The invention pertains to thin film constructions comprising NVRAM devices built over a versatile substrate base. In particular aspects, a device includes a body region, and further include first and second diffusion regions formed in the body region. A channel region is in the body region between the first and second diffusion regions. A gate insulator stack is above the channel region, and a gate is over the gate insulator stack. The gate insulator stack includes a floating plate charge center which is electrically connected to the second diffusion region. The memory device includes a diode which connects the body region to the second diffusion region such that the floating plate is charged when the diode is reversed biased. The invention also includes electronic systems comprising novel TFT-based NVRAM devices.
|
17. A memory cell construction, comprising:
an electrically insulative material; a crystalline layer comprising silicon and germanium over the electrically insulative material; a body region extending into the crystalline layer; the entirety of the body region within the crystalline layer being within only a single crystal of the crystalline layer; a first diffusion region formed in the body region; a second diffusion region formed in the body region and spaced within the body region from the first diffusion region by a channel region; a gate insulator stack over the channel region, the gate insulator stack including a floating plate to selectively hold a charge, the floating plate being electrically connected to the second diffusion region; a gate over the gate insulator stack; the gate being spaced from the channel region by at least the gate insulator stack; and a diode electrically connecting the body region to the second diffusion region.
1. A memory device comprising:
a crystalline layer separated from a substrate by an insulative material; the crystalline layer being less than or equal to about 2000 Å thick and comprising a material which includes silicon and germanium; a gate proximate the crystalline layer; a pair of source/drain regions proximate the gate and extending into the crystalline layer; accordingly, at least a portion of the source/drain regions being within the crystalline layer; the portion of the source/drain regions within the crystalline layer being contained within a single crystal of the material which includes silicon and germanium; a channel region extending between the source/drain regions, the channel region being part of a portion of the memory device that is oppositely doped relative to the source/drain regions; a gate insulator stack between the channel region and the gate, the gate insulator stack including a floating plate which is electrically connected to one of the source/drain regions; and a diode electrically connecting said one of the source/drain regions to the portion of the memory device that is oppositely doped relative to the source/drain regions.
43. A memory cell construction, comprising;
an electrically insulative material; a crystalline layer comprising silicon and germanium over the electrically insulative material; a body region extending into the crystalline layer; the entirety of the body region within the crystalline layer being within only a single crystal of the crystalline layer; a first diffusion region formed in the body region; a second diffusion region formed in the body region and spaced within the body region from the first diffusion region by a channel region; a gate insulator stack over the channel region; the gate insulator stack including a first tunnel oxide region over the channel region, a floating plate on the first tunnel oxide region, and a second tunnel oxide region over the floating plate; the floating plate comprising a metal silicide layer and a metal oxide layer; a gate over the gate insulator stack; the gate being spaced from the channel region by at least the gate insulator stack; a lateral semiconductor junction diode electrically connecting the body region to the second diffusion region and being configured such that when the floating plate is charged the junction diode is reverse biased; and a schottky diode comprising contact between the metal silicide layer and the body region; the schottky diode being configured such that the floating plate is discharged when the schottky diode is forward biased.
57. An electronic system, the electronic system comprising a memory device, the memory device including:
an array of memory cells, at least some of the memory cells including gates supported by a crystalline layer; the crystalline layer being less than or equal to about 2000 Å thick; the crystalline layer comprising a material which includes silicon and germanium; the at least some of the memory cells having body regions within the crystalline layer; each body region within the crystalline layer including only one crystal of said material; the at least some of the memory cells including first and second diffusion regions formed in the body regions; the second diffusion regions being spaced within the body region from the first diffusion regions by channel regions; the at least some of the memory cells including gate insulator stacks over the channel regions, the gate insulator stacks including floating plates, the floating plates being electrically connected to the second diffusion regions; the gates of the at least some of the memory cells being over the gate insulator stacks and being spaced from the channel regions by at least the gate insulator stacks; and the at least some of the memory cells including diodes electrically connecting the body regions to the second diffusion regions; addressing circuitry coupled to the array of memory cells for accessing individual memory cells in the array of memory cells; and a read circuit coupled to the memory cell array for reading data from memory cells in the array of memory cells.
2. The memory device of
5. The memory device of
7. The memory device of
8. The memory device of
a first tunnel oxide region between the floating plate and the channel region; and a second tunnel oxide region between the floating plate and the gate.
18. The construction of
a first tunnel oxide region between the floating plate and the channel region; and a second tunnel oxide region between the floating plate and the gate.
20. The construction of
21. The construction of
23. The construction of
the body includes a p-type region; the first and second diffusion regions are n+ regions of the body; and the diode includes a lateral p-n+ diode between the p-type region of the body and the second diffusion region.
24. The construction of
the body includes an n-type region; the first and second diffusion regions are p+ regions of the body; and the diode includes a lateral p+-n diode between the second diffusion region and the n-type region of the body.
26. The construction of
27. The construction of
28. The construction of
29. The construction of
30. The construction of
33. The construction of
35. The construction of
36. The construction of
44. The construction of
47. The construction of
49. The construction of
50. The construction of
58. The electronic system of
first tunnel oxide regions between the floating plates and the channel regions; and second tunnel oxide regions between the floating plates and the gates.
60. The electronic system of
61. The electronic system of
the body regions include p-type regions; the first and second diffusion regions are n+ regions of the body regions; and the diodes include lateral p-n+ diodes between the p-type regions of the body regions and the second diffusion regions.
62. The electronic system of
the body regions include n-type regions; the first and second diffusion regions are p+ regions of the body regions; and the diodes include lateral p+-n diodes between the second diffusion regions and the n-type regions of the body regions.
67. The electronic system of
69. The electronic system of
|
The invention pertains to memory devices, memory cells, and electronic systems.
SOI technology differs from traditional bulk semiconductor technologies in that the active semiconductor material of SOI technologies is typically much thinner than that utilized in bulk technologies. The active semiconductor material of SOI technologies will typically be formed as a thin film over an insulating material (typically oxide), with exemplary thicknesses of the semiconductor film being less than or equal to 2000 Å. In contrast, bulk semiconductor material will typically have a thickness of at least about 200 microns. The thin semiconductor of SOI technology can allow higher performance and lower power consumption to be achieved in integrated circuits than can be achieved with similar circuits utilizing bulk materials.
