A method for previewing an image in a camera prior to output. The method includes steps of gathering image data, storing the image data, calculating display parameters using the stored image data, storing the display parameters in a look-up table; and applying the display parameters in the look-up table to at least a portion of the image data to produce preview image data. The display parameters can be quickly calculated using a digital signal processor to achieve real-time image previewing. The parameters used in an embodiment camera are vertical down sampling (51) white balance and gain control (52), horizontal up/down sampling (53), and color space conversion and gamma correction (55). The resulting preview processed image may be stored in memory via an interface (56) and viewed via a preview display. Once calculated using a preview algorithm run on a digital signal processor, these parameters can be combined in one or more look-up tables that can be updated by the digital signal processor as imaging conditions demand.
|
11. A digital camera, comprising:
a) an image-gathering device; b) a preview engine coupled to said image-gathering device, wherein said preview engine includes a look-up table and a sampling circuit; c) a display coupled to said preview engine; d) a storage device coupled to said image-gathering device; and e) a processor coupled to said look-up table and to said storage device.
10. A digital camera, comprising:
a) an image-gathering device; b) a preview engine coupled to said image-gathering device, wherein said preview engine includes a look-up table and a color interpolator; c) a display coupled to said preview engine; d) a storage device coupled to said image-gathering device; and e) a processor coupled to said look-up table and to said storage device.
1. A method for previewing an image in a camera prior to output, comprising the steps of:
a) gathering image data; b) storing said image data; c) calculating display parameters using said stored image data; d) storing said display parameters in a look-up table; e) applying said display parameters in said look-up table to at least a portion of said image data to produce preview image data.
7. A method for previewing an image in a digital camera prior to output, comprising the steps of:
a) gathering image data; b) digitizing said image data; c) storing said digitized image data; d) sampling a portion of said digitized image data; e) calculating white balance adjustment and gain control parameters using said stored digitized image data; f) storing said white balance adjustment and gain control parameters in a look-up table; and g) applying said white balance adjustment and gain control parameters in said look-up table to said portion of said digitized image data to produce preview image data.
2. The method of
a) calculating a white balance adjustment and a gain control adjustment; b) combining said white balance and gain control adjustments; and c) storing said combined white balance adjustment and gain control adjustment in said look-up table.
3. The method of
a) calculating a gamma correction and performing color space conversion; b) combining said gamma correction and color space conversion; and c) storing said combined gamma correction and color space conversion in said look-up table.
4. The method of
a) calculating a white balance adjustment; and b) storing said white balance adjustment with said combined gamma correction and color space conversion in said look-up table.
5. The method of
using a digital signal processor to access said random access memory; and using said digital signal processor to determine said display parameters using said image data in said random access memory in a preview algorithm.
6. The method of
8. The method of
calculating a gamma correction and performing color space conversion; storing said gamma correction and said color space conversion in said look-up table; and applying said gamma correction and said color space conversion in said look-up table to said portion of said image data to produce preview image data.
9. The method of
12. The digital camera of
a line buffer coupled to said storage device and operable to receive and store data from said storage device; a circuit for selecting data from said line buffer, said circuit coupled to said display.
13. The digital camera of
two line buffers coupled to said storage device and operable to receive and store data from said storage device; a circuit for selecting blocks of data from said two line buffers, said circuit coupled to said display.
|
This application claims the benefit of U.S. Provisional Application No. 60/126,092, filed on Mar. 25, 1999, the entire disclosure of which is hereby incorporated by reference.
The invention relates to digital image processing, and, more particularly, to a method and apparatus for processing real-time raw image data and displaying the processed pixel signals in a real-time manner with programmability and high quality.
In a conventional digital signal processing system such as a digital still camera, an image sensor within an image-gathering means, such as a charge-coupled device (CCD) or complementary metal-oxide-semiconductor (CMOS) sensor having a color filter array that provides a spatially color-sampled image, is exposed to image light and the resultant analog image information is converted by an analog-to-digital converter (ADC) to digital image signals. The digital image signals are then transferred to a memory such as a synchronous DRAM (SDRAM) or DRAM for temporary storage. Some digital still cameras have color liquid crystal displays (LCD), which are also spatially color-sampled devices. As the user typically intends to preview the image prior to capturing it for storage, the digital image signals are transferred to a preview mode apparatus (hereinafter referred to as a preview engine) for previewing the picture frame prior to capturing the image.
Usually, as the user would like to immediately preview the image of the picture on the LCD as the camera is moved over the subject, real-time operation in the preview mode is practically essential. That is to say, for typical digital still cameras, the processing used in the preview mode must be done rapidly, such as 60 images per second to avoid any perceivable display delay. The term "real-time" is applied herein to operations achieved without substantial perceivable display delay.
Despite the fact that the image quality of the displayed image is limited by the resolution and color gamut of the LCD screen of the LCD display, it is desirable for the preview image to reflect the qualities of the final image produced by the camera. To accomplish this, the preview engine would preferably include the functions used to produce the final image, functions such as white balance, auto exposure, auto focus, gain control, gamma correction, and color space conversion. The enhanced preview image would also, of course, preferably be accomplished without added complexity or cost. Therefore, there is a need in the industry for a method and apparatus capable of upgrading the quality of the images previewed on the LCD display and to satisfy the desire for real-time operation in the preview mode by less complex and more cost-effective configurations.
In one embodiment of the invention, a method for previewing an image in a camera prior to output is disclosed. The method includes steps of gathering image data, storing the image data, calculating display parameters using the stored image data, storing the display parameters in a look-up table; and applying the display parameters in the look-up table to at least a portion of the image data to produce preview image data. The display parameters can be quickly calculated using a digital signal processor to achieve real-time image previewing. The parameters used in an embodiment camera are white balance, gain control, gamma correction, and color space conversion. Once calculated using a preview algorithm run on a digital signal processor, these parameters can be combined in one or more look-up tables that can be updated by the digital signal processor as imaging conditions demand.
In another embodiment of the invention, a method for previewing an image in a digital camera prior to output is disclosed. The method includes the steps of gathering image data, digitizing the image data, storing the digitized image data, sampling a portion of the digitized image data, calculating white balance adjustment and gain control parameters using the stored digitized image data, and storing the white balance adjustment and gain control parameters in a look-up table; and applying the white balance adjustment and gain control parameters in the look-up table to the portion of the digitized image data to produce preview image data.
In still another embodiment of the invention, a digital camera is disclosed. The digital camera includes an image-gathering device, a preview engine coupled to the image-gathering device, wherein the preview engine includes a look-up table, a display coupled to the preview engine, a storage device coupled to the image-gathering device; and a processor coupled to the look-up table and to the storage device.
An advantage of the invention is that it enables real-time processing of desirable imaging features such as white balance, gain control, gamma correction, and color interpolation.
Other aspects and advantages of the invention will become apparent from the following descriptions taken in conjunction with the accompanying drawings, wherein:
The embodiments of the invention described below provide a system for producing high-quality preview images in a camera in real time. In one embodiment of the invention, the processing speed of a digital signal processor (DSP) is used to update look-up tables in real time. The use of look-up tables in conventional systems has thus far not been practical, due in part to the inability of a microprocessor to update the table fast enough to avoid a perceptible delay as the subject field of the image changes. Indeed, the digital signal processor is capable of processing algorithms related to white balance, gain control, gamma correction, sampling, and color space conversion, for example, in real time. These functions can be used to produce digital zoom, digital auto exposure, and color enhancement functions that have traditionally been accomplished using either hard-wired, inflexible circuits, or much slower microprocessors. The digital signal processor is capable of performing the calculation tasks using algorithms specifically designed for the preview image and is also capable of performing the calculations for the more complex algorithm typically used to produce the very high-quality image that is the output of a system such as a digital still camera.
An embodiment of the present invention is described below with reference to the accompanying drawings.
Referring to
In this embodiment of the invention, the CCD 2 has a resolution of 1680 by 2048 pixels while a display of the NTSC type has a resolution of 525 by 768 pixels. In other words, the LCD or NTSC type display 11 has fewer display pixels than the CCD 2. Therefore, in order to display the pixel signals obtained from the CCD 2 in an NTSC standard TV or NTSC compatible LCD 11, the pixel signals are truncated or down sampled.
A block diagram of the embodiment preview engine 5 is shown in FIG. 2. The preview engine 5 comprises a vertical down sampler 51 for truncating or down-sampling the pixel signals from the CCD 2. Downsampling can be used to create a zooming effect that increases and decreases the size of the image viewed by the system user. In this embodiment only vertical downsampling is used. This is acceptable for a preview processor because the vertical resolution needed for a preview image in this embodiment is less than that captured by the image-gathering device (CCD 2). In this embodiment, there is little need for up sampling or interpolating the image data, though one skilled in the art will appreciate that up-sampling could be incorporated in the design of FIG. 2. Even without up sampling, the preview image can be effectively "zoomed" by simply varying the degree of downsampling of the image. The vertical down sampler 51 selects the digital pixel signals from the CCD 2 to match the vertical resolution of the display device 11.
Referring to
Referring back to
Gain control is an electronics means of performing the auto-exposure feature of a digital camera. It is used in the preview engine 5 to allow the preview image viewed by the camera user to adjust to changing light conditions as the camera is moved over a subject. As shown in
The gain controller 52 further comprises a selector 525 having the same operation as the selector 521 to receive the address value set by the digital signal processor 10 from the address register PVGCADDR to generate another address signal. A comparator 526 compares these two address signals from the selectors 521 and 525 to determine whether they are different from one another. If the two address signals are different, the comparator sends a write-enable signal to the LUT 522 to allow the LUT to receive the calculated value by digital signal processor 10 and stored in register PVGCDATA. Such an arrangement is to prevent the digital value in the location of the LUT 522 addressed by the PVGCADDR from being located by the selector 521.
In this way, the pixel signals represented by the data lines DA0 . . . DA7 can be gain-controlled by a one-to-one color intensity mapping of the LUT 522. In addition, use of a digital signal processor's calculation power allows the LUT to be updated and accessed in real time. Furthermore, as mentioned above, the digital gained values in any location of the LUT 522 can be programmed through the registers PVGCDATA and PVGCADDR by the digital signal processor 10 such that the gain controller 52 can flexibly control gains for each pixel by adjusting the average of intensity levels of any one color stored in the 256 locations of the LUT 522. The gain can be controlled in a linear manner, gamma curve (which will be detailed hereinafter), or other manner.
According to one preferred embodiment of the present invention, by suitably setting the 4×256 digital values in the LUT 522 to average for all image pixels on the CCD 2, the gain controller 52 can achieve the additional advantage of white balance adjustment, which is important in preventing color saturation of the captured image. It should be noted that gain control can be performed at any convenient time during image processing before the R, G, and B signals are converted to color-difference signals (detailed below). However, gain control is preferably performed after the vertical down sampler 51 performs the vertical truncation of the image to avoid performing gain control on the omitted lines. It should be further noted that the implementation of the gain controller 52 as a dual-ported RAM is only one of several possible embodiments. It would be within the scope of the invention to perform the gain control in equivalent circuitry or to perform gain control in firmware.
As shown in
According to one embodiment of the invention, upon the read-out (sampling) operation, the gain-controlled pixel signals in the line buffers 531 and 532 are read out per block, i.e., four pixels, two each from line buffers 531 and 532. Refer to
Referring to
As mentioned above, in addition to being performed at the time when the pixel signals are vertically down sampled in the vertical down sampler 51, persons skilled in the art will appreciate that gain control can also be performed after the horizontal up/down sampling is completed.
As shown in
Referring to
where the coefficients of the conversion matrix A are stored in the dual-ported RAM and, for example, may be
and γ is a gamma coefficient for color correction.
As with the gain controller 52 as shown in
According to another embodiment of the invention, alternatively, if the display 11 of the invention is an RGB type LCD, then all the coefficients of the conversion matrix A can be set to 1 by the digital signal processor 10.
As will be appreciated by persons skilled in the art, according to another embodiment of the invention, the gamma correction can also be performed in the gain controller 52 by incorporating the gamma correction effect predetermined by the digital signal processor 10. For example, the exponent 1/γ in the coefficients of the conversion matrix A can be factored into the 256 locations of the LUT 522. That is to say, the gain can be controlled by adjusting the average of intensity levels of any one color stored in the 256 locations of the LUT 522 and correcting each adjusted intensity level with a gamma correction factor to simultaneously achieve the gain control and gamma correction. Alternatively, the white balance adjustment performed in the gain controller 52 as mentioned above can also be operated in the above 3 by 3 matrix multiplication by correspondingly adjusting all the coefficients in the LUT 551 to average the color intensity of each of the primary color R, G, and B signals obtained from the color interpolator, given that the color intensity of each of the primary color R, G, and B signals obtained from the color interpolator has been determined by the digital signal processor 10.
Finally, an interfacing means 56 may reorganize the color difference signals Y, Cb, and Cr obtained from the color space converter 55 as television signals and generate the address of the television signals to the SDRAM 7.
In view of the above, according to the invention, at least one of white balance adjustment, and gamma correction can be performed simultaneously in either the gain controller 52 or the color space converter 55, thus providing a system with lower manufacturing costs, less complex structure, and more programmability than the prior art techniques in which any of the functions of white balance and gamma correction is either performed by a dedicated element or software. In addition, use of look-up table in conjunction with the processing speed of a digital signal processor makes real-time operation possible.
Although the invention has been disclosed in terms of a preferred embodiment of a digital still camera, the disclosure is not intended to limit the invention. The invention still can be modified, varied by persons skilled in the art without departing from the scope and spirit of the invention which is determined by the claims below.
Patent | Priority | Assignee | Title |
10032068, | Oct 02 2009 | FotoNation Limited | Method of making a digital camera image of a first scene with a superimposed second scene |
10733472, | Jun 21 2007 | Adeia Imaging LLC | Image capture device with contemporaneous image correction mechanism |
7136103, | May 11 2001 | XACTI CORPORATION | Digital camera and color adjusting apparatus |
7209161, | Jul 15 2002 | Boeing Company, the | Method and apparatus for aligning a pair of digital cameras forming a three dimensional image to compensate for a physical misalignment of cameras |
7227572, | Sep 10 2001 | Canon Kabushiki Kaisha | Image sensing apparatus, signal processing method thereof, program, and storage medium |
7289601, | Dec 01 2004 | BIOKINEMETRICS, INC | Digital image collector for X-ray systems |
7317815, | Jun 26 2003 | Adeia Imaging LLC; XPERI PRODUCT SPINCO CORPORATION; ADEIA INC | Digital image processing composition using face detection information |
7355611, | Nov 26 2002 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Method and arrangement for improving image quality on a display of an imaging device |
7433099, | May 01 2002 | Canon Kabushiki Kaisha | Image sensing apparatus, image sensing method, program, and storage medium |
7468746, | Jan 17 2003 | FUJIFILM Corporation | Digital camera |
7468752, | Oct 23 2003 | BEIJING XIAOMI MOBILE SOFTWARE CO ,LTD | Camera output format for real time viewfinder/video image |
7565030, | Jun 26 2003 | FotoNation Limited | Detecting orientation of digital images using face detection information |
7574016, | Jun 26 2003 | FotoNation Limited | Digital image processing using face detection information |
7616233, | Jun 26 2003 | FotoNation Limited | Perfecting of digital image capture parameters within acquisition devices using face detection |
7620218, | Aug 11 2006 | FotoNation Limited | Real-time face tracking with reference images |
7630527, | Jun 26 2003 | FotoNation Limited | Method of improving orientation and color balance of digital images using face detection information |
7634109, | Jun 26 2003 | FotoNation Limited | Digital image processing using face detection information |
7684630, | Jun 26 2003 | FotoNation Limited | Digital image adjustable compression and resolution using face detection information |
7693311, | Jun 26 2003 | FotoNation Limited | Perfecting the effect of flash within an image acquisition devices using face detection |
7702136, | Jun 26 2003 | FotoNation Limited | Perfecting the effect of flash within an image acquisition devices using face detection |
7809162, | Jun 26 2003 | FotoNation Limited | Digital image processing using face detection information |
7844076, | Jun 26 2003 | FotoNation Limited | Digital image processing using face detection and skin tone information |
7844135, | Jun 26 2003 | FotoNation Limited | Detecting orientation of digital images using face detection information |
7848549, | Jun 26 2003 | FotoNation Limited | Digital image processing using face detection information |
7853043, | Jun 26 2003 | FotoNation Limited | Digital image processing using face detection information |
7855737, | Mar 26 2008 | FotoNation Limited | Method of making a digital camera image of a scene including the camera user |
7860274, | Jun 26 2003 | FotoNation Limited | Digital image processing using face detection information |
7864990, | Aug 11 2006 | FotoNation Limited | Real-time face tracking in a digital image acquisition device |
7912245, | Jun 26 2003 | FotoNation Limited | Method of improving orientation and color balance of digital images using face detection information |
7916897, | Aug 11 2006 | FotoNation Limited | Face tracking for controlling imaging parameters |
7916971, | May 24 2007 | Adeia Imaging LLC | Image processing method and apparatus |
7953251, | Oct 28 2004 | FotoNation Limited | Method and apparatus for detection and correction of flash-induced eye defects within digital images using preview or other reference images |
7959110, | Apr 11 2007 | The Boeing Company | Methods and apparatus for resisting torsional loads in aerial refueling booms |
7962629, | Jun 17 2005 | FotoNation Limited | Method for establishing a paired connection between media devices |
7965875, | Jun 12 2006 | TOBII TECHNOLOGY LIMITED | Advances in extending the AAM techniques from grayscale to color images |
7965889, | Jan 31 2005 | Canon Kabushiki Kaisha | Imaging apparatus, imaging method, program and recording medium |
8005265, | Sep 08 2008 | FotoNation Limited | Digital image processing using face detection information |
8050465, | Aug 11 2006 | FotoNation Limited | Real-time face tracking in a digital image acquisition device |
8055029, | Jun 18 2007 | FotoNation Limited | Real-time face tracking in a digital image acquisition device |
8055067, | Jan 18 2007 | TOBII TECHNOLOGY LIMITED | Color segmentation |
8055090, | Oct 30 2008 | FotoNation Limited | Digital image processing using face detection information |
8094931, | Dec 09 2008 | Himax Technologies Limited | Method of color components compression |
8126208, | Oct 30 2008 | FotoNation Limited | Digital image processing using face detection information |
8131016, | Oct 30 2008 | FotoNation Limited | Digital image processing using face detection information |
8132759, | Mar 21 2007 | The Boeing Company | System and method for facilitating aerial refueling |
8135184, | Oct 28 2004 | FotoNation Limited | Method and apparatus for detection and correction of multiple image defects within digital images using preview or other reference images |
8155397, | Sep 26 2007 | FotoNation Limited | Face tracking in a camera processor |
8213737, | Jun 21 2007 | FotoNation Limited | Digital image enhancement with reference images |
8224039, | Feb 28 2007 | TOBII TECHNOLOGY LIMITED | Separating a directional lighting variability in statistical face modelling based on texture space decomposition |
8224108, | Oct 30 2008 | FotoNation Limited | Digital image processing using face detection information |
8243182, | Mar 26 2008 | FotoNation Limited | Method of making a digital camera image of a scene including the camera user |
8265399, | Jun 26 2003 | FotoNation Limited | Detecting orientation of digital images using face detection information |
8289433, | Sep 14 2005 | Sony Corporation | Image processing apparatus and method, and program therefor |
8320641, | Oct 28 2004 | FotoNation Limited | Method and apparatus for red-eye detection using preview or other reference images |
8326066, | Jun 26 2003 | FotoNation Limited | Digital image adjustable compression and resolution using face detection information |
8330831, | Aug 05 2003 | Adeia Imaging LLC | Method of gathering visual meta data using a reference image |
8345114, | Jul 30 2008 | FotoNation Limited | Automatic face and skin beautification using face detection |
8369654, | May 08 2007 | 138 EAST LCD ADVANCEMENTS LIMITED | Developing apparatus, developing method and computer program for developing processing for an undeveloped image |
8379917, | Oct 02 2009 | FotoNation Limited | Face recognition performance using additional image features |
8384733, | Apr 30 2009 | Hewlett-Packard Development Company, L.P.; HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | System and method for adjusting display input values |
8384793, | Jul 30 2008 | FotoNation Limited | Automatic face and skin beautification using face detection |
8385610, | Aug 11 2006 | FotoNation Limited | Face tracking for controlling imaging parameters |
8390642, | Apr 30 2009 | Hewlett-Packard Development Company, L.P.; HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | System and method for color space setting adjustment |
8471922, | Aug 17 2009 | SILICON MOTION INC. | Image processing system and image processing method |
8494232, | May 24 2007 | FotoNation Limited | Image processing method and apparatus |
8494286, | Feb 05 2008 | FotoNation Limited | Face detection in mid-shot digital images |
8498452, | Jun 26 2003 | FotoNation Limited | Digital image processing using face detection information |
8503800, | Mar 05 2007 | Adeia Imaging LLC | Illumination detection using classifier chains |
8509496, | Aug 11 2006 | FotoNation Limited | Real-time face tracking with reference images |
8509561, | Feb 28 2007 | TOBII TECHNOLOGY LIMITED | Separating directional lighting variability in statistical face modelling based on texture space decomposition |
8515138, | May 24 2007 | Adeia Imaging LLC | Image processing method and apparatus |
8593542, | Dec 27 2005 | Adeia Imaging LLC | Foreground/background separation using reference images |
8649604, | Mar 05 2007 | TOBII TECHNOLOGY LIMITED | Face searching and detection in a digital image acquisition device |
8675991, | Jun 26 2003 | FotoNation Limited | Modification of post-viewing parameters for digital images using region or feature information |
8682097, | Feb 14 2006 | FotoNation Limited | Digital image enhancement with reference images |
8896725, | Jun 21 2007 | Adeia Imaging LLC | Image capture device with contemporaneous reference image capture mechanism |
8923564, | Mar 05 2007 | TOBII TECHNOLOGY LIMITED | Face searching and detection in a digital image acquisition device |
8948468, | Jun 26 2003 | Adeia Imaging LLC | Modification of viewing parameters for digital images using face detection information |
8989453, | Jun 26 2003 | FotoNation Limited | Digital image processing using face detection information |
9007480, | Jul 30 2008 | FotoNation Limited | Automatic face and skin beautification using face detection |
9053545, | Jun 26 2003 | Adeia Imaging LLC | Modification of viewing parameters for digital images using face detection information |
9129381, | Jun 26 2003 | FotoNation Limited | Modification of post-viewing parameters for digital images using image region or feature information |
9148584, | Nov 13 2006 | Ambarella International LP | Automatic exposure with digital gain optimized for noise reduction |
9172849, | Jun 13 2005 | Thomson Licensing | Method and apparatus for color transformation by addressing a look-up table |
9224034, | Mar 05 2007 | TOBII TECHNOLOGY LIMITED | Face searching and detection in a digital image acquisition device |
9692964, | Jun 26 2003 | FotoNation Limited | Modification of post-viewing parameters for digital images using image region or feature information |
9767539, | Jun 21 2007 | Adeia Imaging LLC | Image capture device with contemporaneous image correction mechanism |
Patent | Priority | Assignee | Title |
5216493, | Feb 19 1992 | Eastman Kodak Company | Multipoint digital automatic white balance for a video system |
5625415, | May 20 1993 | FUJIFILM Corporation | Apparatus and method for automatic focusing in a camera system |
5748766, | Apr 30 1996 | MORPHOTRUST USA, INC | Method and device for reducing smear in a rolled fingerprint image |
20010043376, | |||
20020168103, | |||
20030189100, | |||
EP683596, | |||
EP851274, | |||
JP10248028, | |||
WO9903264, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 16 2000 | LIN, GENE CHUN-YIN | Texas Instruments Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010649 | /0859 | |
Mar 24 2000 | Texas Instruments Incorporated | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jan 07 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 27 2012 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 25 2016 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 17 2007 | 4 years fee payment window open |
Feb 17 2008 | 6 months grace period start (w surcharge) |
Aug 17 2008 | patent expiry (for year 4) |
Aug 17 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 17 2011 | 8 years fee payment window open |
Feb 17 2012 | 6 months grace period start (w surcharge) |
Aug 17 2012 | patent expiry (for year 8) |
Aug 17 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 17 2015 | 12 years fee payment window open |
Feb 17 2016 | 6 months grace period start (w surcharge) |
Aug 17 2016 | patent expiry (for year 12) |
Aug 17 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |