High electron mobility transistors (HEMTs) and methods of fabricating HEMTs are provided Devices according to embodiments of the present invention include a gallium nitride (gan) channel layer and an aluminum gallium nitride (AlGaN) barrier layer on the channel layer. A first ohmic contact is provided on the barrier layer-to provide a source electrode and a second ohmic contact is also provided on the barrier layer and is spaced apart from the source electrode to provide a drain electrode. A gan-based cap segment is provided on the barrier layer between the source electrode and the drain electrode. The gan-based cap segment has a first sidewall adjacent and spaced apart from the source electrode and may have a second sidewall adjacent and spaced apart from the drain electrode. A non-ohmic contact is provided on the gan-based cap segment to provide a gate contact. The gate contact has a first sidewall which is substantially aligned with the first sidewall of the gan-based cap segment. The gate contact extends only a portion of a distance between the first sidewall and the second sidewall of the gan-based cap segment.

Patent
   6777278
Priority
Dec 01 2000
Filed
Feb 25 2003
Issued
Aug 17 2004
Expiry
Jul 12 2021
Assg.orig
Entity
Large
115
29
all paid
1. A method of fabricating a high electron mobility transistor (HEMT), comprising:
forming a first gallium nitride (gan) layer on a substrate;
forming an aluminum gallium nitride (AlGaN) layer on the first gan layer;
forming a gan-based segment on the AlGaN layer, the gan-based segment having an aluminum concentration of less than the AlGaN layer;
forming a first ohmic contact to the AlGaN layer adjacent and spaced apart from the gan segment to provide a source electrode;
forming a second ohmic contact to the AlGaN layer adjacent and spaced apart from the gan segment and opposite first ohmic contact such that the gan segment is disposed between the first ohmic contact and the second ohmic contact to provide a drain electrode; and
forming a non-ohmic contact on the gan segment to provide a gate contact, the gate contact having a first sidewall which is substantially aligned with the first sidewall of the gan segment adjacent the source contact and the gate contact extending only a portion of a distance between the first sidewall and a second sidewall of the gan segment adjacent the second ohmic contact.
2. A method according to claim 1, wherein the non-ohmic contact extends only a portion of a distance between the first sidewall and a second sidewall of the gan segment adjacent the drain contact.
3. A method according to claim 2, wherein forming a gan-based segment comprises forming a gan segment on the AlGaN layer.
4. A method according to claim 3, whereto the forming a gan segment and forming a non-ohmic contact comprises:
foaming a second gan layer on the AlGaN layer;
forming a non-ohmic contact on the second gan layer;
patterning the non-ohmic contact and the second gan layer to provide the gan segment and the gate contact.
5. A method according to claim 4, wherein patterning the non-ohmic contact and the second gan layer comprises:
forming a mask layer on the non-ohmic contact and the second gan layer so that the mask covers portions of the non-ohmic contact and the second gan layer so as to define a sidewall of the non-ohmic contact and the gan segment adjacent the source contact and a sidewall of the gan segment adjacent the drain contact;
etching the non-ohmic contact and the second gan layer to expose portions of the AlGaN layer.
6. A method according to claim 3, wherein the gan segment is formed to a thickness of from about 10 to about 60 Å.
7. A method according to claim 6, wherein the gan segment comprises undoped gan.
8. A method according to claim 3, wherein forming a first ohmic contact and forming a second ohmic contact comprises forming a first ohmic contact and a second ohmic contact which arc spaced apart a distance of from about 2 to about 4 μm.
9. A method according to claim 3, wherein the first ohmic contact is formed a distance of less than about 2 μm from the gan segment.
10. A method according to claim 9, wherein the first ohmic contact is formed a distance of from about 0.3 to about 1.5 μm from the gan segment.
11. A method according to claim 3, wherein the non-ohmic contact is patterned so that a sidewall of the non-ohmic contact is from about 0.5 to about 1 μm from the second sidewall of the gan segment.
12. A method according to claim 3, wherein forming an AlGaN layer comprises forming an AlGaN layer having between about 15% and about 60% aluminum.
13. A method according to claim 12, wherein forming an AlGaN layer comprises forming an AlGaN layer doped with silicon to provide a total sheet concentration of up to about 5×1012 cm-2.
14. A method according to claim 12, wherein forming an AlGaN layer further comprises forming an AlGaN layer to a thickness of from about 15 to about 40 nm.
15. A method according to claim 14, wherein forming an AlGaN layer comprises forming an AlGaN layer to a thickness of about 25 nm.
16. A method according to claim 3, wherein the substrate comprises silicon carbide.
17. A method according to claim 3, wherein the substrate comprises sapphire.
18. A method according to claim 3, wherein the substrate comprises at least one of 4H silicon carbide and 6H silicon carbide.
19. A method according to claim 3, further comprising forming a third gan layer disposed between the first gan layer and the substrate.
20. A method according to claim 3, further comprising forming a metallization layer on the non-ohmic contact to provide a T-shaped gate.

The present application is a divisional of and claims priority from Application No. 09/904,333, filed Jul. 12, 2001 (now U.S. Pat. No. 6,548,333), entitled Aluminum Gallium Nitride/Gallium Nitride High Electron Mobility Transistors Having A Gate Contact On A Gallium Nitride Based Cap Segment And Methods Of Fabricating Same assigned to the assignee of the present application which is related to and claims priority from U.S. Provisional Application Serial No. 60/250,755, filed Dec. 1, 2000 and entitled "AlGaN/GaN HEMT with Improved Gate Barrier Layer and Low Access Resistance," the disclosures of which are incorporated herein as if set forth fully herein.

The present invention was developed, at least in part, under Office of Naval Research Contract No. N00014-99-C-0657. The Government has certain rights in this invention.

The present invention relates to High Electron Mobility Transistor (HEMT) and more particularly to aluminum gallium nitride (AlGaN)/gallium nitride (GaN) HEMTs.

AlGaN/GaN HEMT (High Electron Mobility Transistor) devices are well known in the semiconductor field. U.S. Pat. Nos. 5,192,987 and 5,296,395 describe AlGaN/GaN HEMT structures and methods of manufacture. Improved HEMT structures are disclosed in commonly assigned U.S. patent application Ser. No. 09/096,967 filed Jun. 12, 1998 now U.S. Pat. No. 6,316,793 and entitled "NITRIDE BASED TRANSISTORS ON SEMI-INSULATING SILICON CARBIDE SUBSTRATES" which is incorporated by reference in its entirety.

A typical AlGaN/GaN HEMT structure 110 is illustrated in FIG. 1. A GaN channel layer 114 is formed on buffer layer 113 on a substrate 112. An AlGaN barrier layer 116 is formed on the GaN channel layer 114. A source electrode 118 and a drain electrode 120 form ohmic contacts through the surface of the AlGaN layer 116 to the electron layer that is present at the top of the GaN channel layer 114. In a conventional AlGaN/GaN HEMT, a gate electrode 122 forms a non-ohmic contact to the surface of the AlGaN layer 116.

Because of the presence of aluminum in the crystal lattice, AlGaN has a wider bandgap than GaN. Thus, the interface between the GaN channel layer 114 and the AlGaN barrier layer 116 forms a heterostructure. FIG. 2 is a band diagram showing the energy levels in the device along a portion of section I-I' of FIG. 1. As illustrated in FIG. 2, the conduction and valence bands Ec and Ev in the AlGaN barrier layer 116 are distorted due to polarization effects. Consequently, a two dimensional electron gas (2DEG) sheet charge region 115 is induced at the heterojunction between the GaN channel layer 114 and the AlGaN barrier layer 116, while the AlGaN barrier layer 116 is depleted of mobile carriers due to the shape of the conduction band. As shown in FIG. 2, the conduction band Ec dips below the Fermi level (Ef) in the area of the GaN channel layer 114 that is immediately adjacent to AlGaN barrier layer 116.

Electrons in the 2DEG sheet charge region 115 demonstrate high carrier mobility. The conductivity of this region is modulated by applying a voltage to the gate electrode 122. When a reverse voltage is applied, the conduction band in the vicinity of the sheet charge region 115 is elevated above the Fermi level, and a portion of the sheet charge region 115 is depleted of carriers, thereby preventing the flow of current from source 118 to drain 120.

As illustrated in FIG. 1, AlGaN/GaN HEMTs have typically been fabricated with coplanar metal contacts. That is, the ohmic contacts for the source 118 and drain 120 electrodes are on the same epitaxial layer (namely, the AlGaN layer 116) as the gate electrode 122. Given that ohmic contacts are intended to provide low resistance, non-rectifying contacts to a material, while the gate contact is intended to be a non-ohmic contact that blocks current at large reverse voltages, forming all three contacts on the same epitaxial layer may result in compromises between these characteristics. Stated another way, in a conventional AlGaN/GaN HEMT device, there is a tradeoff in device design when selecting the doping and composition of the AlGaN barrier layer 116 between optimizing the source and drain ohmic contacts on one hand and optimizing the non-ohmic gate contact on the other hand.

In addition, consideration should be given to providing as much current-carrying capability as possible to the sheet charge region 115 under the gate electrode 122, again, while allowing the gate to block at as high a voltage as possible. Thus, it may be advantageous to have differences in the regions between the source and gate, under the gate, and between the gate and drain in order to modify the amount of band-bending and, thus, the amount of charge. Modifying band-bending will change the amount of charge in the sheet charge region 115 as well as the electric fields present within the device.

In conventional Gallium Arsenide (GaAs) and Indium Phosphorous (InP-based) HEMT devices, an additional GaAs or Indium Gallium Arsenide (InGaAs) layer is formed on the surface of the barrier layer. Source and drain contacts are made to the additional layer, while the gate electrode is recessed down to the barrier layer. This approach, however, may not be suitable for AlGaN/GaN HEMT structures, because the top surface of GaN is generally not conductive, and there is no benefit to recessing the gate down to the barrier layer.

Thus, there is the need in the art for improvements in AlGaN/GaN HEMT structures and methods of fabricating AlGaN/GaN HEMTs.

Embodiments of the present invention provide high electron mobility transistors (HEMTs) and methods of fabricating HEMTs. Devices according to embodiments of the present invention include a gallium nitride (GaN) channel layer and an aluminum gallium nitride (AlGaN) barrier layer on the channel layer. A first ohmic contact is provided on the barrier layer to provide a source electrode and a second ohmic contact is also provided on the barrier layer and is spaced apart from the source electrode to provide a drain electrode. A cap segment is provided on the barrier layer between the source electrode and the drain electrode. The cap segment has a first sidewall adjacent and spaced apart from the source electrode. The cap segment may also have a second sidewall adjacent and spaced apart from the drain electrode. A non-ohmic contact is provided on the cap segment to provide a gate contact. The gate contact has a first sidewall which is substantially aligned with the first sidewall of the cap segment. The gate contact extends only a portion of the distance between the first sidewall and the second sidewall of the cap segment. In particular embodiments, the cap segment is a GaN cap segment.

In further embodiments of the present invention, the non-ohmic contact extends to, but not past, the first sidewall of the GaN cap segment. The GaN cap segment may have a thickness of from about 10 to about 60 Å. The GaN cap segment may also be undoped GaN.

In particular embodiments of the present invention, the source electrode and the drain electrode are spaced apart a distance of from about 2 to about 4 μm. Furthermore, the first sidewall of the GaN cap segment is preferably as close a possible and may, for example, be from about 0 to about 2 μm from the source electrode. The second sidewall of the GaN cap segment may be from about 0.5 to about 1 μm from the gate electrode.

In additional embodiments of the present invention, the AlGaN barrier layer is between about 15% and about 40% aluminum. The AlGaN barrier layer may also be doped with silicon at a concentration of up to about 4×1018 cm31 3 or higher an preferably provides a total sheet concentration of up to about 5×1012 cm-2 and may have a thickness of from about 15 to about 40 nm and, preferably, about 25 nm.

In still further embodiments of the present invention, the GaN channel layer is provided on a substrate. The substrate may be silicon carbide, sapphire or the like. In particular embodiments, the substrate is 4H silicon carbide or 6H silicon carbide. Furthermore, a GaN buffer layer may be disposed between the GaN channel layer and the substrate.

In yet additional embodiments of the present invention, the gate electrode is a T-shaped gate electrode.

In method embodiments of the present invention, methods of fabricating a high electron mobility transistor (HEMT) is provided by forming a first gallium nitride (GaN) layer on a substrate, forming an aluminum gallium nitride (AlGaN) layer on the first GaN layer. A second GaN layer is patterned on the AlGaN layer to provide a GaN segment on the AlGaN layer and to expose portions of the AlGaN layer. A first ohmic contact is formed to the AlGaN layer adjacent and spaced apart from the GaN segment to provide a source electrode and a second ohmic contact is formed to the AlGaN layer adjacent and spaced apart from the GaN segment and opposite first ohmic contact such that the GaN segment is disposed between the first ohmic contact and the second ohmic contact to provide a drain electrode. A non-ohmic contact is patterned on the GaN segment to provide a gate contact. The gate contact has a first sidewall which is substantially aligned with the a first sidewall of the GaN segment adjacent the source contact. The gate contact extends only a portion of the distance between the first sidewall and a second sidewall of the GaN segment adjacent the drain contact.

In further embodiments of the present invention, the patterning of the second GaN layer and the patterning the non-ohmic contact may be provided by forming a second GaN layer on the AlGaN layer, forming a non-ohmic contact on the second GaN layer and patterning the non-ohmic contact and the second GaN layer to provide the GaN segment and the gate contact. Such patterning may further be provided by forming a mask that covers portions of the non-ohmic contact and the second GaN layer so as to define a sidewall of the non-ohmic contact and the GaN segment adjacent the source contact and a sidewall of the GaN segment adjacent the drain contact and etching the non-ohmic contact and the second GaN layer to expose portions of the AlGaN layer.

FIG. 1 is a cross sectional illustration of a conventional AlGaN/GaN HEMT device;

FIG. 2 is a schematic illustration of the band energies present in a conventional AlGaN/GaN HEMT device;

FIG. 3 is a cross sectional illustration of an AlGaN/GaN HEMT device according to embodiments of the present invention;

FIGS. 4A through 4C illustrate aspects of a method of fabricating a device according to embodiments of the present invention;

FIGS. 5A and 5B illustrate potential gate electrode misalignment; and

FIGS. 6A through 6C illustrate aspects of a method of fabricating a device according to additional embodiments of the present invention.

The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. As illustrated in the Figures, the sizes of layers or regions are exaggerated for illustrative purposes and, thus, are provided to illustrate the general structures or the present invention. Like numbers refer to like elements throughout. It will be understood that when an element such as a layer, region or substrate is referred to as being "on" another element, it can be directly on the other element or intervening elements may also be present. In contrast, when an element is referred to as being "directly on" another element, there are no intervening elements present.

As described above, it is well known that large electron concentrations may appear at buried AlGaN/GaN interfaces under equilibrium conditions. These large electron concentrations may form a high carrier mobility two-dimensional electron gas (2DEG) which may be advantageously exploited in a HEMT device structure. Moreover, the addition of a GaN cap on the AlGaN barrier layer of such a structure can increase the size of the barrier to electron conduction to or from the top surface of the structure. However, the presence of the GaN cap may decrease the electron concentration in the 2DEG conduction layer assuming that the surface potential is the same in both cases (i.e. with or without the cap).

Although it has been suggested by Yu et al. that HEMT's may be fabricated on GaN/AlGaN/GaN structures, the improvement in gate performance in such a structure appears to be offset by increases in channel resistance due to lower carrier concentration in the conduction layer under the GaN cap. See E. T. Yu, et al., "Schottky barrier engineering in III-V nitrides via the piezoelectric effect," Appl. Phys. Lett. 73, 1880 (1998).

Embodiments of the present invention provide improved AlGaN/GaN HEMT devices and methods of fabricating such devices. In particular embodiments of the present invention, the trade-offs between low-resistance source and drain contacts, current flow through the device, and blocking capability of the gate contact may be reduced or avoided by providing a GaN cap segment on the AlGaN barrier layer and providing a non-ohmic contact on the cap segment to provide the gate contact. In further embodiments, the gate contact and cap segment are arranged so as to provide an AlGaN/GaN HEMT structure with reduced internal electric fields, which may result in higher operating voltages and power levels. Thus, embodiments of the present invention may provide the benefits of low contact resistance found in AlGaN/GaN HEMT structures with the gate performance improvements associated with GaN/AlGaN/GaN structures.

FIG. 3 illustrates a device 11 according to embodiments of the present invention. The device 11 includes a substrate 12 and an optional buffer layer 13 on the substrate 12. The substrate 12 may be silicon carbide, sapphire, silicon, bulk gallium nitride or any other suitable substrate for supporting nitride-based electronic devices. Preferably, the substrate is semi-insulating 4H-silicon carbide (0001) or 6H-SiC (0001). For substrates other than bulk GaN, the optional buffer layer 13 provides a surface on which high-quality gallium nitride may be grown. The composition and fabrication of the buffer layer 13 may depend on the type of substrate used. Suitable buffer layers are well known in the art and need not be described further. A GaN channel layer 14 is also provided on the buffer layer 13 if the buffer layer 13 is present or on the substrate 12 if the buffer layer 13 is not present. The channel layer 14 and subsequent GaN-based layers may be formed by MOCVD, MBE, and/or any other suitable growth technique. The channel layer 14 is preferably undoped, but may be doped with various substances in order to modify the electron concentration in the sheet charge region 15 or the behavior of the conduction band Ec and valence band Ev in the area below the sheet charge region.

An AlGaN barrier layer 16 is provided on the GaN channel layer 14, thereby forming a heterojunction 15 between the channel layer 14 and the barrier layer 16. The AlGaN barrier layer 16 preferably has an aluminum composition of between 15% and 60% and may be doped with silicon at a doping concentration of up to about 4×1018 cm-3 to provide a total sheet concentration of up to about 5×1012 cm-2 or more. The barrier layer 16 may be between about 15 nm and 40 nm in thickness, and is preferably about 25 nm thick.

As described above, because of the AlGaN/GaN heterobarrier at the junction 15, a two dimensional electron gas is formed within the vicinity of the junction 15. Ohmic source 18 and drain 20 electrodes are provided on the surface of the AlGaN barrier layer 16. Source 18 and drain 20 electrodes may be Ti/Si/Ni, Ti/Al/Ni or any other suitable material that forms an ohmic contact to n-type AlGaN. Appropriate ohmic contacts for AlGaN/GaN HEMT devices are described in S. T. Sheppard, W. L. Pribble, D. T. Emerson, Z. Ring, R. P. Smith, S. T. Allen and J. W. Palmour, "High Power Demonstration at 10 GHz with GaN/AlGaN HEMT Hybrid Amplifiers," Presented at the 58th Device Research Conference, Denver, Colo. June 2000, and S. T. Sheppard, K. Doverspike, M. Leonard, W. L. Pribble, S. T. Allen and J. W. Palmour, "Improved 10-GHz Operation of GaN/AlGaN HEMTs on Silicon Carbide," Mat. Sci. Forum, Vols. 338-342 (2000), pp. 1643-1646, the disclosures of which are incorporated herein by reference as if set forth fully herein. The distance between the source electrode 18 and the drain electrode 20 may, typically, be from about 2-4 μm.

As is further illustrated in FIG. 3, a thin GaN-based cap segment 30, preferably of GaN, is provided on the surface of the AlGaN layer 16 between the source electrode 18 and the drain electrode 20. The cap segment 30 is preferably between about 10-60 Å in thickness, and is preferably undoped. The cap segment 30 is preferably formed of gallium nitride, however, other suitable materials may also be utilized. For example, a graded or reduced aluminum content AlGaN layer may be utilized such that the percentage of aluminum decreases with distance from the channel layer. Such an AlGaN layer could be formed, for example, by etching, to provide the cap segment 30. As used herein, the term GaN-based refers to a material having gallium and nitrogen and includes GaN and AlGaN.

The gate electrode 26 is provided on the cap segment 30. The gate electrode 26 is preferably formed of platinum, nickel or any other suitable metal that forms a non-ohmic contact to n-type or "intrinsic" GaN. The gate electrode 26 may be capped with an additional metal layer in a T-shaped gate configuration, or, in particular embodiments, a T-shaped gate may be formed in one process step. A T-shaped gate configuration may be particularly suitable for RF and microwave devices.

Because of the polarization effects in GaN/AlGaN structures grown on the gallium or aluminum face of AlGaN or GaN, the barrier to conduction under the gate electrode 22 is greatly enhanced. Thus, gate leakage may be reduced or even minimized.

Preferably, the source-side sidewall 31 of the cap segment 30 is substantially aligned to the source-side sidewall 27 of the gate electrode 26. Since the presence of the cap segment 30 may reduce the concentration of carriers in the 2DEG region 15 underneath it, it may be undesirable to have the cap segment 30 extend substantially between the source electrode 18 and the gate electrode 26, since that may result in increased resistance. Thus, it is preferable to have the cap segment 30 be spaced apart from the source electrode 18 as small a distance as is reasonable in light of manufacturing limitations. Thus, a distance of from about 0 to about 2 μm may be suitable, for example, distances of from about 0.3 to about 1.5 μm may possible with conventional masking and fabrication techniques. Conversely, it may be advantageous to extend the drain-side sidewall 32 of the cap segment 30 past the drain-side sidewall 28 of the gate electrode 26 for a predetermined distance, preferably from about 0.5 to about 1 μm. Thus, the drain-side sidewall 32 of the cap segment 30 may extend to a distance of from about 0 to about 3 μm from the drain electrode 20. In the event the distance from the drain-side sidewall 32 to the drain electrode 20 is 0 μm, there may be no drain-side sidewall 32 but the cap segment 30 may extend to under the drain electrode 20. However, such may not be preferred. Thus, in preferred embodiments of the present invention, the distance from the drain-sidewall 32 to the drain electrode 20 be about 0.5 μm or greater.

The presence of the cap segment 30 underneath the gate electrode 26 need not adversely affect the operation of the device, since the gate bias can be adjusted to compensate for the effect of the cap segment 30 on carrier concentration in the 2DEG region 15 under the gate. In operation, electrons flow from the source electrode 18 to the drain electrode 20 through the 2DEG region 15. While not being bound by any particular theory of operation, it is believed that the presence of the cap segment 30 over the 2DEG region between the gate electrode 22 and the drain electrode 20 does not adversely affect the operation of the device because the conductivity of the device is not dominated by the equilibrium electron concentration in the portion of the 2DEG region 15 between the gate electrode 22 and the drain electrode 20. In fact, extending the cap segment 30 past the drain-side sidewall 28 of the gate electrode 26 for a predetermined distance may improve device performance by reducing internal electric fields in the device, thus permitting operation at higher voltages and power levels. Breakdown voltages in FETs are limited by the maximum internal electric field which normally occurs on the drain-side of the gate contact and can induce avalanche and other unwanted currents through the gate. Extending the cap segment towards the drain reduces the total amount of charge under that cap that results from polarization effects. Solving Poisson's equation for such a transistor shows that a transistor with less charge in the region under the gate and towards the drain can be operated at a higher bias for a given assumed maximum permissible electric field.

While FIG. 3 illustrates embodiments of the present invention as discrete devices, as will be appreciated by those of skill in the art, FIG. 3 may be considered unit cells of devices having multiple cells. Thus, for example, additional unit cells may be incorporated into the devices illustrated in FIGS. 3 by mirroring the device about a vertical axis at the periphery of the device illustrated in FIG. 3 (the vertical edges of the devices illustrated in FIGS. 3). Accordingly, embodiments of the present invention include devices such as those illustrated in FIGS. 3 as well as devices having a plurality of unit cells incorporating the cap segment and gate contact illustrated in FIG. 3.

A method for manufacturing an AlGaN/GaN HEMT according to the present invention which utilizes a GaN cap segment is illustrated in FIGS. 4A through 4C and, optionally, includes forming a buffer layer 13 on a substrate 12. A GaN channel layer 14 is formed on the buffer layer 13 and an AlGaN barrier layer 16 is formed on the channel layer. A thin GaN cap layer 30' is formed on the barrier layer 16. The layers may be formed by MOCVD, MBE and/or any other suitable method known to those of skill in the art.

The GaN cap layer 30' is patterned to provide the GaN cap segment 30 for the gate electrode. For example, as illustrated in FIG. 4A, an etch mask 40 may be formed on the GaN cap layer 30', and portions of the GaN cap layer 30' removed, for example, by using a conventional etch process, to the barrier layer 16, leaving the GaN cap segment 30 as illustrated in FIG. 4B. However, other techniques, such as selective epitaxial growth may also be used.

As shown in FIG. 4C, the source electrode 18 and drain electrode 20 are formed on the exposed portions of the barrier layer 16 using conventional techniques. A gate electrode 22 is formed on the GaN segment 30. In the embodiments shown in FIGS. 4A through 4C, the source-side sidewall of the gate contact is aligned with the source-side sidewall of the GaN cap segment 30 using conventional photolithographic techniques and mask alignment tools. In the embodiments illustrated in FIGS. 4A through 4C, the gate electrode 22 is not self-aligned to the source-side sidewall of the GaN cap segment 30. Therefore, it is possible that the gate electrode 22 may be misaligned to the source-side or the drain side, as shown in FIGS. 5A and 5B, respectively. Although slight misalignment may not adversely affect the operation of the device, severe misalignment may be detrimental to the device. Thus, it is preferred that the source-side sidewall of the gate electrode 22 be aligned with the source-side of the GaN cap segment 30 as illustrated in FIG. 4C, however, the source-side sidewall of the gate electrode 22 may only be substantially aligned with the source-side sidewall of the GaN cap segment 30 as illustrated in FIGS. 5A and 5B and still benefit from the teachings of the present invention. Thus, as used herein, the term substantial alignment or substantially aligned refers to a range of alignments which may include misalignment.

Another method for manufacturing a device according to embodiments of the present invention is illustrated in FIGS. 6A through 6C. In these embodiments, the source-side sidewall of the GaN cap segment 30 is self-aligned to the source-side sidewall of the gate electrode 22.

Referring to FIG. 6A, optionally, the buffer layer 13 is formed on a substrate 12. The GaN channel layer 14 is formed on the GaN buffer layer 13 or the substrate 12 and the AlGaN barrier layer 16 is formed on the GaN channel layer 14. The thin GaN cap layer 30' is formed on the AlGaN barrier layer 16 as described above. A gate metal 22' is formed on the GaN cap layer 30' and the gate metal 22' is partially patterned so as to provide the drain-side sidewall of the gate electrode 22 and to provide a portion of the gate metal 22' which extends past the source-side sidewall of the gate electrode 22. An etch mask 44 is deposited on the GaN cap layer 30' which partially overlaps the gate metal 22' so as to define the source-side sidewall of the gate electrode 22 and the GaN cap segment 30 and the drain-side sidewall of the GaN cap segment 30.

As illustrated in FIG. 6B, the exposed portion of the GaN cap layer 30' is etched away, leaving one sidewall of the GaN cap segment 30 self-aligned with a sidewall of gate electrode 22 and to expose portions of the AlGaN barrier layer 16. The mask 44 is afterward removed. As illustrated in FIG. 6C, the source electrode 18 and the drain electrode 20 are then formed on the exposed portions of the AlGaN barrier layer 16, and the remainder of the device is processed in a conventional fashion.

While embodiments of the present invention have been described with reference to particular sequences of operations, as will be appreciated by those of skill in the art, certain operations within the sequence may be reordered while still benefiting from the teachings of the present invention. Furthermore, certain operations may be combined into a single operation or separated into multiple operations while still benefiting from the teachings of the present invention. Accordingly, the present invention should not be construed as limited to the exact sequence of operations described herein.

In the drawings and specification, there have been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.

Smith, Richard Peter

Patent Priority Assignee Title
10043896, Jul 19 2013 TRANSPHORM TECHNOLOGY, INC III-Nitride transistor including a III-N depleting layer
10043898, Mar 13 2013 TRANSPHORM TECHNOLOGY, INC Enhancement-mode III-nitride devices
10062565, Nov 16 2010 Rohm Co., Ltd. Nitride semiconductor element and nitride semiconductor package
10096701, Jun 28 2004 Macom Technology Solutions Holdings, Inc Gallium nitride materials and methods associated with the same
10199217, Dec 10 2009 TRANSPHORM TECHNOLOGY, INC Methods of forming reverse side engineered III-nitride devices
10211294, Sep 08 2015 Macom Technology Solutions Holdings, Inc III-nitride semiconductor structures comprising low atomic mass species
10224401, May 31 2016 TRANSPHORM TECHNOLOGY, INC III-nitride devices including a graded depleting layer
10535763, Mar 13 2013 TRANSPHORM TECHNOLOGY, INC Enhancement-mode III-nitride devices
10629681, May 31 2016 TRANSPHORM TECHNOLOGY, INC III-nitride devices including a graded depleting layer
11038023, Jul 19 2018 Macom Technology Solutions Holdings, Inc III-nitride material semiconductor structures on conductive silicon substrates
11121216, May 31 2016 Transphorm Technology, Inc. III-nitride devices including a graded depleting layer
11264465, Sep 08 2015 MACOM TECHNOLOGY SOLUTIONS HOLDINGS, INC. Parasitic channel mitigation using silicon carbide diffusion barrier regions
11322599, Jan 15 2016 TRANSPHORM TECHNOLOGY, INC Enhancement mode III-nitride devices having an Al1-xSixO gate insulator
11810955, Sep 08 2015 MACOM TECHNOLOGY SOLUTIONS HOLDINGS, INC. Parasitic channel mitigation using silicon carbide diffusion barrier regions
7071498, Dec 17 2003 Macom Technology Solutions Holdings, Inc Gallium nitride material devices including an electrode-defining layer and methods of forming the same
7102179, May 16 2003 Kabushiki Kaisha Toshiba Power semiconductor device used for power control
7135720, Aug 05 2003 Macom Technology Solutions Holdings, Inc Gallium nitride material transistors and methods associated with the same
7247889, Dec 03 2004 Macom Technology Solutions Holdings, Inc III-nitride material structures including silicon substrates
7339205, Jun 28 2004 Macom Technology Solutions Holdings, Inc Gallium nitride materials and methods associated with the same
7352008, Jun 02 2000 Microgan GmbH Heterostructure with rear-face donor doping
7352015, Jun 28 2004 Macom Technology Solutions Holdings, Inc Gallium nitride materials and methods associated with the same
7361946, Jun 28 2004 Macom Technology Solutions Holdings, Inc Semiconductor device-based sensors
7365374, May 03 2005 Macom Technology Solutions Holdings, Inc Gallium nitride material structures including substrates and methods associated with the same
7459718, Mar 23 2005 Nichia Corporation Field effect transistor
7538366, Apr 26 2006 Kabushiki Kaisha Toshiba Nitride semiconductor device
7566913, Dec 02 2005 Macom Technology Solutions Holdings, Inc Gallium nitride material devices including conductive regions and methods associated with the same
7569871, Aug 05 2003 Macom Technology Solutions Holdings, Inc Gallium nitride material transistors and methods associated with the same
7662698, Nov 07 2006 OL SECURITY LIMITED LIABILITY COMPANY Transistor having field plate
7687827, Jul 07 2004 Macom Technology Solutions Holdings, Inc III-nitride materials including low dislocation densities and methods associated with the same
7745848, Aug 15 2007 Macom Technology Solutions Holdings, Inc Gallium nitride material devices and thermal designs thereof
7791106, May 03 2005 Macom Technology Solutions Holdings, Inc Gallium nitride material structures including substrates and methods associated with the same
7800132, Oct 25 2007 Northrop Grumman Systems Corporation High electron mobility transistor semiconductor device having field mitigating plate and fabrication method thereof
7994540, Aug 05 2003 Macom Technology Solutions Holdings, Inc Gallium nitride material transistors and methods associated with the same
8026581, Feb 05 2008 Macom Technology Solutions Holdings, Inc Gallium nitride material devices including diamond regions and methods associated with the same
8067786, Dec 02 2005 Macom Technology Solutions Holdings, Inc Gallium nitride material devices including conductive regions
8237198, Dec 10 2008 TRANSPHORM TECHNOLOGY, INC Semiconductor heterostructure diodes
8289065, Sep 23 2008 TRANSPHORM TECHNOLOGY, INC Inductive load power switching circuits
8343824, Apr 29 2008 Macom Technology Solutions Holdings, Inc Gallium nitride material processing and related device structures
8368117, Jul 07 2004 Macom Technology Solutions Holdings, Inc III-nitride materials including low dislocation densities and methods associated with the same
8389977, Dec 10 2009 TRANSPHORM TECHNOLOGY, INC Reverse side engineered III-nitride devices
8390000, Aug 28 2009 TRANSPHORM TECHNOLOGY, INC Semiconductor devices with field plates
8493129, Sep 23 2008 TRANSPHORM TECHNOLOGY, INC Inductive load power switching circuits
8519438, Apr 23 2008 TRANSPHORM TECHNOLOGY, INC Enhancement mode III-N HEMTs
8531232, Sep 23 2008 TRANSPHORM TECHNOLOGY, INC Inductive load power switching circuits
8541818, Dec 10 2008 TRANSPHORM TECHNOLOGY, INC Semiconductor heterostructure diodes
8598937, Oct 07 2011 TRANSPHORM TECHNOLOGY, INC High power semiconductor electronic components with increased reliability
8643062, Feb 02 2011 TRANSPHORM TECHNOLOGY, INC III-N device structures and methods
8692294, Aug 28 2009 TRANSPHORM TECHNOLOGY, INC Semiconductor devices with field plates
8716141, Mar 04 2011 TRANSPHORM TECHNOLOGY, INC Electrode configurations for semiconductor devices
8742459, May 14 2009 TRANSPHORM TECHNOLOGY, INC High voltage III-nitride semiconductor devices
8742460, Dec 15 2010 TRANSPHORM TECHNOLOGY, INC Transistors with isolation regions
8748298, Jun 28 2004 Macom Technology Solutions Holdings, Inc Gallium nitride materials and methods associated with the same
8772842, Mar 04 2011 TRANSPHORM TECHNOLOGY, INC Semiconductor diodes with low reverse bias currents
8791508, Apr 13 2010 GAN SYSTEMS INC High density gallium nitride devices using island topology
8816751, Sep 23 2008 TRANSPHORM TECHNOLOGY, INC Inductive load power switching circuits
8841702, Apr 23 2008 TRANSPHORM TECHNOLOGY, INC Enhancement mode III-N HEMTs
8860495, Oct 07 2011 TRANSPHORM TECHNOLOGY, INC Method of forming electronic components with increased reliability
8890168, Apr 08 2009 Efficient Power Conversion Corporation Enhancement mode GaN HEMT device
8895421, Feb 02 2011 TRANSPHORM TECHNOLOGY, INC III-N device structures and methods
8895423, Mar 04 2011 TRANSPHORM TECHNOLOGY, INC Method for making semiconductor diodes with low reverse bias currents
8901604, Sep 06 2011 TRANSPHORM TECHNOLOGY, INC Semiconductor devices with guard rings
9012288, Aug 28 2009 Transphorm Inc. Semiconductor devices with field plates
9029866, Aug 04 2009 GAN SYSTEMS INC Gallium nitride power devices using island topography
9041065, Dec 10 2008 TRANSPHORM TECHNOLOGY, INC Semiconductor heterostructure diodes
9064947, Aug 04 2009 GAN SYSTEMS INC Island matrixed gallium nitride microwave and power switching transistors
9093366, Apr 09 2012 TRANSPHORM TECHNOLOGY, INC N-polar III-nitride transistors
9111961, Aug 28 2009 TRANSPHORM TECHNOLOGY, INC Semiconductor devices with field plates
9142659, Mar 04 2011 TRANSPHORM TECHNOLOGY, INC Electrode configurations for semiconductor devices
9147760, Dec 15 2010 TRANSPHORM TECHNOLOGY, INC Transistors with isolation regions
9153509, Oct 29 2013 GaN Systems Inc. Fault tolerant design for large area nitride semiconductor devices
9165766, Feb 03 2012 TRANSPHORM TECHNOLOGY, INC Buffer layer structures suited for III-nitride devices with foreign substrates
9171730, Feb 15 2013 TRANSPHORM TECHNOLOGY, INC Electrodes for semiconductor devices and methods of forming the same
9171836, Oct 07 2011 TRANSPHORM TECHNOLOGY, INC Method of forming electronic components with increased reliability
9184275, Jun 27 2012 TRANSPHORM TECHNOLOGY, INC Semiconductor devices with integrated hole collectors
9196716, Apr 23 2008 TRANSPHORM TECHNOLOGY, INC Enhancement mode III-N HEMTs
9224671, Feb 02 2011 TRANSPHORM TECHNOLOGY, INC III-N device structures and methods
9224805, Sep 06 2011 TRANSPHORM TECHNOLOGY, INC Semiconductor devices with guard rings
9245992, Mar 15 2013 TRANSPHORM TECHNOLOGY, INC Carbon doping semiconductor devices
9245993, Mar 15 2013 TRANSPHORM TECHNOLOGY, INC Carbon doping semiconductor devices
9257547, Sep 13 2011 TRANSPHORM TECHNOLOGY, INC III-N device structures having a non-insulating substrate
9257548, Nov 16 2010 Rohm Co., Ltd.; ROHM CO , LTD Nitride semiconductor element and nitride semiconductor package
9293561, May 14 2009 TRANSPHORM TECHNOLOGY, INC High voltage III-nitride semiconductor devices
9318593, Jul 21 2014 TRANSPHORM TECHNOLOGY, INC Forming enhancement mode III-nitride devices
9373699, Aug 28 2009 TRANSPHORM TECHNOLOGY, INC Semiconductor devices with field plates
9437707, Dec 15 2010 TRANSPHORM TECHNOLOGY, INC Transistors with isolation regions
9437708, Apr 23 2008 TRANSPHORM TECHNOLOGY, INC Enhancement mode III-N HEMTs
9443938, Jul 19 2013 TRANSPHORM TECHNOLOGY, INC III-nitride transistor including a p-type depleting layer
9472623, Nov 16 2010 Rohm Co., Ltd. Nitride semiconductor element and nitride semiconductor package
9490324, Apr 09 2012 TRANSPHORM TECHNOLOGY, INC N-polar III-nitride transistors
9496137, Dec 10 2009 TRANSPHORM TECHNOLOGY, INC Methods of forming reverse side engineered III-nitride devices
9508797, Aug 04 2009 GAN SYSTEMS INC Gallium nitride power devices using island topography
9520491, Feb 15 2013 TRANSPHORM TECHNOLOGY, INC Electrodes for semiconductor devices and methods of forming the same
9536966, Dec 16 2014 TRANSPHORM TECHNOLOGY, INC Gate structures for III-N devices
9536967, Dec 16 2014 TRANSPHORM TECHNOLOGY, INC Recessed ohmic contacts in a III-N device
9583607, Jul 17 2015 Mitsubishi Electric Research Laboratories, Inc. Semiconductor device with multiple-functional barrier layer
9590060, Mar 13 2013 TRANSPHORM TECHNOLOGY, INC Enhancement-mode III-nitride devices
9608102, Dec 02 2005 Macom Technology Solutions Holdings, Inc Gallium nitride material devices and associated methods
9627473, Sep 08 2015 Macom Technology Solutions Holdings, Inc Parasitic channel mitigation in III-nitride material semiconductor structures
9634100, Jun 27 2012 TRANSPHORM TECHNOLOGY, INC Semiconductor devices with integrated hole collectors
9673281, Sep 08 2015 Macom Technology Solutions Holdings, Inc Parasitic channel mitigation using rare-earth oxide and/or rare-earth nitride diffusion barrier regions
9685323, Feb 03 2012 TRANSPHORM TECHNOLOGY, INC Buffer layer structures suited for III-nitride devices with foreign substrates
9690314, Sep 23 2008 TRANSPHORM TECHNOLOGY, INC Inductive load power switching circuits
9704705, Sep 08 2015 Macom Technology Solutions Holdings, Inc Parasitic channel mitigation via reaction with active species
9773898, Sep 08 2015 Macom Technology Solutions Holdings, Inc III-nitride semiconductor structures comprising spatially patterned implanted species
9799520, Sep 08 2015 Macom Technology Solutions Holdings, Inc Parasitic channel mitigation via back side implantation
9806182, Sep 08 2015 Macom Technology Solutions Holdings, Inc Parasitic channel mitigation using elemental diboride diffusion barrier regions
9818857, Oct 29 2013 GAN SYSTEMS INC Fault tolerant design for large area nitride semiconductor devices
9831315, Aug 28 2009 TRANSPHORM TECHNOLOGY, INC Semiconductor devices with field plates
9842922, Jul 19 2013 TRANSPHORM TECHNOLOGY, INC III-nitride transistor including a p-type depleting layer
9865719, Mar 15 2013 TRANSPHORM TECHNOLOGY, INC Carbon doping semiconductor devices
9876102, Jul 17 2015 Mitsubishi Electric Research Laboratories, Inc. Semiconductor device with multiple carrier channels
9905419, Nov 16 2010 Rohm Co., Ltd. Nitride semiconductor element and nitride semiconductor package
9935190, Jul 21 2014 TRANSPHORM TECHNOLOGY, INC Forming enhancement mode III-nitride devices
9941399, Apr 23 2008 TRANSPHORM TECHNOLOGY, INC Enhancement mode III-N HEMTs
9978858, Dec 02 2005 Macom Technology Solutions Holdings, Inc Methods of manufacturing gallium nitride devices
Patent Priority Assignee Title
4424525, Dec 29 1979 Fujitsu Limited High electron mobility single heterojunction semiconductor devices
4471366, Mar 28 1979 Thomson-CSF Field effect transistor with high cut-off frequency and process for forming same
4727403, Apr 08 1985 NEC Corporation Double heterojunction semiconductor device with injector
4788156, Sep 24 1986 MICROWAVE TECHNOLOGY, INC , A CORP OF CA Subchannel doping to reduce short-gate effects in field effect transistors
5192987, May 17 1991 International Rectifier Corporation High electron mobility transistor with GaN/Alx Ga1-x N heterojunctions
5296395, May 17 1991 International Rectifier Corporation Method of making a high electron mobility transistor
5701019, Mar 12 1993 Hitachi, Ltd. Semiconductor device having first and second stacked semiconductor layers, with electrical contact to the first semiconductor layer
5705827, Dec 25 1991 NEC Corporation Tunnel transistor and method of manufacturing same
5885860, Jun 30 1995 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Silicon carbide transistor and method
6028328, Jan 03 1996 TRIQUINT SEMICONDUCTOR GMBH HEMT double hetero structure
6046464, Mar 29 1995 North Carolina State University Integrated heterostructures of group III-V nitride semiconductor materials including epitaxial ohmic contact comprising multiple quantum well
6064082, May 30 1997 Sony Corporation Heterojunction field effect transistor
6177685, Jan 20 1998 Sharp Kabushiki Kaisha Nitride-type III-V HEMT having an InN 2DEG channel layer
6316793, Jun 12 1998 WOLFSPEED, INC Nitride based transistors on semi-insulating silicon carbide substrates
6429467, Jan 29 1999 NEC Corporation Heterojunction field effect transistor
6448648, Mar 27 1997 The United States of America as represented by the Secretary of the Navy Metalization of electronic semiconductor devices
6515316, Jul 14 2000 Northrop Grumman Systems Corporation Partially relaxed channel HEMT device
6639255, Dec 08 1999 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD GaN-based HFET having a surface-leakage reducing cap layer
20010015446,
20010020700,
20010023964,
20020017696,
20030102482,
EP563847,
JP10050982,
JP2001230407,
JP2002016087,
WO3049193,
WO9323877,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 25 2003Cree, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Jan 25 2008M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Sep 21 2011M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Feb 03 2016M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Aug 17 20074 years fee payment window open
Feb 17 20086 months grace period start (w surcharge)
Aug 17 2008patent expiry (for year 4)
Aug 17 20102 years to revive unintentionally abandoned end. (for year 4)
Aug 17 20118 years fee payment window open
Feb 17 20126 months grace period start (w surcharge)
Aug 17 2012patent expiry (for year 8)
Aug 17 20142 years to revive unintentionally abandoned end. (for year 8)
Aug 17 201512 years fee payment window open
Feb 17 20166 months grace period start (w surcharge)
Aug 17 2016patent expiry (for year 12)
Aug 17 20182 years to revive unintentionally abandoned end. (for year 12)