An exemplary integrated circuit device that can be formed utilizing SOI technologies is a so-called thin film transistor (TFT), with the term "thin film" referring to the thin semiconductor film of the SOI construction. In particular aspects, the semiconductor material of the SOI construction can be silicon, and in such aspects the TFTs can be fabricated using recrystallized amorphous silicon or polycrystalline silicon. The silicon can be supported by an electrically insulative material (such as silicon dioxide), which in turn is supported by an appropriate substrate. Exemplary substrate materials include glass, bulk silicon and metal-oxides (such as, for example, Al2O3). If the semiconductor material comprises silicon, the term SOI is occasionally utilized to refer to a silicon-on-insulator construction, rather than the more general concept of a semiconductor-on-insulator construction. However, it is to be understood that in the context of this disclosure the term SOI refers to semiconductor-on-insulator constructions. Accordingly, the semiconductor material of an SOI construction referred to in the context of this disclosure can comprise other semiconductive materials in addition to, or alternatively to, silicon; including, for example, germanium.
A problem associated with conventional TFT constructions is that grain boundaries and defects can limit carrier mobilities. Accordingly, carrier mobilities are frequently nearly an order of magnitude lower than they would be in bulk semiconductor devices. High voltage (and therefore high power consumption), and large areas are utilized for the TFTs, and the TFTs exhibit limited performance. TFTs thus have limited commercial application and currently are utilized primarily for large area electronics.
Various efforts have been made to improve carrier mobility of TFTs. Some improvement is obtained for devices in which silicon is the semiconductor material by utilizing a thermal anneal for grain growth following silicon ion implantation and hydrogen passivation of grain boundaries (see, for example, Yamauchi, N. et al., "Drastically Improved Performance in Poly-Si TFTs with Channel Dimensions Comparable to Grain Size", IEDM Tech. Digest, 1989, pp. 353-356). Improvements have also been made in devices in which a combination of silicon and germanium is the semiconductor material by optimizing the germanium and hydrogen content of silicon/germanium films (see, for example, King, T. J. et al, "A Low-Temperature (<=550°C C.) Silicon-Germanium MOS TFT Technology for Large-Area Electronics", IEDM Tech. Digest, 1991, pp. 567-570).
Investigations have shown that nucleation, direction of solidification, and grain growth of silicon crystals can be controlled selectively and preferentially by excimer laser annealing, as well as by lateral scanning continuous wave laser irradiation/anneal for recrystallization (see, for example, Kuriyama, H. et al., "High Mobility Poly-Si TFT by a New Excimer Laser Annealing Method for Large Area Electronics", IEDM Tech. Digest, 1991, pp. 563-566; Jeon, J. H. et al., "A New Poly-Si TFT with Selectively Doped Channel Fabricated by Novel Excimer Laser Annealing", IEDM Tech. Digest, 2000, pp. 213-216; Kim, C. H. et al., "A New High -Performance Poly-Si TFT by Simple Excimer Laser Annealing on Selectively Floating a Si Layer", IEDM Tech. Digest, 2001, pp. 753-756; Hara, A. et al, "Selective Single-Crystalline-Silicon Growth at the Pre-Defined Active Regions of TFTs on a Glass by a Scanning CW Layer Irradiation", IEDM Tech. Digest, 2000, pp. 209-212; and Hara, A. et al., "High Performance Poly-Si TFTs on a Glass by a Stable Scanning CW Laser Lateral Crystallization", IEDM Tech. Digest, 2001, pp. 747-750). Such techniques have allowed relatively defect-free large crystals to be grown, with resulting TFTs shown to exhibit carrier mobility over 300 cm2/V-second.
Another technique which has shown promise for improving carrier mobility is metal-induced lateral recrystallization (MILC), which can be utilized in conjunction with an appropriate high temperature anneal (see, for example, Jagar, S. et al., "Single Grain TFT with SOI CMOS Performance Formed by Metal-lnduced-Lateral-Crystallization", IEDM Tech. Digest, 1999, p. 293-296; and Gu, J. et al., "High Performance Sub-100 nm Si TFT by Pattem-Controlled Crystallization of Thin Channel Layer and High Temperature Annealing", DRC Conference Digest, 2002, pp. 49-50). A suitable post-recrystallization anneal for improving the film quality within silicon recrystallized by MILC is accomplished by exposing recrystallized material to a temperature of from about 850°C C. to about 900°C C. under an inert ambient (with a suitable ambient comprising, for example, N2). MILC can allow nearly single crystal silicon grains to be formed in predefined amorphous-silicon islands for device channel regions. Nickel-induced-lateral-recrystallization can allow device properties to approach those of single crystal silicon.
The carrier mobility of a transistor channel region can be significantly enhanced if the channel region is made of a semiconductor material having a strained crystalline lattice (such as, for example, a silicon/germanium material having a strained lattice, or a silicon material having a strained lattice) formed over a semiconductor material having a relaxed lattice (such as, for example, a silicon/germanium material having a relaxed crystalline lattice). (See, for example, Rim, K. et al., "Strained Si NMOSFETs for High Performance CMOS Technology", VLSI Tech. Digest, 2001, p. 59-60; Cheng, Z. et al., "SiGe-On-Insulator (SGOI) Substrate Preparation and MOSFET Fabrication for Electron Mobility Evaluation" 2001 IEEE SOI Conference Digest, October 2001, pp. 13-14; Huang, L. J. et al., "Carrier Mobility Enhancement in Strained Si-on-Insulator Fabricated by Wafer Bonding", VLSI Tech. Digest, 2001, pp. 57-58; and Mizuno, T. et al., "High Performance CMOS Operation of Strained-SOI MOSFETs Using Thin Film SiGe-on-Insulator Substrate", VLSI Tech. Digest, 2002, p. 106-107.)
The terms "relaxed crystalline lattice" and "strained crystalline lattice" are utilized to refer to crystalline lattices which are within a defined lattice configuration for the semiconductor material, or perturbed from the defined lattice configuration, respectively. In applications in which the relaxed lattice material comprises silicon/germanium having a germanium concentration of from 10% to 60%, mobility enhancements of 110% for electrons and 60-80% for holes can be accomplished by utilizing a strained lattice material in combination with the relaxed lattice material (see for example, Rim, K. et al., "Characteristics and Device Design of Sub-100 nm Strained SiN and PMOSFETs", VLSI Tech. Digest, 2002, 00. 98-99; and Huang, L. J. et al., "Carrier Mobility Enhancement in Strained Si-on-Insulator Fabricated by Wafer Bonding", VLSI Tech. Digest, 2001, pp. 57-58).
Performance enhancements of standard field effect transistor devices are becoming limited with progressive lithographic scaling in conventional applications. Accordingly, strained-lattice-channeled-field effect transistors on relaxed silicon/germanium offers an opportunity to enhance device performance beyond that achieved through conventional lithographic scaling. IBM recently announced the world's fastest communications chip following the approach of utilizing a strained crystalline lattice over a relaxed crystalline lattice (see, for example, "IBM Builds World's Fastest Communications Microchip", Reuters U.S. Company News, Feb. 25, 2002; and Markoff, J., "IBM Circuits are Now Faster and Reduce Use of Power", The New York Times, Feb. 25, 2002).
Although various techniques have been developed for substantially controlling nucleation and grain growth processes of semiconductor materials, grain orientation control is lacking. Further, the post-anneal treatment utilized in conjunction with MILC can be unsuitable in applications in which a low thermal budget is desired. Among the advantages of the invention described below is that such can allow substantial control of crystal grain orientation within a semiconductor material, while lowering thermal budget requirements relative to conventional methods. Additionally, the quality of the grown crystal formed from a semiconductor material can be improved relative to that of conventional methods.
In a further aspect of the background, known dynamic random access memory (DRAM) devices include a switching transistor and an integrated storage capacitor tied to the storage node of the transistor. Incorporating a stacked capacitor or a trenched capacitor in parallel with the depletion capacitance of the floating storage node enhances charge storage. Due to a finite charge leakage across the depletion layer, the capacitor is frequently recharged or refreshed to insure data integrity in the DRAM device. Thus, DRAM devices are volatile memory devices. A power failure causes permanent data loss in the DRAM device. DRAM devices are relatively inexpensive, power efficient, and fast compared to conventional flash or other non-volatile random access memory (NVRAM) devices.
NVRAM devices, such as Flash, EPROM, EEPROM, etc., store charge using a floating gate or a floating plate. Charge trapping centers and associated potential wells are created by forming nano-particles of metals or semiconductors in the large band gap insulating matrix, or by forming nano-layers of metal, semiconductor or small band gap insulators that interface with one or more large band gap insulating layers. The floating plate or gate can be formed as an integral part of the gate insulator stack of the switching transistor.
Floating plate non-volatile memory devices have been formed using a gate insulator stack with silicon-rich insulators. In these devices, injected charges (electrons or holes) are trapped and retained in local quantum wells provided by nano-particles of silicon embedded in a matrix of high band gap insulators such as silicon dioxide (SiO2) or silicon nitride (Si3N4). In addition to silicon trapping centers, other trapping centers include tungsten particles embedded in SiO2, gold particles embedded in SiO2, and a tungsten oxide layer embedded in SiO2.
Field emission across the surrounding insulator causes the stored charge to leak. The stored charge leakage from the floating plate or floating gate is negligible for non-volatile memory devices because of the high band gap insulator. For example, silicon dioxide (SiO2) has a 9 ev band gap, and oxide-nitride-oxide (ONO) and other insulators have a band gap in the range of 4.5 ev to 9 ev. Thus, the memory device retains stored data throughout the device's lifetime.
There are, however, problems associated with NVRAM devices. The writing process, also referred to as "write-erase programming," for non-volatile memory is slow and energy inefficient, and requires complex high voltage circuitry for generating and routing high voltage. Additionally, the write-erase programming for non-volatile memory involves high-field phenomenon (hot carrier or field emission) that degrades the surrounding insulator. The degradation of the insulator eventually causes significant leakage of the stored charge. Thus, the high-field phenomenon negatively affects the endurance (the number of write/erase cycles) of the NVRAM devices. The number of cycles of writing and erasing for floating gate devices is typically limited to 1×106 cycles. Therefore, the available applications for conventional NVRAM devices is limited.
It is therefore desired to develop improved NVRAM devices. There is a need in the industry to achieve an NVRAM device which could replace DRAM in speed, power and cost, and simultaneously provide non-volatile data storage.
In one aspect, the invention encompasses an NVRAM device associated with a thin film construction. The device can include a crystalline layer separated from a substrate by an insulative material, with the crystalline layer being less than or equal to 2000 angstroms thick and comprising silicon/germanium. A gate is supported by the crystalline layer, and a pair of source/drain regions are proximate the gate and extend into the crystalline layer. The portion of the source/drain regions within the crystalline layer is contained within a single crystal of the silicon/germanium. A channel region extends between the source/drain regions, and is part of a body region of the memory device that is oppositely doped relative to the source/drain regions. A gate insulator stack is between the channel region and the gate. The gate insulator stack includes a floating plate which is electrically connected to one of the source/drain regions. A diode electrically connects said one of the source/drain regions to the body region.
The invention also encompasses electronic systems comprising novel NVRAM devices.
Particular memory cells of the invention can be referred to as non-volatile dynamic random access memory (NVDRAM) because of the DRAM-read-write capabilities of the cells. However, the term NVDRAM should not be read to limit the memory cells of the present invention.
Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
In particular aspects, the present invention relates to NVRAM cells. Exemplary non-volatile memory cells include a transistor with a floating plate and at least one built-in diode. Charge trapping centers are provided in the gate insulator stack by interfacing conducting metal-silicides with appropriate metal-oxides (and in various embodiments, by interfacing transition metal suicides with transition metal oxides) to achieve desired charge trapping and retention characteristics.
In CMOS technology, the built-in lateral n+/n-/p diode of the source-substrate part of the FET can be characterized to have relatively low reverse breakdown voltage and relatively high reverse leakage (approximately greater than or equal to 10-6 A/cm2) with respect to a Schottky diode with negligible forward current up to a forward bias of 0.6 volt. In various embodiments, Schottky barrier heights for metal or metal silicide-silicon (p-type or n-type) are varied by selecting an appropriate metal or metal-silicide to be part of a low-barrier Schottky diode or part of a high-barrier Schottky diode. The Schottky diode is a majority carrier device, and as such has a relatively fast time constant. A Schottky diode can be fabricated to have a very low reverse leakage (for example, the reverse leakage can be much less than 1×10-8 A/cm2), and to conduct a large forward current at negligible forward voltage drop (for example, approximately 0.6 to 0.7 volts).
Various aspects of the present invention can utilize characteristic differences of Schottky and lateral diodes to write and erase a memory cell. Additionally, nano-layers of metal/metal oxides (and in various embodiments, transition metal/metal oxides) are capable of being readily fabricated by atomic layer deposition (ALD) techniques. Exemplary aspects of the present invention utilize ALD techniques to create the gate insulator stack of a memory cell.
The body region 158 is connected to a reference voltage (VREF), such as ground (GND). In an NFET transistor 152, the body region 158 is a p-type semiconductor and the diffusion region 156 is an n+ semiconductor. The body region 158 and the second diffusion region 156 are designed to provide a built-in lateral p-n+ semiconductor junction diode 164. The second diffusion region 156 is electrically connected to the floating plate 162 of the gate insulator stack. In various embodiments, and as will be shown in more detail below, a layer of conducting metal-silicide interfacing a trapping medium of metal oxide can form the floating plate 112 and the gate insulator stack, and such can contact the second diffusion region 156.
When the lateral junction diode 164 is reverse-biased, electrons accumulate on the floating plate 162, subsequently get trapped into the metal oxide, and cause memory cell 150 to be written. In various embodiments, memory cell 150 can be erased by injecting hot hole carriers and utilizing avalanche breakdown to neutralize trapped electrons. In some embodiments, memory cell 150 is erased by appropriately imposing a potential across the gate dielectric to remove the trapped electrons by tunneling from the trapping medium interfacing the floating plate either to the top electrode or to the substrate. In particular embodiments, the memory cell 150 is erased by forward biasing a Schottky diode, which is generally illustrated in FIG. 1C. As is described in more detail later in this disclosure, the Schottky diode is capable of being fabricated as a low forward voltage drop and a high current device to provide the cell with desired erase characteristics.
In particular embodiments, the NVRAM can incorporate a floating plate gate insulator stack for the transfer gate, and can provide particularly useful methods of trapping (also referred to herein as charging or writing) and de-trapping (also referred to herein as discharging or erasing) the floating plate 162 via a combination of built-in lateral and Schottky diodes 164 and 168 at a storage node 156 which is electrically tied to the floating gate 162. The trapping and de-trapping of the floating plate can also be referred to herein as programming. The entire memory cell 150 can be integrated within a single transistor, and such can be considered to be a one device configuration. During writing (high: "1") and erasing (low: "0") the parallel diodes 164 and 168 are respectively reverse and forward biased. Also, the reverse-biased n+-p lateral diode 164 is active during writing and supplies electrons that are trapped at the trapping medium of metal oxide interfacing floating plate 162, (the trapping media and plate 162 can together be referred to as a floating plate/trapping insulator stack). Such trapped electrons raise the threshold of the cell transistor 152. Thus, the reverse-biased lateral semiconductor junction diode 164 charges that floating plate/trapping insulator stack. During erasing, the forward-biased silicide Schottky diode 168 is active and supplies holes to neutralize the traps in the floating plate/trapping insulator stack, thereby lowering the threshold of the cell transistor 152.
Time constants associated with charge transfer and trapping/detrapping can be very fast, and can result in programming speeds that are improved by many orders of magnitude relative to conventional devices. At the written "1" state, the threshold voltage (VT) of the device (NFET) is raised due to electrons trapped in the floating plate/trapping insulator stack and the transistor is non-conducting. At the erase state (written "0"), the threshold voltage (VT) is low and the device is conducting. Reading "1" or "0" is accomplished much the same way as standard SRAM or EPROM methodology, and can therefore be very fast.
The dynamics of trapped charge leakage (charge retention) can depend on the band gap of the materials selected for the floating plate insulator stack. Charge retention can be improved by many orders of magnitude over leakage mechanisms associated with the reverse-biased p-n junctions of DRAM devices. Charge transport to and from the charge centers during writing and erasing is typically by direct tunneling, and can be exponentially dependent on the potential across charge centers and the conducting plate. However, the field across the gate insulator stack during such operations is typically significantly lower than those of conventional non-volatile devices. As a result, endurance (number of write/erase operations) is expected to be comparable to conventional DRAM devices. Memory arrays using NVRAM devices of the present invention are expected to have speed/power which can be equal to or better than conventional DRAM, while storing data relatively permanently into the memory cells and providing substantial data non-volatility.
Referring to
Construction 10 comprises a base (or substrate) 12 and an insulator layer 14 over the base. Base 12 can comprise, for example, one or more of glass, aluminum oxide, silicon dioxide, metal and plastic. Additionally, and/or alternatively, base 12 can comprise a semiconductor material, such as, for example, a silicon wafer.
Layer 14 comprises an electrically insulative material, and in particular applications can comprise, consist essentially of, or consist of silicon dioxide. In the shown construction, insulator layer 14 is in physical contact with base 12. It is to be understood, however, that there can be intervening materials and layers provided between base 12 and layer 14 in other aspects of the invention (not shown). For example, a chemically passive thermally stable material, such as silicon nitride (Si3N4), can be incorporated between base 12 and layer 14. Layer 14 can have a thickness of, for example, from about 200 nanometers to about 500 nanometers, and can be referred to as a buffer layer.
Layer 14 preferably has a planarized upper surface. The planarized upper surface can be formed by, for example, chemical-mechanical polishing.
A layer 16 of semiconductive material is provided over insulator layer 14. In the shown embodiment, semiconductive material layer 16 is formed in physical contact with insulator 14. Layer 16 can have a thickness of, for example, from about 5 nanometers to about 10 nanometers. Layer 16 can, for example, comprise, consist essentially of, or consist of either doped or undoped silicon. If layer 16 comprises, consists essentially of, or consists of doped silicon, the dopant concentration can be from about 1014 atoms/cm3 to about 1020 atoms/cm3. The dopant can be either n-type or p-type, or a combination of n-type and p-type.
The silicon utilized in layer 16 can be either polycrystalline silicon or amorphous silicon at the processing stage of FIG. 2. It can be advantageous to utilize amorphous silicon in that it is typically easier to deposit a uniform layer of amorphous silicon than to deposit a uniform layer of polycrystalline silicon.
Referring to
A capping layer 20 is provided over islands 18 and over portions of layer 14 exposed between the islands. Layer 20 can, for example, comprise, consist essentially of, or consist of one or both of silicon dioxide and silicon. Layer 20 can also comprise multiple layers of silicon dioxide, stress-free silicon oxynitride, and silicon.
After formation of capping layer 20, small voids (nanovoids) and small crystals are formed in the islands 18. The formation of the voids and crystals can be accomplished by ion implanting helium 22 into material 16 and subsequently exposing material 16 to laser-emitted electromagnetic radiation. The helium can aid in formation of the nanovoids; and the nanovoids can in turn aid in crystallization and stress relief within the material 16 during exposure to the electromagnetic radiation. The helium can thus allow crystallization to occur at lower thermal budgets than can be achieved without the helium implantation. The helium is preferably implanted selectively into islands 18 and not into regions between the islands. The exposure of construction 10 to electromagnetic radiation can comprise subjecting the construction to scanned continuous wave laser irradiation while the construction is held at an appropriate elevated temperature (typically from about 300°C C. to about 450°C C.). The exposure to the electromagnetic radiation can complete formation of single crystal seeds within islands 18. The laser irradiation is scanned along an axis 24 in the exemplary shown embodiment.
The capping layer 20 discussed previously is optional, but can beneficially assist in retaining helium within islands 18 and/or preventing undesirable impurity contamination during the treatment with the laser irradiation.
Referring to
Capping layer 20 (
A capping layer 28 is formed over semiconductor layer 26. Capping layer 28 can comprise, for example, silicon dioxide. Alternatively, capping layer 28 can comprise, for example, a combination of silicon dioxide and stress-free silicon oxynitride. Capping layer 28 can protect a surface of layer 26 from particles and contaminants that could otherwise fall on layer 26. If the processing of construction 10 occurs in an environment in which particle formation and/or incorporation of contaminants is unlikely (for example, an ultrahigh vacuum environment), layer 28 can be eliminated from the process. Layer 28 is utilized in the patterning of a metal (discussed below). If layer 28 is eliminated from the process, other methods besides those discussed specifically herein can be utilized for patterning the metal.
Referring to
A layer 32 of metal-containing material is provided within openings 30, and in physical contact with an upper surface of semiconductive material 26. Layer 32 can have a thickness of, for example, less than or equal to about 10 nanometers. The material of layer 32 can comprise, consist essentially of, or consist of, for example, nickel. Layer 32 can be formed by, for example, physical vapor deposition. Layer 32 can be formed to be within openings 30 and not over material 28 (as is illustrated in
Oxygen 34 is ion implanted through layers 26 and 28, and into layer 16 to oxidize the material of layer 16. For instance, if layer 16 consists of silicon, the oxygen can convert the silicon to silicon dioxide. Such swells the material of layer 16, and accordingly fills the nanovoids that had been formed earlier. The oxygen preferably only partially oxidizes layer 16, with the oxidation being sufficient to fill all, or at least substantially all, of the nanovoids; but leaving at least some of the seed crystals within layer 16 that had been formed with the laser irradiation discussed previously. In some aspects, the oxidation can convert a lower portion of material 16 to silicon dioxide while leaving an upper portion of material 16 as non-oxidized silicon.
The oxygen ion utilized as implant 34 can comprise, for example, oxygen (O2) or ozone (O3). The oxygen ion implant can occur before or after formation of openings 30 and provision of metal-containing layer 32.
Construction 10 is exposed to continuous wave laser irradiation while being held at an appropriate temperature (which can be, for example, from about 300°C C. to about 450°C C.; or in particular applications can be greater than or equal to 550°C C.) to cause transformation of at least some of layer 26 to a crystalline form. The exposure to the laser irradiation comprises exposing the material of construction 10 to laser-emitted electromagnetic radiation scanned along a shown axis 36. Preferably, the axis 36 along which the laser irradiation is scanned is the same axis that was utilized for scanning of laser irradiation in the processing stage of FIG. 3.
The crystallization of material 26 (which can also be referred to as a recrystallization of the material) is induced utilizing metal-containing layer 32, and accordingly corresponds to an application of MILC. The MILC transforms material 26 to a crystalline form and the seed layer provides the crystallographic orientation while undergoing partial oxidation.
The crystal orientation within crystallized layer 26 can originate from the crystals initially formed in islands 18. Accordingly, crystal orientations formed within layer 26 can be controlled through control of the crystal orientations formed within the semiconductive material 16 of islands 18.
The oxidation of part of material 16 which was described previously can occur simultaneously with the MILC arising from continuous wave laser irradiation. Partial oxidation of seed layer 16 facilitates: (1) Ge enrichment into Si--Ge layer 26 (which improves carrier mobility); (2) stress-relief of Si--Ge layer 26; and (3) enhancement of recrystallization of Si--Ge layer 26. The crystallization of material 26 can be followed by an anneal of material 26 at a temperature of, for example, about 900°C C. for a time of about 30 minutes, or by an appropriate rapid thermal anneal, to further ensure relaxed, defect-free crystallization of material 26. This annealing option is dependent on the thermal stability of the material selected for substrate 12.
The shown metal layers 32 are effectively in a one-to-one relationship with islands 18, and such one-to-one correspondence of crystals to islands can occur during the MILC. Specifically, single crystals can be generated relative to each of islands 18 during the MILC process described with reference to FIG. 5. It is also noted, however, that although the metal layers 32 are shown in a one-to-one relationship with the islands in the cross-sectional views of
Referring to
Strained lattice layer 40 can be formed by utilizing methods similar to those described in, for example, Huang, L. J. et al., "Carrier Mobility Enhancement in Strained Si-on-Insulator Fabricated by Wafer Bonding", VLSI Tech. Digest, 2001, pp. 57-58; and Cheng, Z. et al., "SiGe-On-insulator (SGOI) Substrate Preparation and MOSFET Fabrication for Electron Mobility Evaluation" 2001 IEEE SOI Conference Digest, October 2001, pp. 13-14.
Strained lattice layer 40 can be large polycrystalline or monocrystalline. If strained lattice layer 40 is polycrystalline, the crystals of layer 40 can be large and in a one-to-one relationship with the large crystals of a polycrystalline relaxed crystalline layer 26. Strained lattice layer 40 is preferably monocrystalline over the individual blocks 18.
The strained crystalline lattice of layer 40 can improve mobility of carriers relative to the material 26 having a relaxed crystalline lattice. However, it is to be understood that layer 40 is optional in various aspects of the invention.
Each of islands 18 can be considered to be associated with a separate active region 42, 44 and 46. The active regions can be separated from one another by insulative material subsequently formed through layers 26 and 40 (not shown). For instance, a trenched isolation region can be formed through layers 26 and 40 by initially forming a trench extending through layers 26 and 40 to insulative material 14, and subsequently filling the trench with an appropriate insulative material such as, for example, silicon dioxide.
As discussed previously, crystalline material 26 can be a single crystal extending across an entirety of the construction 10 comprising the shown fragment, and accordingly extending across all of the shown active regions. Alternatively, crystalline material 26 can be polycrystalline. If crystalline material 26 is polycrystalline, the single crystals of the polycrystalline material will preferably be large enough so that only one single crystal extends across a given active region. In other words, active region 42 will preferably comprise a single crystal of material 26, active region 44 will comprise a single crystal of the material, and active region 46 will comprise a single crystal of the material, with the single crystals being separate and discrete relative to one another.
Transistor device 50 comprises a dielectric material 52 formed over strained lattice 40, and a gate 54 formed over dielectric material 52. Dielectric material 52 typically comprises silicon dioxide, and gate 54 typically comprises a stack including an appropriate conductive material, such as, for example, conductively-doped silicon and/or metal.
A channel region 56 is beneath gate 54, and in the shown construction extends across strained crystalline lattice material 40. The channel region may also extend into relaxed crystalline lattice material 26 (as shown). Channel region 56 is doped with a p-type dopant.
Transistor construction 50 additionally comprises source/drain regions 58 which are separated from one another by channel region 56, and which are doped with n-type dopant to an n+ concentration (typically, a concentration of at least 1021 atoms/cm3). In the shown construction, source/drain regions 58 extend across strained lattice layer 40 and into relaxed lattice material 26. Although source/drain regions 58 are shown extending only partially through relaxed lattice layer 26, it is to be understood that the invention encompasses other embodiments (not shown) in which the source/drain regions extend all the way through relaxed material 26 and to material. 16.
Channel region 56 and source/drain regions 58 can be formed by implanting the appropriate dopants into crystalline materials 26 and 40. The dopants can be activated by rapid thermal activation (RTA), which can aid in keeping the thermal budget low for fabrication of field effect transistor 50.
An active region of transistor device 50 extends across source/drain regions 58 and channel region 56. Preferably the portion of the active region within crystalline material 26 is associated with only one single crystal of material 26. Such can be accomplished by having material 26 be entirely monocrystalline. Alternatively, material 26 can be polycrystalline and comprise an individual single grain which accommodates the entire portion of the active region that is within material 26. The portion of strained lattice material 40 that is encompassed by the active region is preferably a single crystal, and can, in particular aspects, be considered an extension of the single crystal of the relaxed lattice material 26 of the active region.
Crystalline materials 40 and 26 can, together with any crystalline structures remaining in material 16, have a total thickness of less than or equal to about 2000 Å. Accordingly the crystalline material can correspond to a thin film formed over an insulative material. The insulative material can be considered to be insulative layer 14 alone, or a combination of insulative layer 14 and oxidized portions of material 16.
The transistor structure 50 of
As mentioned above, strained lattice 40 can comprise other materials alternatively to, or additionally to, silicon. The strained lattice can, for example, comprise a combination of silicon and germanium. There can be advantages to utilizing the strained crystalline lattice comprising silicon and germanium relative to structures lacking any strained lattice. However, it is generally most preferable if the strained lattice consists of silicon alone (or doped silicon), rather than a combination of silicon and germanium for an NFET device.
A pair of sidewall spacers 60 are shown formed along sidewalls of gate 54, and an insulative mass 62 is shown extending over gate 54 and material 40. Conductive interconnects 63 and 64 extend through the insulative mass 62 to electrically connect with source/drain regions 58. Interconnects 63 and 64 can be utilized for electrically connecting transistor construction 50 with other circuitry external to transistor construction 50. Such other circuitry can include, for example, a bitline and a capacitor in applications in which construction 50 is incorporated into dynamic random access memory (DRAM).
A transistor construction 70 is shown in
The strained crystalline lattice material 40 of the PFET device 70 can consist of appropriately doped silicon, or consist of appropriately doped silicon/germanium. It can be most advantageous if the strained crystalline lattice material 40 comprises appropriately doped silicon/germanium in a PFET construction, in that silicon/germanium can be a more effective carrier of holes with higher mobility than is silicon without germanium.
The transistor devices discussed above (NFET device 50 of
Substrate 12 can comprise, for example, one or more of glass, aluminum oxide, silicon dioxide, metal and plastic. Additionally, and/or alternatively, substrate 12 can comprise a semiconductor material such as, for example, a silicon wafer.
Construction 202 comprises a body region 208 which can correspond to, for example, one of the active regions described previously with reference to
Body region 208 includes source/drain regions 204 and 206 which extend into the body region, and also includes a channel region 226 extending between the source/drain regions. Regions 204 and 206 can be referred to as first and second diffusion regions, respectively, in the discussion that follows. Alternatively, regions 204 and 206 can be referred to as drain and source regions, respectively, in the discussion that follows. It is noted that source/drain regions of
In the shown aspect of the invention, source/drain regions 204 and 206 are n-type doped regions, and channel region 226 is a p-type doped region. It is to be understood, however, that the invention encompasses other embodiments in which the source/drain regions are p-type doped regions and the channel region is an n-type doped region. In either event, source/drain regions of one conductivity type extend into the body, and the body further comprises a region oppositely doped to the conductivity-type of the source/drain regions, with such oppositely-doped region including a channel region extending between the source/drain regions.
A gate insulator stack 224 is over channel region 226, and a gate 210 is over the insulator stack 224. A silicide 236, such as cobalt or nickel silicide, is shown formed over gate 210. In particular aspects, gate 210 comprises conductively-doped polycrystalline silicon, and the silicide is formed physically against the polycrystalline silicon of the gate.
Spacers 228 are formed along sidewalls of a stack comprising gate insulator 224, gate 210 and silicide 236. Spacers 228 can comprise a suitable insulative material, such as, for example, silicon dioxide and/or silicon nitride. In particular-aspects, the spacers comprise oxide-nitride-oxide (ONO) constructions.
In the shown construction, gate insulator stack 224 includes a first tunnel barrier layer 230 formed over channel region 226, a metal suicide layer 232 formed over tunnel barrier layer 230, and a second tunnel barrier layer 234 formed over layer 232. Tunnel barrier layers 230 and 234 can have the same composition as one another, and in the shown embodiment merge as a single structure. Metal silicide layer 232 functions as a floating plate formed over the tunnel barrier layer 230, and in the shown construction extends over second diffusion region 206 to electrically contact diffusion region 206. It is noted that the floating plate contacts only one of the first and second diffusion regions 204 and 206.
Although layer 232 is described as comprising a metal silicide, it is to be understood that layer 232 can comprise any suitably electrically conductive material. In particular aspects, layer 232 can comprise a silicide of a transition metal (and accordingly can be referred to as a transition metal silicide).
Various exemplary thickness and compositions of particular layers utilized in construction 202 are as follows. First tunnel barrier 230 can include, for example, a 3 nanometer to 5 nanometer thick layer of silicon dioxide; second tunnel barrier 234 can include a 3 nanometer to 5 nanometer thick layer of silicon dioxide, or alternatively a layer of aluminum oxide (Al2O3) with an equivalent oxide thickness (TEQ. OX) of from about 3 nanometers to about 5 nanometers. Tunnel-blocking layers 230 and 234 are typically trap-free high band gap insulators which alleviate, and preferably prevent charge loss to a substrate comprising materials 12, 14, 16, 26 and 40, or to the gate. The tunnel-blocking layers can be other insulators besides, or in addition to SiO2 and Al2O3, depending on the leakage specification and tolerance of the cell and the operational specifications (such as, Vdd, etc.)
It is noted that a diode (such as diode 164 of
The stack 224 of
Layers 237 and 238 can be referred to as floating plate charge center layers. Layer 237 can comprise a transition metal silicide, and will typically be from about 10 nanometers to about 30 nanometers thick. Layer 238 will typically comprise a transition metal oxide, and will typically be from about 1 nanometer to about 2 nanometers thick. The transition metal oxide (or oxides) can be deposited utilizing, for example, atomic layer deposition:(ALD) techniques. Among the materials that can be utilized for layers 237 and 238 are combinations of ZiSi2--ZrO2; TiSi2--TiO2; and HfSi2--HfO2. However, it is to be understood that the invention is not limited to any particular combination, and other combinations besides those specifically disclosed are viable for meeting desired diode characteristics of the metal silicide and band gap characteristics of the metal oxide. Typically, transition metal silicides have relatively low Schottky barrier heights, have large forward current, and have relatively low reverse leakage characteristics. Also, transition metal oxides typically have approximately 3 ev to 5 ev of band gap, with nearly 1 ev of electron barrier height from the silicide to the dielectric conduction band. Such can provide a good balance of charge retention, as well as ease of charge transport to and from charge centers of the transition metal oxides.
The constructions of
It is noted that although the term "body" is utilized above to describe the entire active region of an NVRAM device, the term can also be utilized herein to refer specifically to only the portion of the NVRAM device that is oppositely doped to the source/drain regions. In other words, the term "body" can be utilized to refer to a portion of the active region which excludes the source/drain regions. For purposes of interpreting this disclosure and the claims that follow, the term "body" is to be understood to include the source/drain regions except when it is explicitly stated otherwise.
NFET transistors are formed on a p-type substrate or well region. A gate insulator stack and a gate are formed at 344A for transistor 302A, at 344B for transistor 302B, at 344C for transistor 302C, and at 344D for transistor 302D. During fabrication of the gate insulator stacks, a metal silicide is formed to contact the substrate at 346 for transistors 302A and 302B, and at 348 the transistors 302C and 302D. After the gates are defined, the substrate is heavily doped with n-type impurities to form a first n+ diffusion region (or drain region) at 304A for transistor 302A, at 304B for transistor 302B, at 304C for transistor 302C, and at 304D for transistor 302D, and to form a second n+diffusion region (or source or floating node region) at 306A for transistor 302A, at 306B for transistor 302B, at 306C for transistor 302C, and at 306D for transistor 302D. A special n+doping mask is used such that appropriate regions of areas 350 and 352 (along with the substrate areas under the defined gate areas 344A, 344B, 344C, and 344D) can remain p-type doped.
Bitline contacts are shown at 354A, 354B, 354C, and 354D for the bitlines (BL). Wordlines (WL) contact the gates. The metal-silicide contacts the p-type substrate, and thus forms Schottky diodes at 350 and 352. Lateral semiconductor junction diodes are formed at the p-n+junctions at 356 and 358. In the illustrated array, adjacent memory cells share Schottky diodes and lateral junction diodes, and thus space can be saved. One of ordinary skill in the art will understand that bitline contacts can also be shared by adjacent memory cells.
The interface between the metal silicide layer and the second diffusion region provides the Schottky diode. Schottky barrier heights for metal or metal silicide-silicon (p-type or n-type) are capable of being varied by selecting an appropriate metal or metal-silicide to be a low barrier Schottky or a high barrier Schottky. The Schottky diode is a majority carrier device, and thus can have a very fast time constant. Additionally, the Schottky diode can be fabricated to have a very low reverse leakage (such as, for example, a leakage much less than 1×10-8 A/cm2), while conducting a large forward current at a negligible voltage drop.
Table 1 illustrates cell operations in various embodiments for an NFET NVRAM for which Vdd is approximately equal to 2.5 volts.
TABLE 1 | |||||
Node Potentials: | Storage | ||||
Operation | BitLine | WordLine | Substrate | Node (S) | Remark |
Write 1 | +5 V | 2.5 V | 0 V | Float | Reverse biased |
(High) | diode. Floating | ||||
plate of the | |||||
addressed bit is | |||||
charged: | |||||
VT Change: | |||||
VT(0) -> | |||||
VT(1) = 2.5 V | |||||
Write 0 | 0 V | 0 V | 2.5 V | Float | Forward biased |
(Low) | diode. Current | ||||
(holes) | |||||
neutralize | |||||
charges of the | |||||
addressed | |||||
Bit: | |||||
VT Change: | |||||
VT(1) -> | |||||
VT(0) = 1.0 V | |||||
Half- | 0 V | 2.5 V | 0 V | Float | No change in |
select | state. | ||||
cells | |||||
Read 1 | Float | 2.5 V | 0 V | Float (1) | Device Off: |
No change in | |||||
Bitline | |||||
potential | |||||
Read 0 | Float | 2.5 V | 0 V | Float (0) | Device On: |
Change in Bit- | |||||
line potential | |||||
sensed. | |||||
One of ordinary skill in the art will understand that NVRAM designs can be fabricated utilizing cell operations in addition to, or other than, those described in Table 1.
The p+, p, and p- dopant levels are shown in the drawings only to illustrate differences in dopant concentration. It is noted that the term "p" is utilized herein to refer to both a dopant type and a relative dopant concentration. To aid in interpretation of this specification and the claims that follow, the term "p" is to be understood as referring only to dopant type, and not to a relative dopant concentration, except when it is explicitly stated that the term "p" refers to a relative dopant concentration. Accordingly, for purposes of interpreting this disclosure and the claims that follow, it is to be, understood that the term "p-type doped" refers to a dopant type of a region and not a relative dopant level. Thus, a p-type doped region can be doped to any of the p+, p, and p- dopant levels discussed above. Similarly, an n-type doped region can be doped to any of the n+, n, and n- dopant levels discussed above.
In particular aspects of the invention, memory device 408 can correspond to a memory module. For example, single in-line memory modules (SIMMs) and dual in-line memory modules (DIMMs) may be used in the implementation which utilize the teachings of the present invention. The memory device can be incorporated into any of a variety of designs which provide different methods of reading from and writing to memory cells of the device. One such method is the page mode operation. Page mode operations in a DRAM are defined by the method of accessing a row of a memory cell arrays and randomly accessing different columns of the array. Data stored at the row and column intersection can be read and output while that column is accessed.
An alternate type of device is the extended data output (EDO) memory which allows data stored at a memory array address to be available as output after the addressed column has been closed. This memory can increase some communication speeds by allowing shorter access signals without reducing the time in which memory output data is available on a memory bus. Other alternative types of devices include SDRAM, DDR SDRAM, SLDRAM, VRAM and Direct RDRAM, as well as others such as SRAM or Flash memories.
The system 700 of
Patent | Priority | Assignee | Title |
10084049, | Nov 09 2016 | Samsung Electronics Co., Ltd. | Semiconductor device |
10157769, | Mar 02 2010 | Micron Technology, Inc. | Semiconductor devices including a diode structure over a conductive strap and methods of forming such semiconductor devices |
10325926, | Mar 02 2010 | Micron Technology, Inc. | Semiconductor-metal-on-insulator structures, methods of forming such structures, and semiconductor devices including such structures |
10373956, | Mar 01 2011 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Gated bipolar junction transistors, memory arrays, and methods of forming gated bipolar junction transistors |
10886273, | Mar 01 2011 | Micron Technology, Inc. | Gated bipolar junction transistors, memory arrays, and methods of forming gated bipolar junction transistors |
11069742, | Nov 23 2019 | TetraMem Inc.; TETRAMEM INC | Crossbar array circuit with parallel grounding lines |
6900667, | Mar 11 2003 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Logic constructions and electronic devices |
7132335, | Dec 23 2002 | SanDisk Technologies LLC | Semiconductor device with localized charge storage dielectric and method of making same |
7183611, | Jun 03 2003 | Micron Technology, Inc. | SRAM constructions, and electronic systems comprising SRAM constructions |
7279740, | May 12 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Band-engineered multi-gated non-volatile memory device with enhanced attributes |
7348225, | Oct 27 2005 | GLOBALFOUNDRIES U S INC | Structure and method of fabricating FINFET with buried channel |
7358131, | Jun 03 2003 | Micron Technology, Inc. | Methods of forming SRAM constructions |
7402850, | Jun 21 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Back-side trapped non-volatile memory device |
7429767, | Sep 01 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | High performance multi-level non-volatile memory device |
7432562, | Jun 03 2003 | Micron Technology, Inc. | SRAM devices, and electronic systems comprising SRAM devices |
7579242, | Sep 01 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | High performance multi-level non-volatile memory device |
7629641, | Aug 31 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Band engineered nano-crystal non-volatile memory device utilizing enhanced gate injection |
7737500, | Apr 26 2006 | GLOBALFOUNDRIES Inc | CMOS diodes with dual gate conductors, and methods for forming the same |
7749848, | May 12 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Band-engineered multi-gated non-volatile memory device with enhanced attributes |
7829938, | Jul 14 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | High density NAND non-volatile memory device |
7851827, | Jun 21 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Back-side trapped non-volatile memory device |
7851850, | Aug 31 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Band engineered nano-crystal non-volatile memory device utilizing enhanced gate injection |
7910413, | Oct 27 2005 | GLOBALFOUNDRIES Inc | Structure and method of fabricating FinFET with buried channel |
8058118, | Jun 21 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of forming and operating back-side trap non-volatile memory cells |
8062945, | Aug 31 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of forming non-volatile memory structure with crested barrier tunnel layer |
8063436, | May 12 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Memory cells configured to allow for erasure by enhanced F-N tunneling of holes from a control gate to a charge trapping material |
8159875, | Sep 01 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of storing multiple data-bits in a non-volatile memory cell |
8222702, | Apr 26 2006 | GLOBALFOUNDRIES Inc | CMOS diodes with dual gate conductors, and methods for forming the same |
8462557, | Jul 14 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of operating memory cell having asymmetric band-gap tunnel insulator using direct tunneling |
8507390, | Jun 08 2004 | WODEN TECHNOLOGIES INC | Methods and devices for forming nanostructure monolayers and devices including such monolayers |
8558304, | Jun 08 2004 | WODEN TECHNOLOGIES INC | Methods and devices for forming nanostructure monolayers and devices including such monolayers |
8735226, | Jun 08 2004 | WODEN TECHNOLOGIES INC | Methods and devices for forming nanostructure monolayers and devices including such monolayers |
8871623, | Jun 08 2004 | WODEN TECHNOLOGIES INC | Methods and devices for forming nanostructure monolayers and devices including such monolayers |
8981452, | Jun 08 2004 | WODEN TECHNOLOGIES INC | Methods and devices for forming nanostructure monolayers and devices including such monolayers |
9129983, | Feb 11 2011 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Memory cells, memory arrays, methods of forming memory cells, and methods of forming a shared doped semiconductor region of a vertically oriented thyristor and a vertically oriented access transistor |
9269795, | Jul 26 2011 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Circuit structures, memory circuitry, and methods |
9343462, | Mar 02 2010 | OVONYX MEMORY TECHNOLOGY, LLC | Thyristor-based memory cells, devices and systems including the same and methods for forming the same |
9361966, | Mar 08 2011 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Thyristors |
9608119, | Mar 02 2010 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor-metal-on-insulator structures, methods of forming such structures, and semiconductor devices including such structures |
9646869, | Mar 02 2010 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor devices including a diode structure over a conductive strap and methods of forming such semiconductor devices |
9691465, | Mar 08 2011 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Thyristors, methods of programming thyristors, and methods of forming thyristors |
Patent | Priority | Assignee | Title |
5825064, | Mar 10 1919 | Agency of Industrial Science and Technology; Seiko Instruments Inc | Semiconductor volatile/nonvolatile memory |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 06 2003 | BHATTACHARYYA, ARUP | Micron Technology, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013763 | /0319 | |
Feb 10 2003 | Micron Technology, Inc. | (assignment on the face of the patent) | / | |||
Apr 26 2016 | Micron Technology, Inc | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT | 038954 | /0001 | |
Apr 26 2016 | Micron Technology, Inc | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTEREST | 043079 | /0001 | |
Apr 26 2016 | Micron Technology, Inc | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 038669 | /0001 | |
Jun 29 2018 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Micron Technology, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 047243 | /0001 | |
Jul 03 2018 | MICRON SEMICONDUCTOR PRODUCTS, INC | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 047540 | /0001 | |
Jul 03 2018 | Micron Technology, Inc | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 047540 | /0001 | |
Jul 31 2019 | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | Micron Technology, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 051028 | /0001 | |
Jul 31 2019 | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | MICRON SEMICONDUCTOR PRODUCTS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 051028 | /0001 | |
Jul 31 2019 | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | Micron Technology, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 050937 | /0001 |
Date | Maintenance Fee Events |
Sep 22 2004 | ASPN: Payor Number Assigned. |
Jan 04 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 21 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 13 2016 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 27 2007 | 4 years fee payment window open |
Jan 27 2008 | 6 months grace period start (w surcharge) |
Jul 27 2008 | patent expiry (for year 4) |
Jul 27 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 27 2011 | 8 years fee payment window open |
Jan 27 2012 | 6 months grace period start (w surcharge) |
Jul 27 2012 | patent expiry (for year 8) |
Jul 27 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 27 2015 | 12 years fee payment window open |
Jan 27 2016 | 6 months grace period start (w surcharge) |
Jul 27 2016 | patent expiry (for year 12) |
Jul 27 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |