A digital gmsk filter for use for frequency modulation of a carrier signal in a gmsk transmission system is described. The gmsk filter uses a large number of individual current sources, whose current values are individually weighted. The current sources are driven via a control logic module using a shift register with a thermometer code, such that this results in a total current with a gaussian characteristic, which is converted across a resistor to a voltage and drives a voltage controlled oscillator (VCO). The filter provides exact implementation of the sample values, virtually without any quantization error, and requires only a small chip area for its implementation.
|
1. A digital gaussian minimum shift keying (gmsk) filter for frequency modulating a carrier signal in a gmsk transmission system, the gmsk filter comprising:
a control logic module having a shift register receiving modulation bits, said shift register having a first side for receiving logic 1 values of the modulation bits and a second side receiving logic 0 values of the modulation bits, said second side being opposite said first side, said shift register having a shift direction switchable between a stop, a left and a right shift direction; a number of individual current sources outputting individual current values with said individual current sources being individually driven by said control logic module in accordance with a digital signal to be modulated; and an output resistor coupled to said individual current sources with a total current from said individual current sources being converted by said output resistor to a voltage value for controlling a voltage controlled oscillator, by which a frequency of the carrier signal is modulated.
2. The digital gmsk filter according to
3. The digital gmsk filter according to
4. The digital gmsk filter according to
5. The digital gmsk filter according to
|
This application is a continuation of copending International Application No. PCT/DE00/01121, filed Apr. 11, 2000, which designated the United States.
The present invention relates in general to modulation systems for frequency shift keying with an upstream Gaussian filter, referred to as Gaussian minimum shift keying (GMSK) modulation systems. In particular, it relates to an improved GMSK filter for such GMSK modulation systems.
GMSK modulation is frequently used in present-day cordless telephone systems or mobile radio systems. In these modulation systems, with an upstream Gaussian filter, referred to as GMSK modulation systems, a carrier signal is modulated with a Gaussian-filtered digital data signal. Frequency modulation (FM) or quadrature modulation may be used for modulation in this case. Since quadrature modulation requires linear I and Q paths which match one another very exactly, and also requires a phase shifter and a mixing module, it is relatively complex to implement. Thus, for cost reasons, frequency modulation is frequently used, since it is simpler to implement.
Frequency modulation uses a voltage controlled oscillator, referred to as a VCO. The digital data signal used for modulation is for this purpose filtered by a Gaussian filter. The Gaussian filter ensures that the digital square-wave signals, which represent the actual data signal, are smooth to a certain extent. To a certain extent, this represents a low-pass filter and ensures that no excessively abrupt sudden phase changes occur. It is thus possible to produce a relatively narrowband modulated carrier signal. The signal produced at the output of the Gaussian filter then drives the voltage controlled oscillator (VCO).
The Gaussian filter can be implemented in various ways. For example, it may be in the form of an analog filter element with discrete components, as is used in the Siemens cordless DECT telephones. Alternatively, it may be in the form of a digital filter, as is used, for example, in the Phillips and NSC cordless telephones.
In the GMSK filters normally used until now, digital preprocessing followed by digital/analog conversion was carried out by an X-bit digital/analog converter (D/A converter). As for any digital/analog conversion, the digital/analog conversion necessarily results in quantization errors due to the step function used in the D/A converter. The quantization errors can be reduced by reducing the size of the steps used in the D/A converter, by increasing its resolution and hence its bit length.
Conventional D/A converters, which operate on the current source principle, have binary-weighted current sources. The individual current sources in this case emit currents which represent a binary multiple of a reference current Iref. They thus have magnitudes Iref, 2*Iref, 4*Iref . . . 2{circumflex over ( )}N*Iref. Any digital value can thus be produced by simple addition. One problem with these D/A converters is that, when switching to the most significant bit (MSB), switching is carried out from the sum of all the reference currents, apart from the largest reference current, to the largest reference current. If the reference currents are now not precisely matched, which is virtually always the situation in practice, there is a sudden change in the converter characteristic. This can result in the production of radio-frequency sideband signals, which contravene specified sideband suppression.
In D/A converters having a voltage output, reference voltages are added. The voltages can be added actively via a buffer, or passively via resistors. In the passive version, however, the output resistance is not constant, and has a relatively high value. Furthermore, resistors are not particularly suitable for integration, since they require a large surface area for their implementation. The voltages are therefore normally added via a buffer that requires a sufficiently wide bandwidth (in this case in the order of magnitude of 10 MHz). However, such a buffer also requires a relatively large surface area for its implementation, and consumes a large amount of current.
In addition, conventional D/A converters require a digital filter. This is frequently in the form of a table stored in a read only memory (ROM).
