the reflected light are directed perpendicular to the die pad, the light projection/receiving package also is advantageous in that only a simple assembly of the integrated light projection/receiving lens on the die pad in parallel thereto can readily align the center axes of the light projection lens portion and the light receiving lens potion in parallel to the optical axes of the emitted light and the reflected light.

The light projection/receiving package may further be modified so the receiving element is provided in the number of two, the die pad has the penetrating hole between the two light receiving elements, the integrated light projection/receiving lens has the receiving lens portion in the number of two, and the light projection lens portion is formed between the two light receiving lenses.

The light projection/receiving-package has two light receiving elements and two light receiving lens portions on one plane of the die pad, which successfully improves light receiving sensitivity. Since the penetrating hole is formed in the die pad between both light receiving elements and the light projection lens portion is formed between the light receiving lens portions, the package also is advantageous in that it provides the light emitting assembly only within a space for forming the light receiving assembly. Accordingly, such constitution in which the light emitting element and the light receiving element are mounted on the front and rear planes will more efficiently contribute to space saving.

The light projection/receiving package of the third aspect of the invention may be modified so that the package has a front wall in parallel to the die pad on the side facing to the plane thereof on which the light receiving element is mounted-and the light projection lens opposed to the penetrating hole and the light receiving lens opposed to the light receiving element are separately provided on the front wall.

The light projection/receiving package has the light projection lens and the light receiving lens in a separated manner, which is beneficial in that it completely prevents generation of extraneous light (stray light) caused by diffraction or dispersion from the light projection lens portion towards the light receiving lens portion. The extraneous light is likely to generate for a case in which the integrated light projection/receiving lens made of a single kind of medium is used. The separate provision of the light projection lens and the light receiving lens allows material selection and coating to be optimized for the individual lenses, which raises the degree of freedom in lens design and also allows independent positional adjustment thereof, which improves accuracy in the adjustment.

The light projection/receiving package may be modified further to comprise a partition wall formed between the die pad and the front wall of the package so as to isolate an emissive optical path spade between the penetrating hole and the light projection lens from an incident optical path space between the light receiving lens and the light receiving element.

Since the emissive optical path space and the incident optical path space are isolated by the partition wall in the light projection/receiving package, the light emitted from the penetrating hole will never leak from the emissive optical path space to the incident optical path space. This arrangement completely prevents the light emitted from the light emitting element from becoming the extraneous light for the light receiving element. This improves the light receiving sensitivity.

The above and other objects, features and advantages of the present invention will become more apparent from the following description of the presently preferred exemplary embodiment of the invention taken in conjunction with the accompanying drawings, in which:

FIG. 1 is a sectional view showing a principal portion of an optical device for bar-code reading according to the present invention;

FIG. 2 is a front view of the optical device for bar-code reading shown in FIG. 1;

FIGS. 3A and 3B are a partly sectional view and a front view, respectively, of a light receiving lens as a single element shown in FIG. 1;

FIGS. 4A and 4B are a partly sectional view and a front view, respectively, of the assembled light receiving lens having inserted therein a light projection lens shown in FIG. 1;

FIGS. 5A and 5B are a partly sectional view and a front view, respectively, of a modified example of the light projection lens as a single element;

FIG. 6 is a sectional view for explaining an operational status of the optical device for bar-code reading shown in FIG. 1;

FIG. 7 is a sectional view of a first embodiment of a light projection/receiving package according to the present invention;

FIG. 8 is a drawing taken along the VIII--VIII line in FIG. 7;

FIG. 9 is a drawing taken along the IX--IX line in FIG. 7;

FIG. 10 is a drawing taken along the X--X line in FIG. 9;

FIG. 11 is a drawing for explaining the operation of the light projection/receiving package shown in FIG. 7;

FIG. 12 is a sectional view showing a second embodiment of the light projection/receiving package according to the present invention;

FIG. 13 is a drawing for explaining the operation of the optical device for bar-code reading shown in FIG. 12;

FIG. 14 is a sectional view showing a third embodiment of the light projection/receiving package according to the present invention;

FIG. 15 is a drawing taken along the XV--XV line in FIG. 14;

FIG. 16 is a drawing taken along the XVI--XVI line in FIG. 14;

FIG. 17 is a drawing taken along the XVII--XVII line in FIG. 16;

FIG. 18 is a drawing for explaining the operation of the light projection/receiving package shown in FIG. 14;

FIG. 19 is a schematic drawing for explaining a conventional optical reading system; and

FIG. 20 is a sectional view of a conventional optical device for bar-code reading.

Preferred embodiments of an optical device for bar-code reading and a method for manufacturing thereof according to the present invention will be detailed hereinafter by referring to the attached drawings.

FIG. 1 is a sectional view showing a principal portion of an optical device for bar-code reading according to the present invention; and, FIG. 2 is a front view of the optical device for bar-code reading shown in FIG. 1.

An optical device for bar-code reading (referred to as "scan engine" hereinafter) 31 according to the present embodiment has an integrated constitution of a light emitting assembly and a light receiving assembly, which have conventionally been separated members. More specifically, on one surface of a disc-formed substrate 33, a heat sink 35 having the form of a square rod is fixed so as to coincide the axis thereof with the center of the substrate. Electrical connection with heat sink 35 is attained by a heat sink lead 37a penetrating substrate 33.

On the end plane of heat sink 35 opposite to the plane fixed to the substrate, a light receiving element 39 is fixed. Receiving element 39 operates so as to essentially receive light coming from the front in an axial direction of heat sink 35 and subject the light to photo-electric conversion. Light receiving element 39 is electrically connected to a light receiving element lead 37b penetrating substrate 33 through a bonding wire 41.

On the other hand, on a side plane of heat sink 35, a light emitting element 43 is fixed. Accordingly, light emitting element 43 and light receiving element 39 are respectively provided on orthogonal planes positioned 90°C away from each other. Also, the light emitting element 43 is electrically connected to a light emitting element lead 37c penetrating substrate 33.

On the plane of substrate 33 on which heat sink 35 is fixed, a cylindrical casing 45 having an outer diameter approximately the same as that of substrate 33 is fixed in a concentric manner. That is, heat sink 35, light receiving element 39 and light emitting element 43 are housed in the casing 45. At an opened end (right end in the drawing) of casing 45, a light receiving lens 47 having an outer diameter approximately same as that of the casing 45 is fixed concentrically with heat sink 35. Light receiving lens 47 is responsible for focusing the reflected light from a bar code, not shown, towards light receiving element 39.

FIGS. 3A and 3B are a partly sectional view and a front view, respectively, of the receiving lens as a single element shown in FIG. 1; FIGS. 4A and 4B are a partly sectional view and a front view, respectively, of the assembled receiving lens having inserted therein a light projection lens shown in FIG. 1; and FIGS. 5A and 5B are a partly sectional view and a front view, respectively, of a modified example of the light projection lens as a single element.

Light receiving lens 47 has formed, in a portion opposing to light emitting element 43, a penetrating hole 51 penetrating a plane of incidence of light 47a and a plane of outgoing of light 47b in parallel to the optical axis. In penetrating hole 51, a light projection lens 53 is inserted.

Light projection lens 53 according to the present embodiment is composed as a compound lens which comprises a plurality of single lenses 55a and 55b. Single lenses 55a and 55b are housed in a cylinder 57 so as to make an optical axes thereof coincide with an axial line. Light projection lens 53 is incorporated into light receiving lens 47 in an integrated manner by inserting cylinder 57 into penetrating hole 51. The light projection lens 53 is composed so that light can propagate in an almost parallel form between two single lenses 55a, 55b, which ensures a large allowance for the dislocation of the axis in a direction perpendicular to the optical axis, and which is beneficial in improving the production yield or reliability.

Before completion of the attachment of light projection lens 53 into light receiving lens 47, the cylinder 57 is fitted to penetrating hole 51 so as to be freely movable along the axial line. It also is allowable for the light projection lens 53 that the single lenses 55a and 55b are fitted so as to be freely movable in the cylinder 57. This allows light projection lens 53 to be adjusted relative to light receiving lens 47 within a movable range of cylinder 57. After light projection lens 53 is properly positioned at a predetermined position, cylinder 57 or single lenses 55a and 55b are fixed using an adhesive or the like.

Since light projection lens 53 is composed so that a plurality of single lenses 55a and 55b are fitted within cylinder 57 and cylinder 57 is inserted in penetrating hole 51 of light receiving lens 47, a variety of positional adjustments of the lenses will be available, for example for moving the whole compound lens, previously fabricated so as to arrange single lenses 55a and 55b within cylinder 57 at regular intervals, relative to the penetrating hole 51, or such that moving arbitrary single lenses 55a and 55b relative to cylinder 57 while keeping cylinder 57 fixed in penetrating hole 51.

Cylinder 57 is preferably composed of a metal material. By composing the cylinder with a metal, light which comes from light emitting element 43 and goes into light projection lens 53 will never propagate from the inner circumferential surface of the penetrating hole 51 towards a medium of the light receiving lens 47. Accordingly, it is not probable that the light from the light emitting element 43 will come into receiving element 39 to cause extraneousness. This means that light receiving element 39 can gain a higher receiving accuracy of the reflected light.

To fabricate the thus composed scan engine 31, light receiving lens 47 is first positioned relative to light receiving element 39. Setting a height h of heat sink 35 above substrate 33 and a height H of casing 45 at predetermined values can affect the positioning. Light projection lens 53 is then adjusted by moving it relative to the thus positioned and fixed light receiving lens 47 and is finally fixed to penetrating hole 51 using an adhesive or the like when a predetermined position is found.

Besides that described in the above, light projection lens 53 can be composed only of a cylindrical single lens 55c, as shown in FIGS. 5A and 5B. Such composition of light projection lens 53 with single lens 55c will facilitate the manufacturing process as compared with that of the compound lens. The cylindrical shape also will be beneficial in that it facilitates the insertion of light projection lens 53 into penetrating hole 51, thus enabling fixation of light projection lens 53 to light receiving lens 47 in a manner freely movable along the optical axis without using any other members (for example, the foregoing cylinder 57).

FIG. 6 is a sectional view for explaining an operational status of the scan engine shown in FIG. 1. In scan engine 31 according to present embodiment, once the light emitting element 43 is activated by an emission drive circuit not shown, the emitted light is focused by light projection lens 53 and then emitted out from the emission end of such light projection lens 53. The emitted light irradiates a bar code not shown, and then it is reflected by the bar code, directed to light receiving lens 47 to be focused, and received by the light receiving element 39. Light receiving element 39 subjects the received light to photo-electric conversion to thereby convert the bar code pattern into electric signals and then outputs them through light receiving element lead 37b. A not shown computer then processes the output signals for decoding.

As has been described in the above, in scan engine 31, or the optical device for bar-code reading according to the present invention, the space for mounting light receiving lens 47 intrinsically contains the space for mounting light projection lens 53, since penetrating hole 51 is formed in the light receiving lens 47 and light projection lens 53 is inserted into penetrating hole 51. Accordingly, it is not necessary to keep space mounting for every lens, which results in downsizing and weight reduction. In addition, it allows the selection of a material and a coating optimized for each lens to thereby raise the degree of freedom in the design. It also is advantageous since the relative position of the light projection lens 53 and light receiving lens 47 can be adjusted, and positional errors of the individual lenses relative to the individual elements (light emitting element 53 and light receiving element 47) can surely be absorbed (minimized).

Preferred embodiments of a light projection/receiving package for bar-code reading according to a second aspect of the present invention will be detailed hereinafter referring to the attached drawings. FIG. 7 is a sectional view of a first embodiment of a light projection/receiving package according to the present invention; FIG. 8 is a drawing taken along the VIII--VIII line in FIG. 7; FIG. 9 is a drawing taken along the IX--IX line in FIG. 7; and FIG. 10 is a drawing taken along the X--X line in FIG. 9.

A light projection/receiving package 131 typically has a resin-made outer shell having the form of square-sectioned pipe opened at both ends. The light projection/receiving package 131 has inside thereof a die pad 133 which isolates an inner housing space of the light projection/receiving package 131 into a front housing chamber 135 and a rear housing chamber 137. The rear housing chamber 137 houses a light emitting element 139 mounted on a rear plane of the die pad 133. The light emitting element 139 has a monitoring PD (photodiode), not shown, for controlling the laser output to a predetermined level.

In the vicinity of light emitting element 139, an optical path bending means (fixed 45°C mirror) 141 for bending an advancing direction of light emitted from the light emitting element 139 approximately by the 90°C is mounted. Substituting fixed 45°C mirror 141 with a prism also can give a similar optical path. In the vicinity of fixed 45°C mirror 141, a penetrating hole 143 penetrating die pad 133 is formed, which allows the light, having its advancing direction already bent by fixed 45°C mirror 141, to pass through towards the opposite (front) plane of die pad 133 (the right side in FIG. 7).

Light projection/receiving package 131 has two light receiving elements 145 in order to improve receiving sensitivity. More specifically, front housing chamber 135 houses two light receiving elements 145 mounted on a front plane of die pad 133. In other words, light projection/receiving package 131 houses light emitting element 139 and light receiving elements 145 arranged back to back on die pad 133. Foregoing penetrating hole 143 formed in die pad 133 is located between two light receiving elements 145.

As shown in FIGS. 8 and 9, light projection/receiving package 131 has a plurality of leads 149 penetrating both side planes of a wall portion 147 and projecting out therefrom (4 leads each from the left and right planes, total 8 leads, in this embodiment). Four leads 149a, 149b, 149c and 149d, projected out from one side plane, exposed only in the rear housing chamber 137 and are connected to the individual electrodes of light emitting element 139. Another four leads 149e, 149f, 149g and 149h, projected out from the opposite side plane, are exposed only in front housing chamber 135 and are connected to the individual electrodes of light receiving elements 145 through bonding wires. The electrodes of light emitting element 139 and light-receiving element 145 are thus drawn out from light projection/receiving package 131 via leads 149.

Light projection/receiving package 131 can typically be mounted on a circuit board 151, as shown in FIG. 10, in which all leads 149 are bent backward at right angles, and connected and fixed to a circuit formed on circuit board 151 using solder or the like.

Since leads 149a, 149b, 149c and 149d connected to light emitting element 139 are exposed only in rear housing chamber 137 which houses light emitting element 139, and leads 149e, 149f, 149g and 149h connected to receiving elements 145 are exposed only in front housing chamber 135 which houses receiving elements 145 even a small housing space can successfully improve the isolating property between emitting element leads 149a, 149b, 149c and 149d and light receiving element leads 149e, 149f, 149g and 149h.

Light projection/receiving package 131 supports an integrated light projection/receiving lens 153, which comprises a light projection lens portion 153a and two receiving lens portions 153b integrated therewith, in parallel to die pad 133 on the side facing to the plane thereof on which light receiving elements 145 are mounted. Integrated light projection/receiving lens 153 is composed by forming two light receiving lens portions 153b and forming one light projection lens portion 153a between them.

Integrated light projection/receiving lens 153 can be formed using transparent resin such as polycarbonate or glass. Integrated light projection/receiving lens 153 is designed so as to be positioned and fixed in parallel to die pad 133 by placing it on the opened end of front housing chamber 135 and by fixing with an adhesive. Integrated light projection/receiving lens 153 is responsible for focusing the light emitted through penetrating hole 143 to thereby irradiate a bar code using light projection lens portion 153a for focusing the reflected light returned from the bar code to thereby direct the light towards light receiving elements 145 using light receiving lens portions 153b. In other words, only one integrated light projection/receiving lens 153 is responsible both for focusing the emitted light and for focusing the reflected light. The integrated light projection/receiving lens 153 also is advantageous in that facilitating the assembly thereof by simply placing it on the opened end of the casing wall thereby align itself in parallel to die pad 133, so as to align the center axes of light projection lens portion 153a and the light receiving lens portion 153b in parallel to the optical axes of the emitted light and the reflected light.

FIG. 11 is a drawing for explaining the operation of the light projection/receiving-package 131 shown in FIG. 7. In light projection/receiving package 131, the light emitted from light emitting element 139 changes advancing direction by 90°C with the aid of fixed 45°C mirror 141, passes through the penetrating hole 143, is focused by light projection lens portion 153a of integrated light projection/receiving lens 153 and is emitted. The emitted light is then reflected on a mirror of a scan mirror, not shown, and allowed to irradiate a bar code.

The light irradiated to the bar code returns back to the mirror with an intensity variation caused by the black-and-white pattern of the bar code while being affected by some irregular reflection, the light reflected there then goes into the light receiving lens portions 153b of the integrated light projection/receiving lens 153. The light that goes into receiving lens portions 153b is focused and is then received by light receiving elements 145. Light receiving elements 145 subject the light to photo-electric conversion to thereby convert the bar code pattern into electric signals and then output them through leads 149e, 149f, 149g, and 149h. A not shown computer receives the output signals and processes them for decoding the bar code information.

Since light projection/receiving package 131 is composed so that light emitting element 139 and light receiving elements 145 are mounted back to back on the front and rear planes of the single die pad 133, it is not necessary to keep both areas for mounting the light emitting element 139 and light receiving elements 145 on one plane (same plane) of die pad 133. That is, it will be sufficient to use die pad 133 affording a mounting area for light receiving elements 145, which generally require a larger mounting area, and this intrinsically allows mounting of light emitting element 139 on the opposite plane. Accordingly, die pad 133 in this case can be downsized by the area for mounting light emitting element 139, which successfully results in downsizing and weight reduction of light projection/receiving package 131.

Since the optical path of the light emitted from light emitting element 139 is bent approximately at right angles by fixed 45°C mirror 141, and this bent light is directed through penetrating hole 143 towards the opposite side of die pad 133, it is no more necessary to provide any optical means for bending the optical path outside the die pad 133, and the change in the optical path of the light from light emitting element 139 towards the opposite side can be accomplished only in a limited area on the die pad plane.

Light projection/receiving package 131 provided with the two light receiving elements 145 and two light receiving lens portions 153b on one plane of the die pad 133 successfully improves the receiving sensitivity. Since penetrating hole 143 is formed in die pad 133 between both of light receiving elements 145, and light projection lens portion 153a is formed between receiving lens portions 153b, the package also is advantageous in that it provides the light emitting assembly only within the space for forming light receiving assembly. Accordingly, the constitution in which light emitting element 139 and the light receiving elements 145, are mounted on the front and rear planes will contribute more efficiently to the space saving. More specifically, the package of the present embodiment having two or more light receiving elements 145 for a single light emitting element 139 will exhibit a more distinctive space-saving effect as compared with that exhibited by the package having only one light receiving element 145 for a single light emitting element 139.

The next paragraphs will describe a second embodiment of the light projection/receiving package according to a second aspect of the present invention. FIG. 12 is a sectional view showing a second embodiment of the light projection/receiving package according to the present invention, and FIG. 13 is a drawing for explaining the operation of the optical device for bar-code reading shown in FIG. 12. It should now be noted that members similar to those shown in FIGS. 7 to 12 will have the same reference numerals and will not be detailed again.

In a light projection/receiving package 161 according to the present embodiment, a light emitting-element 139 and a fixed 45°C mirror 141 are mounted on a rear plane of a die pad 163, the die pad 163 has formed therein a penetrating hole 143, and a light receiving element 145 is mounted on a front plane of die pad 163. Over the front plane of die pad 163, an integrated light projection/receiving lens 165, which comprises one light projection lens portion 165a and one light receiving lens portion 165b, is opposed in parallel to the die pad 163. In other words, the light projection/receiving package 161 has an all-in-one structure containing light receiving element 145 and light receiving lens portion 165b for focusing the reflected light onto light receiving element 145.

Also, in light projection/receiving package 161 shown in FIG. 13, light emitted from light emitting element 139 has its advancing direction changed 90°C by a fixed 45°C mirror 141, passes through the penetrating hole 143, is focused by light projection lens portion 165a of integrated light projection/receiving lens 165, and then is emitted. The emitted light is then reflected on a mirror of a scan mirror, not shown, and allowed to irradiate a bar code. The light irradiated on the bar code plane returns back to the mirror, goes into light receiving lens portion 165b of integrated light projection/receiving lens 165 to be focused, and then is received by light receiving element 145.

Although light projection/receiving package 161 will be slightly lower in receiving sensitivity than light projection/receiving package 131, die pad 163 and integrated light projection/receiving lens 164 can be made smaller, which promotes further downsizing and weight reduction.

A third embodiment of the light projection/receiving package according to a second aspect of the present invention will be described. FIG. 14 is a sectional view showing a third embodiment of the light projection/receiving package according to the present invention. FIG. 15 is a drawing taken along the XV--XV line in FIG. 14. FIG. 16 is a drawing taken along the XVI--XVI line in FIG. 14. FIG. 17 is a drawing taken along the XVII--XVII line in FIG. 16. It should now be noted that members similar to those shown in FIGS. 7 to 11 will have the same reference numerals and will not be detailed again.

A light projection/receiving package 171 according to the present embodiment, shown in FIGS. 14 and 15, has a die pad 173, on a rear plane of which the light emitting element 139 and a fixed 45°C mirror 141 are mounted, die pad 173 itself has a penetrating hole 143 formed therein, and on the front plane of which one light receiving element 145 is mounted.

On the side facing to the plane of die pad 173 on which the light receiving element 145 is mounted, a front package wall 175 is provided in parallel to die pad 173. As shown in FIG. 16, front package wall 175 has a light projection lens attachment hole 177 aligned concentrically with penetrating hole 143 and a square light receiving window 179 for allowing receiving element 145 to be expose. Front package wall 175 has a light projection lens 181 and a light receiving lens 183, which are provided as separate members, and which are attached to light projection lens attachment hole 177 and light receiving window 179, respectively.

Light projection lens attachment hole 177 has formed thereto a fitting portion for the convenience of attaching light projection lens 181. Light projection lens 181 is slid along the axial direction of the fitting portion to complete a necessary focus adjustment, and the outer periphery thereof is then fixed by adhesion to the fitting portion. This ensures the agreement of optical axes and focal points between light emitting element 139 and light projection lens 181 in a simple and accurate manner. Also, light receiving window 179 has formed a fitting portion for the convenience of attaching light receiving lens 183. By fitting light receiving lens 183 to the fitting portion, the optical axis and focus of light receiving lens 183 will readily be agreed with those of light receiving element 145.

As shown in FIGS. 15 and 16, light projection/receiving package 171 has six leads 185 in total, in which three leads penetrate wall portion 147 on each side. Three leads 185a, 185b and 185c projected out from one side plane expose only in a rear housing chamber 137 and are connected through bonding wires 187 to the individual electrodes of the light emitting element 139. Another three leads 185d, 185e, and 185f projected out from the opposite side plane expose only in a front housing chamber 135 and are connected to the individual electrodes of the light receiving element 145 through bonding wires 189.

Light projection/receiving package 171 can typically be mounted on a circuit board 151, as shown in FIG. 17, in which all leads 153 are bent backward at right angles, and connected and fixed to a circuit formed on circuit board 151 using solder or the like.

Light projection/receiving package 171 has a partition wall 195 formed between die pad 173 and front package wall 175 so as to isolate an emissive optical path space 191 between penetrating hole 143 and light projection lens 181 from an incident optical path space 193 between light receiving lens 183 and light receiving element 145. Accordingly, the light emitted form light emitting element 139 and reaching the emissive optical path space 191 after passing through penetrating hole 143 will never leak into the incident optical path space 193.

FIG. 18 is a drawing for explaining the operation of light projection/receiving package 171 shown in FIG. 14. In composed light projection/receiving package 171, the light emitted from light emitting element 139 changes its advancing direction by 90°C with the aid of fixed 45°C mirror 141, passes through penetrating hole 143, is focused by light projection lens 183, and then is emitted. The emitted light is then reflected on a mirror 197 of a scan mirror 196 and allowed to irradiate a bar code not shown.

The light irradiated to the bar code returns back to mirror 197 with an intensity variation caused by the black-and-white pattern of the bar code while being affected by some irregular reflection, the light reflected there then goes into light receiving lens 183. The reflected light that went into light receiving lens 183 is focused and is then received by light receiving element 145. Light receiving element 145 subjects the light to photo-electric conversion to thereby convert the bar code pattern into electric signals and then outputs them through the leads 185d, 185e, and 185f.

Light projection/redeiving package 171 has not only the basic effect of attaining a downsizing and a weight reduction similarly to light projection/receiving packages 131 and 151 according to the first and second embodiments, but it also has the effect of completely preventing the generation of extraneous light (stray light) caused by diffraction or dispersion from the light projection lens portion towards the receiving lens portion, which extraneous light is likely to generate in a case where an integrated light projection/receiving lens made of a single kind of medium is used, since light projection lens 181 and light receiving lens 183 are provided separately. Such separate provision of light projection lens 181 and light receiving lens 183 also allows material selection and coating to be optimized by the individual lenses, which raises the degree of freedom in the lens design and also still allows independent positional adjustment thereof, which improves accuracy in the adjustment.

Since emissive optical path space 191 and the incident optical path space 193 are isolated by partition wall 195, the light emitted from penetrating hole 143 will never leak from emissive optical path space 191 to the incident optical path space 193, which completely prevents the light emitted from light emitting element 139 from becoming the extraneous light for light receiving element 145. This improves the receiving sensitivity.

Aizawa, Hidekuni, Matsuura, Tamiaki, Shinzawa, Shigeru

Patent Priority Assignee Title
10149680, Apr 16 2013 Cilag GmbH International Surgical instrument comprising a gap setting system
10149682, Sep 30 2010 Cilag GmbH International Stapling system including an actuation system
10159483, Feb 27 2015 Cilag GmbH International Surgical apparatus configured to track an end-of-life parameter
10172616, Sep 29 2006 Cilag GmbH International Surgical staple cartridge
10172620, Sep 30 2015 Cilag GmbH International Compressible adjuncts with bonding nodes
10180463, Feb 27 2015 Cilag GmbH International Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
10182816, Feb 27 2015 Cilag GmbH International Charging system that enables emergency resolutions for charging a battery
10182819, Sep 30 2010 Cilag GmbH International Implantable layer assemblies
10188385, Dec 18 2014 Cilag GmbH International Surgical instrument system comprising lockable systems
10201349, Aug 23 2013 Cilag GmbH International End effector detection and firing rate modulation systems for surgical instruments
10201363, Jan 31 2006 Cilag GmbH International Motor-driven surgical instrument
10201364, Mar 26 2014 Cilag GmbH International Surgical instrument comprising a rotatable shaft
10206605, Mar 06 2015 Cilag GmbH International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
10206676, Feb 14 2008 Cilag GmbH International Surgical cutting and fastening instrument
10206677, Sep 26 2014 Cilag GmbH International Surgical staple and driver arrangements for staple cartridges
10206678, Oct 03 2006 Cilag GmbH International Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument
10211586, Jun 28 2017 Cilag GmbH International Surgical shaft assemblies with watertight housings
10213201, Mar 31 2015 Cilag GmbH International Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
10213262, Mar 23 2006 Cilag GmbH International Manipulatable surgical systems with selectively articulatable fastening device
10226249, Mar 01 2013 Cilag GmbH International Articulatable surgical instruments with conductive pathways for signal communication
10231794, May 27 2011 Cilag GmbH International Surgical stapling instruments with rotatable staple deployment arrangements
10238385, Feb 14 2008 Cilag GmbH International Surgical instrument system for evaluating tissue impedance
10238386, Sep 23 2015 Cilag GmbH International Surgical stapler having motor control based on an electrical parameter related to a motor current
10238387, Feb 14 2008 Cilag GmbH International Surgical instrument comprising a control system
10238391, Mar 14 2013 Cilag GmbH International Drive train control arrangements for modular surgical instruments
10245027, Dec 18 2014 Cilag GmbH International Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
10245028, Feb 27 2015 Cilag GmbH International Power adapter for a surgical instrument
10245029, Feb 09 2016 Cilag GmbH International Surgical instrument with articulating and axially translatable end effector
10245030, Feb 09 2016 Cilag GmbH International Surgical instruments with tensioning arrangements for cable driven articulation systems
10245032, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
10245033, Mar 06 2015 Cilag GmbH International Surgical instrument comprising a lockable battery housing
10245035, Aug 31 2005 Cilag GmbH International Stapling assembly configured to produce different formed staple heights
10258330, Sep 30 2010 Cilag GmbH International End effector including an implantable arrangement
10258331, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
10258332, Sep 30 2010 Cilag GmbH International Stapling system comprising an adjunct and a flowable adhesive
10258333, Jun 28 2012 Cilag GmbH International Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system
10258418, Jun 29 2017 Cilag GmbH International System for controlling articulation forces
10265067, Feb 14 2008 Cilag GmbH International Surgical instrument including a regulator and a control system
10265068, Dec 30 2015 Cilag GmbH International Surgical instruments with separable motors and motor control circuits
10265072, Sep 30 2010 Cilag GmbH International Surgical stapling system comprising an end effector including an implantable layer
10265074, Sep 30 2010 Cilag GmbH International Implantable layers for surgical stapling devices
10271845, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a cam and driver arrangement
10271846, Aug 31 2005 Cilag GmbH International Staple cartridge for use with a surgical stapler
10271849, Sep 30 2015 Cilag GmbH International Woven constructs with interlocked standing fibers
10278697, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
10278702, Jul 28 2004 Cilag GmbH International Stapling system comprising a firing bar and a lockout
10278722, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument
10278780, Jan 10 2007 Cilag GmbH International Surgical instrument for use with robotic system
10285695, Mar 01 2013 Cilag GmbH International Articulatable surgical instruments with conductive pathways
10285699, Sep 30 2015 Cilag GmbH International Compressible adjunct
10292704, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for battery pack failure in powered surgical instruments
10292707, Jul 28 2004 Cilag GmbH International Articulating surgical stapling instrument incorporating a firing mechanism
10293100, Jul 28 2004 Cilag GmbH International Surgical stapling instrument having a medical substance dispenser
10299787, Jun 04 2007 Cilag GmbH International Stapling system comprising rotary inputs
10299792, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising non-uniform fasteners
10299817, Jan 31 2006 Cilag GmbH International Motor-driven fastening assembly
10299878, Sep 25 2015 Cilag GmbH International Implantable adjunct systems for determining adjunct skew
10307160, Sep 30 2015 Cilag GmbH International Compressible adjunct assemblies with attachment layers
10307163, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
10307170, Jun 20 2017 Cilag GmbH International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
10314589, Jun 27 2006 Cilag GmbH International Surgical instrument including a shifting assembly
10314590, Jul 28 2004 Cilag GmbH International Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
10321909, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple including deformable members
10327764, Sep 26 2014 Cilag GmbH International Method for creating a flexible staple line
10327765, Jun 04 2007 Cilag GmbH International Drive systems for surgical instruments
10327767, Jun 20 2017 Cilag GmbH International Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
10327769, Sep 23 2015 Cilag GmbH International Surgical stapler having motor control based on a drive system component
10327776, Apr 16 2014 Cilag GmbH International Surgical stapling buttresses and adjunct materials
10327777, Sep 30 2015 Cilag GmbH International Implantable layer comprising plastically deformed fibers
10335145, Apr 15 2016 Cilag GmbH International Modular surgical instrument with configurable operating mode
10335148, Sep 30 2010 Cilag GmbH International Staple cartridge including a tissue thickness compensator for a surgical stapler
10335150, Sep 30 2010 Cilag GmbH International Staple cartridge comprising an implantable layer
10335151, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument
10342541, Oct 03 2006 Cilag GmbH International Surgical instruments with E-beam driver and rotary drive arrangements
10357247, Apr 15 2016 Cilag GmbH International Surgical instrument with multiple program responses during a firing motion
10363031, Sep 30 2010 Cilag GmbH International Tissue thickness compensators for surgical staplers
10363033, Jun 04 2007 Cilag GmbH International Robotically-controlled surgical instruments
10363036, Sep 23 2015 Cilag GmbH International Surgical stapler having force-based motor control
10363037, Apr 18 2016 Cilag GmbH International Surgical instrument system comprising a magnetic lockout
10368863, Jun 04 2007 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
10368864, Jun 20 2017 Cilag GmbH International Systems and methods for controlling displaying motor velocity for a surgical instrument
10368865, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
10368867, Apr 18 2016 Cilag GmbH International Surgical instrument comprising a lockout
10376263, Apr 01 2016 Cilag GmbH International Anvil modification members for surgical staplers
10383630, Jun 28 2012 Cilag GmbH International Surgical stapling device with rotary driven firing member
10383633, May 27 2011 Cilag GmbH International Robotically-driven surgical assembly
10383634, Jul 28 2004 Cilag GmbH International Stapling system incorporating a firing lockout
10390823, Feb 15 2008 Cilag GmbH International End effector comprising an adjunct
10390841, Jun 20 2017 Cilag GmbH International Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
10398433, Mar 28 2007 Cilag GmbH International Laparoscopic clamp load measuring devices
10398434, Jun 29 2017 Cilag GmbH International Closed loop velocity control of closure member for robotic surgical instrument
10398436, Sep 30 2010 Cilag GmbH International Staple cartridge comprising staples positioned within a compressible portion thereof
10405857, Apr 16 2013 Cilag GmbH International Powered linear surgical stapler
10405859, Apr 15 2016 Cilag GmbH International Surgical instrument with adjustable stop/start control during a firing motion
10413291, Feb 09 2016 Cilag GmbH International Surgical instrument articulation mechanism with slotted secondary constraint
10413294, Jun 28 2012 Cilag GmbH International Shaft assembly arrangements for surgical instruments
10420549, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
10420550, Feb 06 2009 Cilag GmbH International Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
10420553, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
10420555, Jun 28 2012 Cilag GmbH International Hand held rotary powered surgical instruments with end effectors that are articulatable about multiple axes
10420560, Jun 27 2006 Cilag GmbH International Manually driven surgical cutting and fastening instrument
10420561, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument
10426463, Jan 31 2006 Cilag GmbH International Surgical instrument having a feedback system
10426467, Apr 15 2016 Cilag GmbH International Surgical instrument with detection sensors
10426469, Apr 18 2016 Cilag GmbH International Surgical instrument comprising a primary firing lockout and a secondary firing lockout
10426471, Dec 21 2016 Cilag GmbH International Surgical instrument with multiple failure response modes
10426476, Sep 26 2014 Cilag GmbH International Circular fastener cartridges for applying radially expandable fastener lines
10426477, Sep 26 2014 Cilag GmbH International Staple cartridge assembly including a ramp
10426478, May 27 2011 Cilag GmbH International Surgical stapling systems
10426481, Feb 24 2014 Cilag GmbH International Implantable layer assemblies
10433837, Feb 09 2016 Cilag GmbH International Surgical instruments with multiple link articulation arrangements
10433840, Apr 18 2016 Cilag GmbH International Surgical instrument comprising a replaceable cartridge jaw
10433844, Mar 31 2015 Cilag GmbH International Surgical instrument with selectively disengageable threaded drive systems
10433846, Sep 30 2015 Cilag GmbH International Compressible adjunct with crossing spacer fibers
10433918, Jan 10 2007 Cilag GmbH International Surgical instrument system configured to evaluate the load applied to a firing member at the initiation of a firing stroke
10441279, Mar 06 2015 Cilag GmbH International Multiple level thresholds to modify operation of powered surgical instruments
10441281, Aug 23 2013 Cilag GmbH International surgical instrument including securing and aligning features
10441285, Mar 28 2012 Cilag GmbH International Tissue thickness compensator comprising tissue ingrowth features
10448948, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
10448950, Dec 21 2016 Cilag GmbH International Surgical staplers with independently actuatable closing and firing systems
10448952, Sep 29 2006 Cilag GmbH International End effector for use with a surgical fastening instrument
10456133, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
10456137, Apr 15 2016 Cilag GmbH International Staple formation detection mechanisms
10463369, Aug 31 2005 Cilag GmbH International Disposable end effector for use with a surgical instrument
10463370, Feb 14 2008 Ethicon LLC Motorized surgical instrument
10463372, Sep 30 2010 Cilag GmbH International Staple cartridge comprising multiple regions
10463383, Jan 31 2006 Cilag GmbH International Stapling instrument including a sensing system
10463384, Jan 31 2006 Cilag GmbH International Stapling assembly
10470762, Mar 14 2013 Cilag GmbH International Multi-function motor for a surgical instrument
10470763, Feb 14 2008 Cilag GmbH International Surgical cutting and fastening instrument including a sensing system
10470764, Feb 09 2016 Cilag GmbH International Surgical instruments with closure stroke reduction arrangements
10470768, Apr 16 2014 Cilag GmbH International Fastener cartridge including a layer attached thereto
10478181, Apr 18 2016 Cilag GmbH International Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
10478188, Sep 30 2015 Cilag GmbH International Implantable layer comprising a constricted configuration
10485536, Sep 30 2010 Cilag GmbH International Tissue stapler having an anti-microbial agent
10485537, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
10485539, Jan 31 2006 Cilag GmbH International Surgical instrument with firing lockout
10485541, Jun 28 2012 Cilag GmbH International Robotically powered surgical device with manually-actuatable reversing system
10485543, Dec 21 2016 Cilag GmbH International Anvil having a knife slot width
10485546, May 27 2011 Cilag GmbH International Robotically-driven surgical assembly
10485547, Jul 28 2004 Cilag GmbH International Surgical staple cartridges
10492783, Apr 15 2016 Cilag GmbH International Surgical instrument with improved stop/start control during a firing motion
10492785, Dec 21 2016 Cilag GmbH International Shaft assembly comprising a lockout
10499914, Dec 21 2016 Cilag GmbH International Staple forming pocket arrangements
10517590, Jan 10 2007 Cilag GmbH International Powered surgical instrument having a transmission system
10517594, Oct 29 2014 Cilag GmbH International Cartridge assemblies for surgical staplers
10517595, Dec 21 2016 Cilag GmbH International Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
10517596, Dec 21 2016 Cilag GmbH International Articulatable surgical instruments with articulation stroke amplification features
10517682, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
10524787, Mar 06 2015 Cilag GmbH International Powered surgical instrument with parameter-based firing rate
10524788, Sep 30 2015 Cilag GmbH International Compressible adjunct with attachment regions
10524789, Dec 21 2016 Cilag GmbH International Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
10524790, May 27 2011 Cilag GmbH International Robotically-controlled surgical stapling devices that produce formed staples having different lengths
10531887, Mar 06 2015 Cilag GmbH International Powered surgical instrument including speed display
10537325, Dec 21 2016 Cilag GmbH International Staple forming pocket arrangement to accommodate different types of staples
10542974, Feb 14 2008 Cilag GmbH International Surgical instrument including a control system
10542982, Dec 21 2016 Cilag GmbH International Shaft assembly comprising first and second articulation lockouts
10542988, Apr 16 2014 Cilag GmbH International End effector comprising an anvil including projections extending therefrom
10548504, Mar 06 2015 Cilag GmbH International Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
10548600, Sep 30 2010 Cilag GmbH International Multiple thickness implantable layers for surgical stapling devices
10561420, Sep 30 2015 Cilag GmbH International Tubular absorbable constructs
10561422, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising deployable tissue engaging members
10568624, Dec 21 2016 Cilag GmbH International Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
10568625, Dec 21 2016 Cilag GmbH International Staple cartridges and arrangements of staples and staple cavities therein
10568626, Dec 21 2016 Cilag GmbH International Surgical instruments with jaw opening features for increasing a jaw opening distance
10568629, Jul 28 2004 Cilag GmbH International Articulating surgical stapling instrument
10568652, Sep 29 2006 Cilag GmbH International Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
10575868, Mar 01 2013 Cilag GmbH International Surgical instrument with coupler assembly
10582928, Dec 21 2016 Cilag GmbH International Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system
10588623, Sep 30 2010 Cilag GmbH International Adhesive film laminate
10588625, Feb 09 2016 Cilag GmbH International Articulatable surgical instruments with off-axis firing beam arrangements
10588626, Mar 26 2014 Cilag GmbH International Surgical instrument displaying subsequent step of use
10588630, Dec 21 2016 Cilag GmbH International Surgical tool assemblies with closure stroke reduction features
10588631, Dec 21 2016 Cilag GmbH International Surgical instruments with positive jaw opening features
10588632, Dec 21 2016 Cilag GmbH International Surgical end effectors and firing members thereof
10588633, Jun 28 2017 Cilag GmbH International Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
10595862, Sep 29 2006 Cilag GmbH International Staple cartridge including a compressible member
10595882, Jun 20 2017 Cilag GmbH International Methods for closed loop control of motor velocity of a surgical stapling and cutting instrument
10603036, Dec 21 2016 Cilag GmbH International Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock
10603039, Sep 30 2015 Cilag GmbH International Progressively releasable implantable adjunct for use with a surgical stapling instrument
10610224, Dec 21 2016 Cilag GmbH International Lockout arrangements for surgical end effectors and replaceable tool assemblies
10617412, Mar 06 2015 Cilag GmbH International System for detecting the mis-insertion of a staple cartridge into a surgical stapler
10617413, Apr 01 2016 Cilag GmbH International Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
10617414, Dec 21 2016 Cilag GmbH International Closure member arrangements for surgical instruments
10617416, Mar 14 2013 Cilag GmbH International Control systems for surgical instruments
10617417, Nov 06 2014 Cilag GmbH International Staple cartridge comprising a releasable adjunct material
10617418, Aug 17 2015 Cilag GmbH International Implantable layers for a surgical instrument
10617420, May 27 2011 Cilag GmbH International Surgical system comprising drive systems
10624633, Jun 20 2017 Cilag GmbH International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
10624634, Aug 23 2013 Cilag GmbH International Firing trigger lockout arrangements for surgical instruments
10624635, Dec 21 2016 Cilag GmbH International Firing members with non-parallel jaw engagement features for surgical end effectors
10624861, Sep 30 2010 Cilag GmbH International Tissue thickness compensator configured to redistribute compressive forces
10631859, Jun 27 2017 Cilag GmbH International Articulation systems for surgical instruments
10639034, Dec 21 2016 Cilag GmbH International Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present
10639035, Dec 21 2016 Cilag GmbH International Surgical stapling instruments and replaceable tool assemblies thereof
10639036, Feb 14 2008 Cilag GmbH International Robotically-controlled motorized surgical cutting and fastening instrument
10639037, Jun 28 2017 Cilag GmbH International Surgical instrument with axially movable closure member
10639115, Jun 28 2012 Cilag GmbH International Surgical end effectors having angled tissue-contacting surfaces
10646220, Jun 20 2017 Cilag GmbH International Systems and methods for controlling displacement member velocity for a surgical instrument
10653413, Feb 09 2016 Cilag GmbH International Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly
10653417, Jan 31 2006 Cilag GmbH International Surgical instrument
10653435, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
10660640, Feb 14 2008 Cilag GmbH International Motorized surgical cutting and fastening instrument
10667808, Mar 28 2012 Cilag GmbH International Staple cartridge comprising an absorbable adjunct
10667809, Dec 21 2016 Cilag GmbH International Staple cartridge and staple cartridge channel comprising windows defined therein
10667810, Dec 21 2016 Cilag GmbH International Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
10667811, Dec 21 2016 Cilag GmbH International Surgical stapling instruments and staple-forming anvils
10675025, Dec 21 2016 Cilag GmbH International Shaft assembly comprising separately actuatable and retractable systems
10675026, Dec 21 2016 Cilag GmbH International Methods of stapling tissue
10675028, Jan 31 2006 Cilag GmbH International Powered surgical instruments with firing system lockout arrangements
10682134, Dec 21 2017 Cilag GmbH International Continuous use self-propelled stapling instrument
10682138, Dec 21 2016 Cilag GmbH International Bilaterally asymmetric staple forming pocket pairs
10682141, Feb 14 2008 Cilag GmbH International Surgical device including a control system
10682142, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus including an articulation system
10687806, Mar 06 2015 Cilag GmbH International Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
10687809, Dec 21 2016 Cilag GmbH International Surgical staple cartridge with movable camming member configured to disengage firing member lockout features
10687812, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
10687813, Dec 15 2017 Cilag GmbH International Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
10687817, Jul 28 2004 Cilag GmbH International Stapling device comprising a firing member lockout
10695055, Dec 21 2016 Cilag GmbH International Firing assembly comprising a lockout
10695057, Jun 28 2017 Cilag GmbH International Surgical instrument lockout arrangement
10695058, Dec 18 2014 Cilag GmbH International Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
10695062, Oct 01 2010 Cilag GmbH International Surgical instrument including a retractable firing member
10695063, Feb 13 2012 Cilag GmbH International Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
10702266, Apr 16 2013 Cilag GmbH International Surgical instrument system
10702267, Jun 29 2007 Cilag GmbH International Surgical stapling instrument having a releasable buttress material
10709468, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument
10716563, Jul 28 2004 Cilag GmbH International Stapling system comprising an instrument assembly including a lockout
10716565, Dec 19 2017 Cilag GmbH International Surgical instruments with dual articulation drivers
10716568, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with control features operable with one hand
10716614, Jun 28 2017 Cilag GmbH International Surgical shaft assemblies with slip ring assemblies with increased contact pressure
10722232, Feb 14 2008 Cilag GmbH International Surgical instrument for use with different cartridges
10729432, Mar 06 2015 Cilag GmbH International Methods for operating a powered surgical instrument
10729436, Aug 31 2005 Cilag GmbH International Robotically-controlled surgical stapling devices that produce formed staples having different lengths
10729501, Sep 29 2017 Cilag GmbH International Systems and methods for language selection of a surgical instrument
10729509, Dec 19 2017 Cilag GmbH International Surgical instrument comprising closure and firing locking mechanism
10736628, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
10736629, Dec 21 2016 Cilag GmbH International Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
10736630, Oct 13 2014 Cilag GmbH International Staple cartridge
10736633, Sep 30 2015 Cilag GmbH International Compressible adjunct with looping members
10736634, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument including a drive system
10736636, Dec 10 2014 Cilag GmbH International Articulatable surgical instrument system
10743849, Jan 31 2006 Cilag GmbH International Stapling system including an articulation system
10743851, Feb 14 2008 Cilag GmbH International Interchangeable tools for surgical instruments
10743868, Dec 21 2017 Cilag GmbH International Surgical instrument comprising a pivotable distal head
10743870, Feb 14 2008 Cilag GmbH International Surgical stapling apparatus with interlockable firing system
10743872, Sep 29 2017 Cilag GmbH International System and methods for controlling a display of a surgical instrument
10743873, Dec 18 2014 Cilag GmbH International Drive arrangements for articulatable surgical instruments
10743874, Dec 15 2017 Cilag GmbH International Sealed adapters for use with electromechanical surgical instruments
10743875, Dec 15 2017 Cilag GmbH International Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
10743877, Sep 30 2010 Cilag GmbH International Surgical stapler with floating anvil
10751053, Sep 26 2014 Cilag GmbH International Fastener cartridges for applying expandable fastener lines
10751076, Dec 24 2009 Cilag GmbH International Motor-driven surgical cutting instrument with electric actuator directional control assembly
10751138, Jan 10 2007 Cilag GmbH International Surgical instrument for use with a robotic system
10758229, Dec 21 2016 Cilag GmbH International Surgical instrument comprising improved jaw control
10758230, Dec 21 2016 Cilag GmbH International Surgical instrument with primary and safety processors
10758232, Jun 28 2017 Cilag GmbH International Surgical instrument with positive jaw opening features
10765425, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
10765427, Jun 28 2017 Cilag GmbH International Method for articulating a surgical instrument
10765429, Sep 29 2017 Cilag GmbH International Systems and methods for providing alerts according to the operational state of a surgical instrument
10765432, Feb 14 2008 Cilag GmbH International Surgical device including a control system
10772625, Mar 06 2015 Cilag GmbH International Signal and power communication system positioned on a rotatable shaft
10772629, Jun 27 2017 Cilag GmbH International Surgical anvil arrangements
10779820, Jun 20 2017 Cilag GmbH International Systems and methods for controlling motor speed according to user input for a surgical instrument
10779821, Aug 20 2018 Cilag GmbH International Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
10779822, Feb 14 2008 Cilag GmbH International System including a surgical cutting and fastening instrument
10779823, Dec 21 2016 Cilag GmbH International Firing member pin angle
10779824, Jun 28 2017 Cilag GmbH International Surgical instrument comprising an articulation system lockable by a closure system
10779825, Dec 15 2017 Cilag GmbH International Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
10779826, Dec 15 2017 Cilag GmbH International Methods of operating surgical end effectors
10779903, Oct 31 2017 Cilag GmbH International Positive shaft rotation lock activated by jaw closure
10780539, May 27 2011 Cilag GmbH International Stapling instrument for use with a robotic system
10786253, Jun 28 2017 Cilag GmbH International Surgical end effectors with improved jaw aperture arrangements
10796471, Sep 29 2017 Cilag GmbH International Systems and methods of displaying a knife position for a surgical instrument
10799240, Jul 28 2004 Cilag GmbH International Surgical instrument comprising a staple firing lockout
10806448, Dec 18 2014 Cilag GmbH International Surgical instrument assembly comprising a flexible articulation system
10806449, Nov 09 2005 Cilag GmbH International End effectors for surgical staplers
10806450, Feb 14 2008 Cilag GmbH International Surgical cutting and fastening instrument having a control system
10806479, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
10813638, Dec 21 2016 Cilag GmbH International Surgical end effectors with expandable tissue stop arrangements
10813639, Jun 20 2017 Cilag GmbH International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
10813641, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument
10828028, Apr 15 2016 Cilag GmbH International Surgical instrument with multiple program responses during a firing motion
10828032, Aug 23 2013 Cilag GmbH International End effector detection systems for surgical instruments
10828033, Dec 15 2017 Cilag GmbH International Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
10835245, Dec 21 2016 Cilag GmbH International Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot
10835247, Dec 21 2016 Cilag GmbH International Lockout arrangements for surgical end effectors
10835249, Aug 17 2015 Cilag GmbH International Implantable layers for a surgical instrument
10835251, Sep 30 2010 Cilag GmbH International Surgical instrument assembly including an end effector configurable in different positions
10835330, Dec 19 2017 Cilag GmbH International Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
10842488, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a fixed anvil and different staple heights
10842489, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a cam and driver arrangement
10842490, Oct 31 2017 Cilag GmbH International Cartridge body design with force reduction based on firing completion
10842491, Jan 31 2006 Cilag GmbH International Surgical system with an actuation console
10842492, Aug 20 2018 Cilag GmbH International Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
10856866, Feb 15 2008 Cilag GmbH International Surgical end effector having buttress retention features
10856868, Dec 21 2016 Cilag GmbH International Firing member pin configurations
10856869, Jun 27 2017 Cilag GmbH International Surgical anvil arrangements
10856870, Aug 20 2018 Cilag GmbH International Switching arrangements for motor powered articulatable surgical instruments
10863981, Mar 26 2014 Cilag GmbH International Interface systems for use with surgical instruments
10863986, Sep 23 2015 Cilag GmbH International Surgical stapler having downstream current-based motor control
10869664, Aug 31 2005 Cilag GmbH International End effector for use with a surgical stapling instrument
10869665, Aug 23 2013 Cilag GmbH International Surgical instrument system including a control system
10869666, Dec 15 2017 Cilag GmbH International Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
10869669, Sep 30 2010 Cilag GmbH International Surgical instrument assembly
10874391, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
10874396, Feb 14 2008 Cilag GmbH International Stapling instrument for use with a surgical robot
10881396, Jun 20 2017 Cilag GmbH International Surgical instrument with variable duration trigger arrangement
10881399, Jun 20 2017 Cilag GmbH International Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
10881401, Dec 21 2016 Cilag GmbH International Staple firing member comprising a missing cartridge and/or spent cartridge lockout
10888318, Apr 16 2013 Cilag GmbH International Powered surgical stapler
10888321, Jun 20 2017 Cilag GmbH International Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
10888322, Dec 21 2016 Cilag GmbH International Surgical instrument comprising a cutting member
10888328, Sep 30 2010 Cilag GmbH International Surgical end effector
10888329, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
10888330, Feb 14 2008 Cilag GmbH International Surgical system
10893853, Jan 31 2006 Cilag GmbH International Stapling assembly including motor drive systems
10893864, Dec 21 2016 Cilag GmbH International Staple cartridges and arrangements of staples and staple cavities therein
10893867, Mar 14 2013 Cilag GmbH International Drive train control arrangements for modular surgical instruments
10898183, Jun 29 2017 Cilag GmbH International Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
10898184, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
10898185, Mar 26 2014 Cilag GmbH International Surgical instrument power management through sleep and wake up control
10898186, Dec 21 2016 Cilag GmbH International Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
10898190, Aug 23 2013 Cilag GmbH International Secondary battery arrangements for powered surgical instruments
10898193, Sep 30 2010 Cilag GmbH International End effector for use with a surgical instrument
10898194, May 27 2011 Cilag GmbH International Detachable motor powered surgical instrument
10898195, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
10903685, Jun 28 2017 Cilag GmbH International Surgical shaft assemblies with slip ring assemblies forming capacitive channels
10905418, Oct 16 2014 Cilag GmbH International Staple cartridge comprising a tissue thickness compensator
10905422, Dec 21 2016 Cilag GmbH International Surgical instrument for use with a robotic surgical system
10905423, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
10905426, Feb 14 2008 Cilag GmbH International Detachable motor powered surgical instrument
10905427, Feb 14 2008 Cilag GmbH International Surgical System
10912559, Aug 20 2018 Cilag GmbH International Reinforced deformable anvil tip for surgical stapler anvil
10912575, Jan 11 2007 Cilag GmbH International Surgical stapling device having supports for a flexible drive mechanism
10918380, Jan 31 2006 Cilag GmbH International Surgical instrument system including a control system
10918385, Dec 21 2016 Cilag GmbH International Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
10918386, Jan 10 2007 Cilag GmbH International Interlock and surgical instrument including same
10925605, Feb 14 2008 Cilag GmbH International Surgical stapling system
10932772, Jun 29 2017 Cilag GmbH International Methods for closed loop velocity control for robotic surgical instrument
10932774, Aug 30 2005 Cilag GmbH International Surgical end effector for forming staples to different heights
10932775, Jun 28 2012 Cilag GmbH International Firing system lockout arrangements for surgical instruments
10932778, Oct 10 2008 Cilag GmbH International Powered surgical cutting and stapling apparatus with manually retractable firing system
10932779, Sep 30 2015 Cilag GmbH International Compressible adjunct with crossing spacer fibers
10945728, Dec 18 2014 Cilag GmbH International Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
10945729, Jan 10 2007 Cilag GmbH International Interlock and surgical instrument including same
10945731, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising controlled release and expansion
10952727, Jan 10 2007 Cilag GmbH International Surgical instrument for assessing the state of a staple cartridge
10952728, Jan 31 2006 Cilag GmbH International Powered surgical instruments with firing system lockout arrangements
10959722, Jan 31 2006 Cilag GmbH International Surgical instrument for deploying fasteners by way of rotational motion
10959725, Jun 15 2012 Cilag GmbH International Articulatable surgical instrument comprising a firing drive
10959727, Dec 21 2016 Cilag GmbH International Articulatable surgical end effector with asymmetric shaft arrangement
10966627, Mar 06 2015 Cilag GmbH International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
10966718, Dec 15 2017 Cilag GmbH International Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
10973516, Dec 21 2016 Cilag GmbH International Surgical end effectors and adaptable firing members therefor
10980534, May 27 2011 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
10980535, Sep 23 2008 Cilag GmbH International Motorized surgical instrument with an end effector
10980536, Dec 21 2016 Cilag GmbH International No-cartridge and spent cartridge lockout arrangements for surgical staplers
10980537, Jun 20 2017 Cilag GmbH International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
10980539, Sep 30 2015 Cilag GmbH International Implantable adjunct comprising bonded layers
10987102, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising a plurality of layers
10993713, Nov 09 2005 Cilag GmbH International Surgical instruments
10993716, Jun 27 2017 Cilag GmbH International Surgical anvil arrangements
10993717, Jan 31 2006 Cilag GmbH International Surgical stapling system comprising a control system
11000274, Aug 23 2013 Cilag GmbH International Powered surgical instrument
11000275, Jan 31 2006 Cilag GmbH International Surgical instrument
11000277, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
11000279, Jun 28 2017 Cilag GmbH International Surgical instrument comprising an articulation system ratio
11006951, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and sensor transponders
11006955, Dec 15 2017 Cilag GmbH International End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
11007004, Jun 28 2012 Cilag GmbH International Powered multi-axial articulable electrosurgical device with external dissection features
11007022, Jun 29 2017 Cilag GmbH International Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
11013511, Jun 22 2007 Cilag GmbH International Surgical stapling instrument with an articulatable end effector
11020112, Dec 19 2017 Cilag GmbH International Surgical tools configured for interchangeable use with different controller interfaces
11020113, Jan 31 2006 Cilag GmbH International Surgical instrument having force feedback capabilities
11020114, Jun 28 2017 Cilag GmbH International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
11020115, Feb 12 2014 Cilag GmbH International Deliverable surgical instrument
11026678, Sep 23 2015 Cilag GmbH International Surgical stapler having motor control based on an electrical parameter related to a motor current
11026680, Aug 23 2013 Cilag GmbH International Surgical instrument configured to operate in different states
11026684, Apr 15 2016 Cilag GmbH International Surgical instrument with multiple program responses during a firing motion
11033267, Dec 15 2017 Cilag GmbH International Systems and methods of controlling a clamping member firing rate of a surgical instrument
11039834, Aug 20 2018 Cilag GmbH International Surgical stapler anvils with staple directing protrusions and tissue stability features
11039836, Jan 11 2007 Cilag GmbH International Staple cartridge for use with a surgical stapling instrument
11039837, Jun 28 2012 Cilag GmbH International Firing system lockout arrangements for surgical instruments
11045189, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
11045192, Aug 20 2018 Cilag GmbH International Fabricating techniques for surgical stapler anvils
11045270, Dec 19 2017 Cilag GmbH International Robotic attachment comprising exterior drive actuator
11051807, Jun 28 2019 Cilag GmbH International Packaging assembly including a particulate trap
11051810, Apr 15 2016 Cilag GmbH International Modular surgical instrument with configurable operating mode
11051811, Jan 31 2006 Cilag GmbH International End effector for use with a surgical instrument
11051813, Jan 31 2006 Cilag GmbH International Powered surgical instruments with firing system lockout arrangements
11058418, Feb 15 2008 Cilag GmbH International Surgical end effector having buttress retention features
11058420, Jan 31 2006 Cilag GmbH International Surgical stapling apparatus comprising a lockout system
11058422, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for battery pack failure in powered surgical instruments
11058423, Jun 28 2012 Cilag GmbH International Stapling system including first and second closure systems for use with a surgical robot
11058424, Jun 28 2017 Cilag GmbH International Surgical instrument comprising an offset articulation joint
11058425, Aug 17 2015 Cilag GmbH International Implantable layers for a surgical instrument
11064998, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
11071543, Dec 15 2017 Cilag GmbH International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
11071545, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
11071554, Jun 20 2017 Cilag GmbH International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
11076853, Dec 21 2017 Cilag GmbH International Systems and methods of displaying a knife position during transection for a surgical instrument
11076854, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
11076929, Sep 25 2015 Cilag GmbH International Implantable adjunct systems for determining adjunct skew
11083452, Sep 30 2010 Cilag GmbH International Staple cartridge including a tissue thickness compensator
11083453, Dec 18 2014 Cilag GmbH International Surgical stapling system including a flexible firing actuator and lateral buckling supports
11083454, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11083455, Jun 28 2017 Cilag GmbH International Surgical instrument comprising an articulation system ratio
11083456, Jul 28 2004 Cilag GmbH International Articulating surgical instrument incorporating a two-piece firing mechanism
11083457, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
11083458, Aug 20 2018 Cilag GmbH International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
11090045, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
11090046, Jun 20 2017 Cilag GmbH International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
11090048, Dec 21 2016 Cilag GmbH International Method for resetting a fuse of a surgical instrument shaft
11090049, Jun 27 2017 Cilag GmbH International Staple forming pocket arrangements
11090075, Oct 30 2017 Cilag GmbH International Articulation features for surgical end effector
11096689, Dec 21 2016 Cilag GmbH International Shaft assembly comprising a lockout
11103241, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11103269, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
11109858, Aug 23 2012 Cilag GmbH International Surgical instrument including a display which displays the position of a firing element
11109859, Mar 06 2015 Cilag GmbH International Surgical instrument comprising a lockable battery housing
11109860, Jun 28 2012 Cilag GmbH International Surgical end effectors for use with hand-held and robotically-controlled rotary powered surgical systems
11116502, Jul 28 2004 Cilag GmbH International Surgical stapling instrument incorporating a two-piece firing mechanism
11129613, Dec 30 2015 Cilag GmbH International Surgical instruments with separable motors and motor control circuits
11129615, Feb 05 2009 Cilag GmbH International Surgical stapling system
11129616, May 27 2011 Cilag GmbH International Surgical stapling system
11129680, Dec 21 2017 Cilag GmbH International Surgical instrument comprising a projector
11133106, Aug 23 2013 Cilag GmbH International Surgical instrument assembly comprising a retraction assembly
11134938, Jun 04 2007 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
11134940, Aug 23 2013 Cilag GmbH International Surgical instrument including a variable speed firing member
11134942, Dec 21 2016 Cilag GmbH International Surgical stapling instruments and staple-forming anvils
11134943, Jan 10 2007 Cilag GmbH International Powered surgical instrument including a control unit and sensor
11134944, Oct 30 2017 Cilag GmbH International Surgical stapler knife motion controls
11134947, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a camming sled with variable cam arrangements
11135352, Jul 28 2004 Cilag GmbH International End effector including a gradually releasable medical adjunct
11141153, Oct 29 2014 Cilag GmbH International Staple cartridges comprising driver arrangements
11141154, Jun 27 2017 Cilag GmbH International Surgical end effectors and anvils
11141155, Jun 28 2012 Cilag GmbH International Drive system for surgical tool
11141156, Jun 28 2012 Cilag GmbH International Surgical stapling assembly comprising flexible output shaft
11147549, Jun 04 2007 Cilag GmbH International Stapling instrument including a firing system and a closure system
11147551, Mar 25 2019 Cilag GmbH International Firing drive arrangements for surgical systems
11147553, Mar 25 2019 Cilag GmbH International Firing drive arrangements for surgical systems
11147554, Apr 18 2016 Cilag GmbH International Surgical instrument system comprising a magnetic lockout
11154296, Mar 28 2012 Cilag GmbH International Anvil layer attached to a proximal end of an end effector
11154297, Feb 15 2008 Cilag GmbH International Layer arrangements for surgical staple cartridges
11154298, Jun 04 2007 Cilag GmbH International Stapling system for use with a robotic surgical system
11154299, Jun 28 2012 Cilag GmbH International Stapling assembly comprising a firing lockout
11154301, Feb 27 2015 Cilag GmbH International Modular stapling assembly
11160551, Dec 21 2016 Cilag GmbH International Articulatable surgical stapling instruments
11160553, Dec 21 2016 Cilag GmbH International Surgical stapling systems
11166717, Jan 31 2006 Cilag GmbH International Surgical instrument with firing lockout
11166720, Jan 10 2007 Cilag GmbH International Surgical instrument including a control module for assessing an end effector
11172927, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
11172929, Mar 25 2019 Cilag GmbH International Articulation drive arrangements for surgical systems
11179150, Apr 15 2016 Cilag GmbH International Systems and methods for controlling a surgical stapling and cutting instrument
11179151, Dec 21 2017 Cilag GmbH International Surgical instrument comprising a display
11179152, Dec 21 2017 Cilag GmbH International Surgical instrument comprising a tissue grasping system
11179153, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
11179155, Dec 21 2016 Cilag GmbH International Anvil arrangements for surgical staplers
11185325, Oct 16 2014 Cilag GmbH International End effector including different tissue gaps
11185330, Apr 16 2014 Cilag GmbH International Fastener cartridge assemblies and staple retainer cover arrangements
11191539, Dec 21 2016 Cilag GmbH International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
11191540, Dec 21 2016 Cilag GmbH International Protective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument
11191543, Dec 21 2016 Cilag GmbH International Assembly comprising a lock
11191545, Apr 15 2016 Cilag GmbH International Staple formation detection mechanisms
11197670, Dec 15 2017 Cilag GmbH International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
11197671, Jun 28 2012 Cilag GmbH International Stapling assembly comprising a lockout
11202631, Jun 28 2012 Cilag GmbH International Stapling assembly comprising a firing lockout
11202633, Sep 26 2014 Cilag GmbH International Surgical stapling buttresses and adjunct materials
11207064, May 27 2011 Cilag GmbH International Automated end effector component reloading system for use with a robotic system
11207065, Aug 20 2018 Cilag GmbH International Method for fabricating surgical stapler anvils
11213293, Feb 09 2016 Cilag GmbH International Articulatable surgical instruments with single articulation link arrangements
11213302, Jun 20 2017 Cilag GmbH International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
11219455, Jun 28 2019 Cilag GmbH International Surgical instrument including a lockout key
11224423, Mar 06 2015 Cilag GmbH International Smart sensors with local signal processing
11224426, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11224427, Jan 31 2006 Cilag GmbH International Surgical stapling system including a console and retraction assembly
11224428, Dec 21 2016 Cilag GmbH International Surgical stapling systems
11224454, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
11224497, Jun 28 2019 Cilag GmbH International Surgical systems with multiple RFID tags
11229437, Jun 28 2019 Cilag GmbH International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
11234698, Dec 19 2019 Cilag GmbH International Stapling system comprising a clamp lockout and a firing lockout
11241229, Oct 29 2014 Cilag GmbH International Staple cartridges comprising driver arrangements
11241230, Jun 28 2012 Cilag GmbH International Clip applier tool for use with a robotic surgical system
11241235, Jun 28 2019 Cilag GmbH International Method of using multiple RFID chips with a surgical assembly
11246590, Aug 31 2005 Cilag GmbH International Staple cartridge including staple drivers having different unfired heights
11246592, Jun 28 2017 Cilag GmbH International Surgical instrument comprising an articulation system lockable to a frame
11246616, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
11246618, Mar 01 2013 Cilag GmbH International Surgical instrument soft stop
11246678, Jun 28 2019 Cilag GmbH International Surgical stapling system having a frangible RFID tag
11253254, Apr 30 2019 Cilag GmbH International Shaft rotation actuator on a surgical instrument
11253256, Aug 20 2018 Cilag GmbH International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
11259799, Mar 26 2014 Cilag GmbH International Interface systems for use with surgical instruments
11259803, Jun 28 2019 Cilag GmbH International Surgical stapling system having an information encryption protocol
11259805, Jun 28 2017 Cilag GmbH International Surgical instrument comprising firing member supports
11266405, Jun 27 2017 Cilag GmbH International Surgical anvil manufacturing methods
11266406, Mar 14 2013 Cilag GmbH International Control systems for surgical instruments
11266409, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising a sled including longitudinally-staggered ramps
11266410, May 27 2011 Cilag GmbH International Surgical device for use with a robotic system
11272927, Feb 15 2008 Cilag GmbH International Layer arrangements for surgical staple cartridges
11272928, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
11272938, Jun 27 2006 Cilag GmbH International Surgical instrument including dedicated firing and retraction assemblies
11278279, Jan 31 2006 Cilag GmbH International Surgical instrument assembly
11278284, Jun 28 2012 Cilag GmbH International Rotary drive arrangements for surgical instruments
11284891, Apr 15 2016 Cilag GmbH International Surgical instrument with multiple program responses during a firing motion
11284898, Sep 18 2014 Cilag GmbH International Surgical instrument including a deployable knife
11284953, Dec 19 2017 Cilag GmbH International Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
11291440, Aug 20 2018 Cilag GmbH International Method for operating a powered articulatable surgical instrument
11291441, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and remote sensor
11291447, Dec 19 2019 Cilag GmbH International Stapling instrument comprising independent jaw closing and staple firing systems
11291449, Dec 24 2009 Cilag GmbH International Surgical cutting instrument that analyzes tissue thickness
11291451, Jun 28 2019 Cilag GmbH International Surgical instrument with battery compatibility verification functionality
11298125, Sep 30 2010 Cilag GmbH International Tissue stapler having a thickness compensator
11298127, Jun 28 2019 Cilag GmbH International Surgical stapling system having a lockout mechanism for an incompatible cartridge
11298132, Jun 28 2019 Cilag GmbH International Staple cartridge including a honeycomb extension
11298134, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising non-uniform fasteners
11304695, Aug 03 2017 Cilag GmbH International Surgical system shaft interconnection
11304696, Dec 19 2019 Cilag GmbH International Surgical instrument comprising a powered articulation system
11311290, Dec 21 2017 Cilag GmbH International Surgical instrument comprising an end effector dampener
11311292, Apr 15 2016 Cilag GmbH International Surgical instrument with detection sensors
11311294, Sep 05 2014 Cilag GmbH International Powered medical device including measurement of closure state of jaws
11317910, Apr 15 2016 Cilag GmbH International Surgical instrument with detection sensors
11317913, Dec 21 2016 Cilag GmbH International Lockout arrangements for surgical end effectors and replaceable tool assemblies
11317917, Apr 18 2016 Cilag GmbH International Surgical stapling system comprising a lockable firing assembly
11324501, Aug 20 2018 Cilag GmbH International Surgical stapling devices with improved closure members
11324503, Jun 27 2017 Cilag GmbH International Surgical firing member arrangements
11324506, Feb 27 2015 Cilag GmbH International Modular stapling assembly
11337691, Dec 21 2017 Cilag GmbH International Surgical instrument configured to determine firing path
11337693, Jun 29 2007 Cilag GmbH International Surgical stapling instrument having a releasable buttress material
11337698, Nov 06 2014 Cilag GmbH International Staple cartridge comprising a releasable adjunct material
11344299, Sep 23 2015 Cilag GmbH International Surgical stapler having downstream current-based motor control
11344303, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11350843, Mar 06 2015 Cilag GmbH International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
11350916, Jan 31 2006 Cilag GmbH International Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
11350928, Apr 18 2016 Cilag GmbH International Surgical instrument comprising a tissue thickness lockout and speed control system
11350929, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication between control unit and sensor transponders
11350932, Apr 15 2016 Cilag GmbH International Surgical instrument with improved stop/start control during a firing motion
11350934, Dec 21 2016 Cilag GmbH International Staple forming pocket arrangement to accommodate different types of staples
11350935, Dec 21 2016 Cilag GmbH International Surgical tool assemblies with closure stroke reduction features
11350938, Jun 28 2019 Cilag GmbH International Surgical instrument comprising an aligned rfid sensor
11364027, Dec 21 2017 Cilag GmbH International Surgical instrument comprising speed control
11364046, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
11369368, Dec 21 2017 Cilag GmbH International Surgical instrument comprising synchronized drive systems
11369376, Dec 21 2016 Cilag GmbH International Surgical stapling systems
11373755, Aug 23 2012 Cilag GmbH International Surgical device drive system including a ratchet mechanism
11376001, Aug 23 2013 Cilag GmbH International Surgical stapling device with rotary multi-turn retraction mechanism
11376098, Jun 28 2019 Cilag GmbH International Surgical instrument system comprising an RFID system
11382625, Apr 16 2014 Cilag GmbH International Fastener cartridge comprising non-uniform fasteners
11382626, Oct 03 2006 Cilag GmbH International Surgical system including a knife bar supported for rotational and axial travel
11382627, Apr 16 2014 Cilag GmbH International Surgical stapling assembly comprising a firing member including a lateral extension
11382628, Dec 10 2014 Cilag GmbH International Articulatable surgical instrument system
11382638, Jun 20 2017 Cilag GmbH International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
11389160, Aug 23 2013 Cilag GmbH International Surgical system comprising a display
11389161, Jun 28 2017 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
11389162, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
11395651, Sep 30 2010 Cilag GmbH International Adhesive film laminate
11395652, Apr 16 2013 Cilag GmbH International Powered surgical stapler
11399828, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a fixed anvil and different staple heights
11399829, Sep 29 2017 Cilag GmbH International Systems and methods of initiating a power shutdown mode for a surgical instrument
11399831, Dec 18 2014 Cilag GmbH International Drive arrangements for articulatable surgical instruments
11399837, Jun 28 2019 Cilag GmbH International Mechanisms for motor control adjustments of a motorized surgical instrument
11406377, Sep 30 2010 Cilag GmbH International Adhesive film laminate
11406378, Mar 28 2012 Cilag GmbH International Staple cartridge comprising a compressible tissue thickness compensator
11406380, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
11406381, Apr 16 2013 Cilag GmbH International Powered surgical stapler
11406386, Sep 05 2014 Cilag GmbH International End effector including magnetic and impedance sensors
11419606, Dec 21 2016 Cilag GmbH International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
11426160, Mar 06 2015 Cilag GmbH International Smart sensors with local signal processing
11426167, Jun 28 2019 Cilag GmbH International Mechanisms for proper anvil attachment surgical stapling head assembly
11426251, Apr 30 2019 Cilag GmbH International Articulation directional lights on a surgical instrument
11432816, Apr 30 2019 Cilag GmbH International Articulation pin for a surgical instrument
11439470, May 27 2011 Cilag GmbH International Robotically-controlled surgical instrument with selectively articulatable end effector
11446029, Dec 19 2019 Cilag GmbH International Staple cartridge comprising projections extending from a curved deck surface
11446034, Feb 14 2008 Cilag GmbH International Surgical stapling assembly comprising first and second actuation systems configured to perform different functions
11452526, Oct 29 2020 Cilag GmbH International Surgical instrument comprising a staged voltage regulation start-up system
11452528, Apr 30 2019 Cilag GmbH International Articulation actuators for a surgical instrument
11457918, Oct 29 2014 Cilag GmbH International Cartridge assemblies for surgical staplers
11464512, Dec 19 2019 Cilag GmbH International Staple cartridge comprising a curved deck surface
11464513, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
11464514, Feb 14 2008 Cilag GmbH International Motorized surgical stapling system including a sensing array
11464601, Jun 28 2019 Cilag GmbH International Surgical instrument comprising an RFID system for tracking a movable component
11471155, Aug 03 2017 Cilag GmbH International Surgical system bailout
11471157, Apr 30 2019 Cilag GmbH International Articulation control mapping for a surgical instrument
11478241, Jun 28 2019 Cilag GmbH International Staple cartridge including projections
11478242, Jun 28 2017 Cilag GmbH International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
11478244, Oct 31 2017 Cilag GmbH International Cartridge body design with force reduction based on firing completion
11478247, Jul 30 2010 Cilag GmbH International Tissue acquisition arrangements and methods for surgical stapling devices
11484307, Feb 14 2008 Cilag GmbH International Loading unit coupleable to a surgical stapling system
11484309, Dec 30 2015 Cilag GmbH International Surgical stapling system comprising a controller configured to cause a motor to reset a firing sequence
11484310, Jun 28 2017 Cilag GmbH International Surgical instrument comprising a shaft including a closure tube profile
11484311, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
11484312, Aug 31 2005 Cilag GmbH International Staple cartridge comprising a staple driver arrangement
11490889, Sep 23 2015 Cilag GmbH International Surgical stapler having motor control based on an electrical parameter related to a motor current
11497488, Mar 26 2014 Cilag GmbH International Systems and methods for controlling a segmented circuit
11497492, Jun 28 2019 Cilag GmbH International Surgical instrument including an articulation lock
11497499, Dec 21 2016 Cilag GmbH International Articulatable surgical stapling instruments
11504116, Mar 28 2012 Cilag GmbH International Layer of material for a surgical end effector
11504119, Aug 23 2013 Cilag GmbH International Surgical instrument including an electronic firing lockout
11504122, Dec 19 2019 Cilag GmbH International Surgical instrument comprising a nested firing member
11510671, Jun 28 2012 Cilag GmbH International Firing system lockout arrangements for surgical instruments
11517304, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11517306, Apr 15 2016 Cilag GmbH International Surgical instrument with detection sensors
11517311, Dec 18 2014 Cilag GmbH International Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
11517315, Apr 16 2014 Cilag GmbH International Fastener cartridges including extensions having different configurations
11517325, Jun 20 2017 Cilag GmbH International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
11517390, Oct 29 2020 Cilag GmbH International Surgical instrument comprising a limited travel switch
11523821, Sep 26 2014 Cilag GmbH International Method for creating a flexible staple line
11523822, Jun 28 2019 Cilag GmbH International Battery pack including a circuit interrupter
11523823, Feb 09 2016 Cilag GmbH International Surgical instruments with non-symmetrical articulation arrangements
11529137, Dec 19 2019 Cilag GmbH International Staple cartridge comprising driver retention members
11529138, Mar 01 2013 Cilag GmbH International Powered surgical instrument including a rotary drive screw
11529139, Dec 19 2019 Cilag GmbH International Motor driven surgical instrument
11529140, Jun 28 2017 Cilag GmbH International Surgical instrument lockout arrangement
11529142, Oct 01 2010 Cilag GmbH International Surgical instrument having a power control circuit
11534162, Jun 28 2012 Cilag GmbH International Robotically powered surgical device with manually-actuatable reversing system
11534259, Oct 29 2020 Cilag GmbH International Surgical instrument comprising an articulation indicator
11540824, Sep 30 2010 Cilag GmbH International Tissue thickness compensator
11540829, Jun 28 2012 Cilag GmbH International Surgical instrument system including replaceable end effectors
11547403, Dec 18 2014 Cilag GmbH International Surgical instrument having a laminate firing actuator and lateral buckling supports
11547404, Dec 18 2014 Cilag GmbH International Surgical instrument assembly comprising a flexible articulation system
11553911, Dec 18 2014 Cilag GmbH International Surgical instrument assembly comprising a flexible articulation system
11553916, Sep 30 2015 Cilag GmbH International Compressible adjunct with crossing spacer fibers
11553919, Jun 28 2019 Cilag GmbH International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
11553971, Jun 28 2019 Cilag GmbH International Surgical RFID assemblies for display and communication
11559302, Jun 04 2007 Cilag GmbH International Surgical instrument including a firing member movable at different speeds
11559303, Apr 18 2016 Cilag GmbH International Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
11559304, Dec 19 2019 Cilag GmbH International Surgical instrument comprising a rapid closure mechanism
11559496, Sep 30 2010 Cilag GmbH International Tissue thickness compensator configured to redistribute compressive forces
11564679, Apr 16 2013 Cilag GmbH International Powered surgical stapler
11564682, Jun 04 2007 Cilag GmbH International Surgical stapler device
11564686, Jun 28 2017 Cilag GmbH International Surgical shaft assemblies with flexible interfaces
11564688, Dec 21 2016 Cilag GmbH International Robotic surgical tool having a retraction mechanism
11571207, Dec 18 2014 Cilag GmbH International Surgical system including lateral supports for a flexible drive member
11571210, Dec 21 2016 Cilag GmbH International Firing assembly comprising a multiple failed-state fuse
11571212, Feb 14 2008 Cilag GmbH International Surgical stapling system including an impedance sensor
11571215, Sep 30 2010 Cilag GmbH International Layer of material for a surgical end effector
11571231, Sep 29 2006 Cilag GmbH International Staple cartridge having a driver for driving multiple staples
11576668, Dec 21 2017 Cilag GmbH International Staple instrument comprising a firing path display
11576672, Dec 19 2019 Cilag GmbH International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
11576673, Aug 31 2005 Cilag GmbH International Stapling assembly for forming staples to different heights
11583274, Dec 21 2017 Cilag GmbH International Self-guiding stapling instrument
11583277, Sep 30 2010 Cilag GmbH International Layer of material for a surgical end effector
11583278, May 27 2011 Cilag GmbH International Surgical stapling system having multi-direction articulation
11583279, Oct 10 2008 Cilag GmbH International Powered surgical cutting and stapling apparatus with manually retractable firing system
11596406, Apr 16 2014 Cilag GmbH International Fastener cartridges including extensions having different configurations
11602340, Sep 30 2010 Cilag GmbH International Adhesive film laminate
11602346, Jun 28 2012 Cilag GmbH International Robotically powered surgical device with manually-actuatable reversing system
11607219, Dec 19 2019 Cilag GmbH International Staple cartridge comprising a detachable tissue cutting knife
11607239, Apr 15 2016 Cilag GmbH International Systems and methods for controlling a surgical stapling and cutting instrument
11612393, Jan 31 2006 Cilag GmbH International Robotically-controlled end effector
11612394, May 27 2011 Cilag GmbH International Automated end effector component reloading system for use with a robotic system
11612395, Feb 14 2008 Cilag GmbH International Surgical system including a control system having an RFID tag reader
11617575, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11617576, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11617577, Oct 29 2020 Cilag GmbH International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
11622763, Apr 16 2013 Cilag GmbH International Stapling assembly comprising a shiftable drive
11622766, Jun 28 2012 Cilag GmbH International Empty clip cartridge lockout
11622785, Sep 29 2006 Cilag GmbH International Surgical staples having attached drivers and stapling instruments for deploying the same
11627959, Jun 28 2019 Cilag GmbH International Surgical instruments including manual and powered system lockouts
11627960, Dec 02 2020 Cilag GmbH International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
11633183, Apr 16 2013 Cilag International GmbH Stapling assembly comprising a retraction drive
11638581, Apr 16 2013 Cilag GmbH International Powered surgical stapler
11638582, Jul 28 2020 Cilag GmbH International Surgical instruments with torsion spine drive arrangements
11638583, Feb 14 2008 Cilag GmbH International Motorized surgical system having a plurality of power sources
11638587, Jun 28 2019 Cilag GmbH International RFID identification systems for surgical instruments
11642125, Apr 15 2016 Cilag GmbH International Robotic surgical system including a user interface and a control circuit
11642128, Jun 28 2017 Cilag GmbH International Method for articulating a surgical instrument
11648005, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
11648006, Jun 04 2007 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
11648008, Jan 31 2006 Cilag GmbH International Surgical instrument having force feedback capabilities
11648009, Apr 30 2019 Cilag GmbH International Rotatable jaw tip for a surgical instrument
11648024, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with position feedback
11653914, Jun 20 2017 Cilag GmbH International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
11653915, Dec 02 2020 Cilag GmbH International Surgical instruments with sled location detection and adjustment features
11653917, Dec 21 2016 Cilag GmbH International Surgical stapling systems
11653918, Sep 05 2014 Cilag GmbH International Local display of tissue parameter stabilization
11653920, Dec 02 2020 Cilag GmbH International Powered surgical instruments with communication interfaces through sterile barrier
11660090, Jul 28 2020 Cilag GmbH International Surgical instruments with segmented flexible drive arrangements
11660110, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument with tactile position feedback
11660163, Jun 28 2019 Cilag GmbH International Surgical system with RFID tags for updating motor assembly parameters
11666332, Jan 10 2007 Cilag GmbH International Surgical instrument comprising a control circuit configured to adjust the operation of a motor
11672531, Jun 04 2007 Cilag GmbH International Rotary drive systems for surgical instruments
11672532, Jun 20 2017 Cilag GmbH International Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
11672536, Sep 30 2010 Cilag GmbH International Layer of material for a surgical end effector
11678877, Dec 18 2014 Cilag GmbH International Surgical instrument including a flexible support configured to support a flexible firing member
11678880, Jun 28 2017 Cilag GmbH International Surgical instrument comprising a shaft including a housing arrangement
11678882, Dec 02 2020 Cilag GmbH International Surgical instruments with interactive features to remedy incidental sled movements
11684360, Sep 30 2010 Cilag GmbH International Staple cartridge comprising a variable thickness compressible portion
11684361, Sep 23 2008 Cilag GmbH International Motor-driven surgical cutting instrument
11684365, Jul 28 2004 Cilag GmbH International Replaceable staple cartridges for surgical instruments
11684369, Jun 28 2019 Cilag GmbH International Method of using multiple RFID chips with a surgical assembly
11684434, Jun 28 2019 Cilag GmbH International Surgical RFID assemblies for instrument operational setting control
11690615, Apr 16 2013 Cilag GmbH International Surgical system including an electric motor and a surgical instrument
11690623, Sep 30 2015 Cilag GmbH International Method for applying an implantable layer to a fastener cartridge
11696757, Feb 26 2021 Cilag GmbH International Monitoring of internal systems to detect and track cartridge motion status
11696759, Jun 28 2017 Cilag GmbH International Surgical stapling instruments comprising shortened staple cartridge noses
11696761, Mar 25 2019 Cilag GmbH International Firing drive arrangements for surgical systems
11701110, Aug 23 2013 Cilag GmbH International Surgical instrument including a drive assembly movable in a non-motorized mode of operation
11701111, Dec 19 2019 Cilag GmbH International Method for operating a surgical stapling instrument
11701113, Feb 26 2021 Cilag GmbH International Stapling instrument comprising a separate power antenna and a data transfer antenna
11701114, Oct 16 2014 Cilag GmbH International Staple cartridge
11701115, Dec 21 2016 Cilag GmbH International Methods of stapling tissue
11707273, Jun 15 2012 Cilag GmbH International Articulatable surgical instrument comprising a firing drive
11712244, Sep 30 2015 Cilag GmbH International Implantable layer with spacer fibers
11717285, Feb 14 2008 Cilag GmbH International Surgical cutting and fastening instrument having RF electrodes
11717289, Oct 29 2020 Cilag GmbH International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
11717291, Mar 22 2021 Cilag GmbH International Staple cartridge comprising staples configured to apply different tissue compression
11717294, Apr 16 2014 Cilag GmbH International End effector arrangements comprising indicators
11717297, Sep 05 2014 Cilag GmbH International Smart cartridge wake up operation and data retention
11723657, Feb 26 2021 Cilag GmbH International Adjustable communication based on available bandwidth and power capacity
11723658, Mar 22 2021 Cilag GmbH International Staple cartridge comprising a firing lockout
11723662, May 28 2021 Cilag GmbH International Stapling instrument comprising an articulation control display
11730471, Feb 09 2016 Cilag GmbH International Articulatable surgical instruments with single articulation link arrangements
11730473, Feb 26 2021 Cilag GmbH International Monitoring of manufacturing life-cycle
11730474, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising a movable cartridge and a staple driver arrangement
11730477, Oct 10 2008 Cilag GmbH International Powered surgical system with manually retractable firing system
11737748, Jul 28 2020 Cilag GmbH International Surgical instruments with double spherical articulation joints with pivotable links
11737749, Mar 22 2021 Cilag GmbH International Surgical stapling instrument comprising a retraction system
11737751, Dec 02 2020 Cilag GmbH International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
11737754, Sep 30 2010 Cilag GmbH International Surgical stapler with floating anvil
11744581, Dec 02 2020 Cilag GmbH International Powered surgical instruments with multi-phase tissue treatment
11744583, Feb 26 2021 Cilag GmbH International Distal communication array to tune frequency of RF systems
11744588, Feb 27 2015 Cilag GmbH International Surgical stapling instrument including a removably attachable battery pack
11744593, Jun 28 2019 Cilag GmbH International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
11744603, Mar 24 2021 Cilag GmbH International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
11749877, Feb 26 2021 Cilag GmbH International Stapling instrument comprising a signal antenna
11751867, Dec 21 2017 Cilag GmbH International Surgical instrument comprising sequenced systems
11751869, Feb 26 2021 Cilag GmbH International Monitoring of multiple sensors over time to detect moving characteristics of tissue
11759202, Mar 22 2021 Cilag GmbH International Staple cartridge comprising an implantable layer
11759208, Dec 30 2015 Cilag GmbH International Mechanisms for compensating for battery pack failure in powered surgical instruments
11766258, Jun 27 2017 Cilag GmbH International Surgical anvil arrangements
11766259, Dec 21 2016 Cilag GmbH International Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
11766260, Dec 21 2016 Cilag GmbH International Methods of stapling tissue
11771419, Jun 28 2019 Cilag GmbH International Packaging for a replaceable component of a surgical stapling system
11771425, Aug 31 2005 Cilag GmbH International Stapling assembly for forming staples to different formed heights
11771426, Jan 10 2007 Cilag GmbH International Surgical instrument with wireless communication
11771454, Apr 15 2016 Cilag GmbH International Stapling assembly including a controller for monitoring a clamping laod
11779330, Oct 29 2020 Cilag GmbH International Surgical instrument comprising a jaw alignment system
11779336, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11779420, Jun 28 2012 Cilag GmbH International Robotic surgical attachments having manually-actuated retraction assemblies
11786239, Mar 24 2021 Cilag GmbH International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
11786243, Mar 24 2021 Cilag GmbH International Firing members having flexible portions for adapting to a load during a surgical firing stroke
11793509, Mar 28 2012 Cilag GmbH International Staple cartridge including an implantable layer
11793511, Nov 09 2005 Cilag GmbH International Surgical instruments
11793512, Aug 31 2005 Cilag GmbH International Staple cartridges for forming staples having differing formed staple heights
11793513, Jun 20 2017 Cilag GmbH International Systems and methods for controlling motor speed according to user input for a surgical instrument
11793514, Feb 26 2021 Cilag GmbH International Staple cartridge comprising sensor array which may be embedded in cartridge body
11793516, Mar 24 2021 Cilag GmbH International Surgical staple cartridge comprising longitudinal support beam
11793518, Jan 31 2006 Cilag GmbH International Powered surgical instruments with firing system lockout arrangements
11793521, Oct 10 2008 Cilag GmbH International Powered surgical cutting and stapling apparatus with manually retractable firing system
11793522, Sep 30 2015 Cilag GmbH International Staple cartridge assembly including a compressible adjunct
11801047, Feb 14 2008 Cilag GmbH International Surgical stapling system comprising a control circuit configured to selectively monitor tissue impedance and adjust control of a motor
11801051, Jan 31 2006 Cilag GmbH International Accessing data stored in a memory of a surgical instrument
11806011, Mar 22 2021 Cilag GmbH International Stapling instrument comprising tissue compression systems
11806013, Jun 28 2012 Cilag GmbH International Firing system arrangements for surgical instruments
11811253, Apr 18 2016 Cilag GmbH International Surgical robotic system with fault state detection configurations based on motor current draw
11812954, Sep 23 2008 Cilag GmbH International Robotically-controlled motorized surgical instrument with an end effector
11812958, Dec 18 2014 Cilag GmbH International Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
11812960, Jul 28 2004 Cilag GmbH International Method of segmenting the operation of a surgical stapling instrument
11812961, Jan 10 2007 Cilag GmbH International Surgical instrument including a motor control system
11812964, Feb 26 2021 Cilag GmbH International Staple cartridge comprising a power management circuit
11812965, Sep 30 2010 Cilag GmbH International Layer of material for a surgical end effector
11826012, Mar 22 2021 Cilag GmbH International Stapling instrument comprising a pulsed motor-driven firing rack
11826013, Jul 28 2020 Cilag GmbH International Surgical instruments with firing member closure features
11826042, Mar 22 2021 Cilag GmbH International Surgical instrument comprising a firing drive including a selectable leverage mechanism
11826045, Feb 12 2016 Cilag GmbH International Mechanisms for compensating for drivetrain failure in powered surgical instruments
11826047, May 28 2021 Cilag GmbH International Stapling instrument comprising jaw mounts
11826048, Jun 28 2017 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
11826132, Mar 06 2015 Cilag GmbH International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
11832816, Mar 24 2021 Cilag GmbH International Surgical stapling assembly comprising nonplanar staples and planar staples
11839352, Jan 11 2007 Cilag GmbH International Surgical stapling device with an end effector
11839375, Aug 31 2005 Cilag GmbH International Fastener cartridge assembly comprising an anvil and different staple heights
11844518, Oct 29 2020 Cilag GmbH International Method for operating a surgical instrument
11844520, Dec 19 2019 Cilag GmbH International Staple cartridge comprising driver retention members
11844521, Jan 10 2007 Cilag GmbH International Surgical instrument for use with a robotic system
11849939, Dec 21 2017 Cilag GmbH International Continuous use self-propelled stapling instrument
11849941, Jun 29 2007 Cilag GmbH International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
11849943, Dec 02 2020 Cilag GmbH International Surgical instrument with cartridge release mechanisms
11849944, Mar 24 2021 Cilag GmbH International Drivers for fastener cartridge assemblies having rotary drive screws
11849945, Mar 24 2021 Cilag GmbH International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
11849946, Sep 23 2015 Cilag GmbH International Surgical stapler having downstream current-based motor control
11849947, Jan 10 2007 Cilag GmbH International Surgical system including a control circuit and a passively-powered transponder
11849948, Dec 21 2016 Cilag GmbH International Method for resetting a fuse of a surgical instrument shaft
11849952, Sep 30 2010 Cilag GmbH International Staple cartridge comprising staples positioned within a compressible portion thereof
11850310, Sep 30 2010 INTERNATIONAL, CILAG GMBH; Cilag GmbH International Staple cartridge including an adjunct
11857181, May 27 2011 Cilag GmbH International Robotically-controlled shaft based rotary drive systems for surgical instruments
11857182, Jul 28 2020 Cilag GmbH International Surgical instruments with combination function articulation joint arrangements
11857183, Mar 24 2021 Cilag GmbH International Stapling assembly components having metal substrates and plastic bodies
11857187, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising controlled release and expansion
11857189, Jun 28 2012 Cilag GmbH International Surgical instrument including first and second articulation joints
11864756, Jul 28 2020 Cilag GmbH International Surgical instruments with flexible ball chain drive arrangements
11864760, Oct 29 2014 Cilag GmbH International Staple cartridges comprising driver arrangements
11871923, Sep 23 2008 Cilag GmbH International Motorized surgical instrument
11871925, Jul 28 2020 Cilag GmbH International Surgical instruments with dual spherical articulation joint arrangements
11871939, Jun 20 2017 Cilag GmbH International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
11877745, Oct 18 2021 Cilag GmbH International Surgical stapling assembly having longitudinally-repeating staple leg clusters
11877748, May 27 2011 Cilag GmbH International Robotically-driven surgical instrument with E-beam driver
11882987, Jul 28 2004 Cilag GmbH International Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
11883019, Dec 21 2017 Cilag GmbH International Stapling instrument comprising a staple feeding system
11883020, Jan 31 2006 Cilag GmbH International Surgical instrument having a feedback system
11883024, Jul 28 2020 Cilag GmbH International Method of operating a surgical instrument
11883025, Sep 30 2010 Cilag GmbH International Tissue thickness compensator comprising a plurality of layers
11883026, Apr 16 2014 Cilag GmbH International Fastener cartridge assemblies and staple retainer cover arrangements
11890005, Jun 29 2017 Cilag GmbH International Methods for closed loop velocity control for robotic surgical instrument
11890008, Jan 31 2006 Cilag GmbH International Surgical instrument with firing lockout
11890010, Dec 02 2020 Cilag GmbH International Dual-sided reinforced reload for surgical instruments
11890012, Jul 28 2004 Cilag GmbH International Staple cartridge comprising cartridge body and attached support
11890015, Sep 30 2015 Cilag GmbH International Compressible adjunct with crossing spacer fibers
11890029, Jan 31 2006 Cilag GmbH International Motor-driven surgical cutting and fastening instrument
11896217, Oct 29 2020 Cilag GmbH International Surgical instrument comprising an articulation lock
11896218, Mar 24 2021 Cilag GmbH International; INTERNATIONAL, CILAG GMBH Method of using a powered stapling device
11896219, Mar 24 2021 Cilag GmbH International Mating features between drivers and underside of a cartridge deck
11896222, Dec 15 2017 Cilag GmbH International Methods of operating surgical end effectors
11896225, Jul 28 2004 Cilag GmbH International Staple cartridge comprising a pan
11903581, Apr 30 2019 Cilag GmbH International Methods for stapling tissue using a surgical instrument
11903582, Mar 24 2021 Cilag GmbH International Leveraging surfaces for cartridge installation
11903586, Sep 30 2015 Cilag GmbH International Compressible adjunct with crossing spacer fibers
11911027, Sep 30 2010 Cilag GmbH International Adhesive film laminate
11911028, Jun 04 2007 Cilag GmbH International Surgical instruments for use with a robotic surgical system
11911032, Dec 19 2019 Cilag GmbH International Staple cartridge comprising a seating cam
6905069, May 02 2002 Leuze electronic GmbH & Co. Optical sensor
D851762, Jun 28 2017 Cilag GmbH International Anvil
D854151, Jun 28 2017 Cilag GmbH International Surgical instrument shaft
D869655, Jun 28 2017 Cilag GmbH International Surgical fastener cartridge
D879808, Jun 20 2017 Cilag GmbH International Display panel with graphical user interface
D879809, Jun 20 2017 Cilag GmbH International Display panel with changeable graphical user interface
D890784, Jun 20 2017 Cilag GmbH International Display panel with changeable graphical user interface
D906355, Jun 28 2017 Cilag GmbH International Display screen or portion thereof with a graphical user interface for a surgical instrument
D907647, Sep 29 2017 Cilag GmbH International Display screen or portion thereof with animated graphical user interface
D907648, Sep 29 2017 Cilag GmbH International Display screen or portion thereof with animated graphical user interface
D910847, Dec 19 2017 Cilag GmbH International Surgical instrument assembly
D914878, Aug 20 2018 Cilag GmbH International Surgical instrument anvil
D917500, Sep 29 2017 Cilag GmbH International Display screen or portion thereof with graphical user interface
D966512, Jun 02 2020 Cilag GmbH International Staple cartridge
D967421, Jun 02 2020 Cilag GmbH International Staple cartridge
D974560, Jun 02 2020 Cilag GmbH International Staple cartridge
D975278, Jun 02 2020 Cilag GmbH International Staple cartridge
D975850, Jun 02 2020 Cilag GmbH International Staple cartridge
D975851, Jun 02 2020 Cilag GmbH International Staple cartridge
D976401, Jun 02 2020 Cilag GmbH International Staple cartridge
D980425, Oct 29 2020 Cilag GmbH International Surgical instrument assembly
ER1904,
Patent Priority Assignee Title
4560862, Apr 26 1983 Skan-A-Matic Corp. System for optical scanning over a large depth of field
4916318, Dec 16 1986 ASAHI KOGAKU KOGYO KABUSHIKI KAISHA, A CORP OF JAPAN Scan type optical reader with changing beam waist position
4941201, Jan 13 1985 Abbott Laboratories Electronic data storage and retrieval apparatus and method
5021651, May 22 1989 ALPS Electric Co., Ltd. Mounting for a ball lens on a bar code reader wand having a tapered lens bore
5596446, Nov 15 1990 Symbol Technologies, Inc Ultra compact scanning system for a wide range of speeds, angles and field depth
5734157, Aug 27 1996 Bar-code optical scanner
5949068, Oct 07 1997 Symbol Technologies, LLC Optical reader for scanning optical indicia by way of varying object distance
JP1115910,
JP793454,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 23 2002Sony Corporation(assignment on the face of the patent)
Aug 08 2002MATSUURA, TAMIAKISony CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0132000975 pdf
Aug 08 2002SHINZAWA, SHIGERUSony CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0132000975 pdf
Aug 13 2002AIZAWA, HIDEKUNISony CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0132000975 pdf
Date Maintenance Fee Events
Jan 28 2008M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Feb 04 2008REM: Maintenance Fee Reminder Mailed.
Mar 12 2012REM: Maintenance Fee Reminder Mailed.
Jul 27 2012EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jul 27 20074 years fee payment window open
Jan 27 20086 months grace period start (w surcharge)
Jul 27 2008patent expiry (for year 4)
Jul 27 20102 years to revive unintentionally abandoned end. (for year 4)
Jul 27 20118 years fee payment window open
Jan 27 20126 months grace period start (w surcharge)
Jul 27 2012patent expiry (for year 8)
Jul 27 20142 years to revive unintentionally abandoned end. (for year 8)
Jul 27 201512 years fee payment window open
Jan 27 20166 months grace period start (w surcharge)
Jul 27 2016patent expiry (for year 12)
Jul 27 20182 years to revive unintentionally abandoned end. (for year 12)