The GMSK filters that are used are intended to be implemented on a minimum surface area in the course of the ever greater miniaturization of electronic appliances. At the same time, however, the filters are intended to be as accurate as possible.
International Patent Disclosure WO 97/04525 describes a digital GMSK filter which adds currents from a large number of individual current sources to produce a total current which is converted to a corresponding voltage value by a resistor. The current sources, which are weighted in accordance with the desired filter function, are in this case driven via a shift register.
International Patent Disclosure WO 97/33414 A specifies a configuration for pulse-shaping for GMSK modulation. The digital data stream received by the configuration is converted by read only memories, logic circuits and a digital/analog converter to an analog control signal for a VCO.
A further digital-to-analog converter for producing a GMSK-weighted analog signal is described in Published, European Patent Application EP 0 743 759 A1.
It is accordingly an object of the invention to provide a digital GMSK filter which overcomes the above-mentioned disadvantages of the prior art devices of this general type, whose accuracy is as high as possible and which can be implemented on a minimal surface area.
With the foregoing and other objects in view there is provided, in accordance with the invention, a digital Gaussian minimum shift keying (GMSK) filter for frequency modulating a carrier signal in a GMSK transmission system. The GMSK filter contains a control logic module having a shift register receiving modulation bits. The shift register has a first side for receiving logic 1 values of the modulation bits and a second side receiving logic 0 values of the modulation bits. The second side is opposite the first side, and the shift register has a shift direction switchable between a stop, a left and a right shift direction. A number of individual current sources are provided and output individual current values with the individual current sources being individually driven by the control logic module in accordance with a digital signal to be modulated. An output resistor is coupled to the individual current sources with a total current from the individual current sources being converted by the output resistor to a voltage value for controlling a voltage controlled oscillator, by which a frequency of the carrier signal is modulated.
The object is achieved by the digital GMSK filter according to the invention. The filter uses a parallel D/A converter with a current output for the D/A converter. The analog output signal in this case consists of a total current, which is obtained by additive combination of individual currents from individual current sources.
The current sources that are used for the filter according to the invention are what are referred to as differential current sources. The expression "differential current source" is in this case intended to mean that they each supply the current which is necessary to move from one step on the converter characteristic to the next step. The necessary chip surface area to provide the filter is in this case governed only by the maximum total current, and not by the number of current sources.
The individual currents from the differential current sources can be converted directly in an external resistor to the control voltage required for driving the VCO, so that, in contrast to the D/A converters known from the prior art, no output buffer is required. The current values from the differential current sources are in this case not weighted linearly, but have Gaussian weighting. Therefore, there is no need for any digital filtering.
The configuration of the shift register according to the invention (input capability on both sides and capability to shift the switch direction) results in that the individual current sources can be driven in an advantageous manner.
Particularly when varactors are used for this purpose, voltage controlled oscillators (VCOs) have a wide scatter in their operating parameters. The drive voltage must therefore be trimmed during production, in order to achieve a predetermined frequency shift in the VCO. The modulation shift can be carried out, in the GMSK filter according to the invention, by trimming the reference current of the differential current sources.
Overall, the digital GMSK filter according to the invention provides a filter that can be implemented on a small chip surface area, which is governed only by the maximum total current. The filter does not require an output buffer. The Gaussian weighting of the currents from the differential current sources results in that there is no need for any digital filtering. Furthermore, this allows an exact Gaussian converter characteristic to be achieved.
In accordance with an added feature of the invention, the individual current values of the individual current sources are weighted such that the total current has a Gaussian characteristic, as a result of a respective connection and disconnection of in each case one of the individual current sources.
In accordance with another feature of the invention, the shift register is operable in a long loop mode, in which the shift register is always filled either entirely with "logic ones" or entirely with "logic zeros", and the shift register is operable in a short loop mode, in which the shift direction for specific positions in the shift register is changed, and a shift process is suppressed for one cycle.
In accordance with a further feature of the invention, for the long loop mode in the shift register, the shift direction is changed as a function of a next bit to be modulated.
Other features which are considered as characteristic for the invention are set forth in the appended claims.
Although the invention is illustrated and described herein as embodied in a digital GMSK filter, it is nevertheless not intended to be limited to the details shown, since various modifications and structural changes may be made therein without departing from the spirit of the invention and within the scope and range of equivalents of the claims.
The construction and method of operation of the invention, however, together with additional objects and advantages thereof will be best understood from the following description of specific embodiments when read in connection with the accompanying drawings.
Referring now to the figures of the drawing in detail and first, particularly, to
The designation VDDTXDA in this case denotes the supply voltage for the current sources. An output resistor 560 is coupled to the current sources I1 to I14 through the switches b1 to b14 and converts a current value into a voltage value.
The lower part of
The code used in the shift register 30 for driving the individual current sources I1 to I14 is referred to as a thermometer code, since it can be regarded as a thermometer in which the mercury column runs up and down. Therefore, there is only ever one bit more or one bit less than "logic one". All the least significant bits in this case are at the "logic 1" level. The shift register 30 used here with the thermometer code has the short loop and the long loop. The short loop is used for bit sequences 010 or 101, while, on the other hand, the long loop is used for 0011 or 1100 bit sequences. The decision as to whether to use the short loop or the long loop is made when switching the current source I7. In the long loop, the shift register 30 is always either filled entirely with "logic ones" or it is emptied entirely, all that is to say it is completely filled with "logic zeros". In the short loop, the shift direction is changed to position 5 and position 13, and the shifting process is suppressed for one clock cycle. In long loops, the shift direction can be changed for each rising edge of the modulation clock (in this case 1.152 MHz). The shift direction depends on the next bit to be modulated.
The shift direction decision is demonstrated once again in tabular form in FIG. 6.
In both
Overall, the present invention provides a digital GMSK filter in which there is no need for any separate digital filter, since the "filtering" is achieved just by the nonlinear weighting of the current sources I1 to I14. Driving the current sources I1 to I 14 via the shift register 30 with a thermometer code results in that only one current source is ever switched on or switched off in each case, so that this always results in a monotonal rise or fall in the output current. Individual weighting of the individual current sources allows sample values to be achieved with virtually no quantization error. No output buffer is required, since the currents can simply be added in a load resistor.
Kranz, Christian, Christ, Volker
Patent | Priority | Assignee | Title |
10056924, | Aug 19 2013 | Analog Devices, Inc | High output power digital-to-analog converter system |
6357255, | Sep 24 1998 | Hitachi Zosen Corporation; SUMITOMO PRECISION PRODUCTS CO , LTD | Regenerator for use in ammonia absorption refrigerator |
7760818, | Jul 14 2006 | Samsung Electronics Co., Ltd. | Data modulator based on Gaussian minimum shift keying (GMSK) modulation and data transmitter including the same |
7860477, | Aug 23 2007 | Infineon Technologies AG | Self-calibrating filter |
8362828, | Nov 15 2007 | Kaben Wireless Silicon Inc. | Sampling filter using multiple clocks |
8970418, | Aug 19 2013 | Analog Devices, Inc | High output power digital-to-analog converter system |
RE47601, | Aug 19 2013 | Analog Devices, Inc. | High output power digital-to-analog converter system |
Patent | Priority | Assignee | Title |
5515047, | Dec 29 1992 | Renesas Electronics Corporation | Converter, offset adjustor, and portable communication terminal unit |
5815537, | Jul 21 1995 | U S PHILIPS CORPORATION | Wireless digital communication device, and a pulse shaping network |
6072340, | Mar 24 1997 | TELECOM HOLDING PARENT LLC | Pulse shaping and filtering circuit for digital pulse data transmissions |
6542100, | Jun 30 1999 | Intel Corporation | Apparatus and method for filtering a signal which represents a digital data stream |
EP743759, | |||
WO9704525, | |||
WO9733414, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 22 2001 | Infineon Technologies AG | (assignment on the face of the patent) | / | |||
Nov 15 2001 | KRANZ, CHRISTIAN | Infineon Technologies AG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015486 | /0903 | |
Nov 15 2001 | CHRIST, VOLKER | Infineon Technologies AG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015486 | /0903 | |
Jan 31 2011 | Infineon Technologies AG | Intel Mobile Communications Technology GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027548 | /0623 | |
Oct 31 2011 | Intel Mobile Communications Technology GmbH | Intel Mobile Communications GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027556 | /0709 | |
May 07 2015 | Intel Mobile Communications GmbH | INTEL DEUTSCHLAND GMBH | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 037057 | /0061 | |
Jul 08 2022 | INTEL DEUTSCHLAND GMBH | Intel Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 061356 | /0001 |
Date | Maintenance Fee Events |
Oct 01 2004 | ASPN: Payor Number Assigned. |
Oct 01 2004 | RMPN: Payer Number De-assigned. |
Jan 31 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 01 2012 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 11 2016 | REM: Maintenance Fee Reminder Mailed. |
Aug 03 2016 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 03 2007 | 4 years fee payment window open |
Feb 03 2008 | 6 months grace period start (w surcharge) |
Aug 03 2008 | patent expiry (for year 4) |
Aug 03 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 03 2011 | 8 years fee payment window open |
Feb 03 2012 | 6 months grace period start (w surcharge) |
Aug 03 2012 | patent expiry (for year 8) |
Aug 03 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 03 2015 | 12 years fee payment window open |
Feb 03 2016 | 6 months grace period start (w surcharge) |
Aug 03 2016 | patent expiry (for year 12) |
Aug 03 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |