A method and system for performing swept-wavelength measurements within an optical system provides improved operation in resonator-enhanced optical measurement and data storage and retrieval systems. The system includes an illumination subsystem having a swept-wavelength mode, a detection subsystem, an interferometer or an optical resonator interposed in an optical path between the illumination subsystem and the detection subsystem and a time domain analysis subsystem. Multiple resonance points of the optical resonator are detected by the time-domain subsystem when the illumination subsystem is in the swept-wavelength mode in order to determine resonator or interferometer characteristic changes. The resulting information can be used directly as a measurement output, or cavity length information may also be used to adjust the operating wavelength of a constant wavelength mode of the illumination subsystem.
|
20. A method for operating an optical system, said method comprising:
generating an illumination beam from an illumination subsystem, said illumination beam having a swept-wavelength; introducing a coherent interference in a path of said illumination beam; detecting light leaving said interference with a detection subsystem; and determining a time relationship of particular intensity points of said detected light, whereby variations within a surface under test of said optical system are detected.
18. An optical system comprising:
an optical illumination subsystem for producing an illumination beam, said optical illumination subsystem including a swept-wavelength operating mode; a device for generating an interference within a path of said beam; an optical detection subsystem for measuring an intensity of light that has left said interference; and means for extracting a time relation of particular intensity detected by said optical detection subsystem when said optical illumination subsystem is operated in said swept-frequency operating mode.
1. An optical system comprising:
an optical illumination subsystem for producing an optical beam, said optical illumination subsystem including a swept-wavelength operating mode; a device for generating a coherent interference within a path of said beam; an optical detection subsystem for measuring an intensity of light leaving said interference; and a time domain analysis subsystem coupled to said optical detection subsystem for extracting a time relation of particular points of intensity variations produced by said interference when said optical illumination subsystem is operated in said swept-frequency operating mode.
2. The optical system of
3. The optical system of
4. The optical system of
5. The optical system of
6. The optical system of
7. The optical system of
8. The optical system of
9. The optical system of
10. The optical system of
11. The optical system of
12. The optical system of
13. The optical system of
14. The optical system of
15. The optical system of
16. The optical system of
17. The optical system of
19. The optical system of
21. The method of
22. The method of
|
This application is a continuation-in part of U.S. patent application "SYSTEM OF BEAM NARROWING FOR RESOLUTION ENHANCEMENT AND METHOD THEREFOR", Ser. No. 09/789,913, filed on Feb. 21, 2001, now U.S. Pat. No. 6,522,471, and is further related to pending U.S. patent applications from which it claims the benefit of priority under 35 U.S.C. §120: OPTICAL STORAGE METHOD AND APPARATUS HAVING ENHANCED RESOLUTION", Ser. No. 09/871,512, filed May 30, 2001, now U.S. Pat. No. 6,700,840; "OPTICAL MEASUREMENT AND INSPECTION METHOD AND APPARATUS HAVING ENHANCED OPTICAL PATH DIFFERENCE DETECTION", Ser. No. 09/933,225, filed Aug. 20th, 2001, now U.S. Pat. No. 6,653,649; "OPTICAL INSPECTION METHOD AND APPARATUS HAVING AN ENHANCED HEIGHT SENSITIVITY REGION AND ROUGHNESS FILTERING" Ser. No. 10/002,425, filed Oct. 23, 2001, now U.S. Pat. No. 6,714,295; and "METHOD AND SYSTEM FOR CONTROLLING RESONANCE WITHIN A RESONATOR-ENHANCED OPTICAL SYSTEM", Ser. No. 10/329,741, filed Dec. 23, 2002, now U.S. Pat. No. 6,717,707. The specifications all of the above-listed applications are incorporated herein by reference.
1. Field of the Invention
This invention relates to optical systems, and more specifically, to optical systems that incorporating a coherent interference in either the illumination path or a measurement path.
2. Description of the Related Art
Optical measurement systems, optical storage and retrieval systems and other optical systems may be limited by many factors, including illumination beam size, diffraction limit, detector noise, and resolution. The above-incorporated patent applications disclose techniques for enhancing the performance of a variety of optical systems and improving the resolution and sensitivity of optical technologies disclosed therein.
It would be further desirable to improve the performance of the systems disclosed in the above-referenced patent applications, as well as other optical systems, in order to further improve their performance. The above-referenced patent application "METHOD AND SYSTEM FOR CONTROLLING RESONANCE WITHIN A RESONATOR-ENHANCED OPTICAL SYSTEM", discloses a method and system for resonance control by a closed-loop feedback system via control of effective optical cavity length either by adjusting the operating wavelength, the propagation constant of a path within the resonator or by adjusting the physical cavity length.
However, in certain applications it may not be practical to use such a feedback loop, especially when the control mechanism is the illumination wavelength, as the wavelength must be controlled very precisely for resonators having substantial path length (necessary for resonators having a high Q-factor). The system phase accuracy requirement in some measurement applications requires the wavelength control to meet or exceed 0.1% of the wavelength. Further, the resonator further multiplies deviations in phase by the cavity length. With a resonator length of 1000λ, phase control to 0.1% of the wavelength dictates control of the illumination wavelength to within 1 part per million, which is difficult or impossible to stably achieve while maintaining high speed operation by using a tunable illumination source and feedback loop.
Therefore, it would be desirable to provide an alternative method and system for measurement and resonator control that does not require a closed-loop continuous feedback system for adjusting cavity length or illumination wavelength.
The foregoing objectives are achieved in an optical system and method and apparatus for measurement and resonator control. The system includes a swept-wavelength optical illumination subsystem, an optical detection subsystem and a device for producing interference disposed in at least one optical path between the illumination system and the detection system. The device for producing interference may a standard interferometer, multi-beam interference device or an infinite beam interferometer such as an optical resonator.
The detection system further includes time-domain analysis stage that may be used to provide direct measurement output or measure resonant cavity length permitting open-loop adjustment of cavity length or interferometer phase. The output of the time-domain analysis stage may include information about the position of resonance or interference peaks, shape, width and height of peaks or other variations in the detected optical signal.
In particular, components of the time-domain analysis provide information about the changing resonant path length of the resonator, which may be a measurement function of the system, or may be used for adjusting the illumination wavelength or effective cavity length in an open-loop system.
The foregoing and other objects, features, and advantages of the invention will be apparent from the following, more particular, description of the preferred embodiment of the invention, as illustrated in the accompanying drawings.
The above-incorporated patent applications describe various resonator-enhanced optical systems, such as optical storage data and retrieval systems having improved data density, illumination sources having narrowed beam widths and optical measurement systems having improved resolution and contrast and having improved detector phase/amplitude slope characteristics controlled over portions of the detector response. The above-recited improvements are developed by placement and tuning of resonators within the optical paths of the associated systems, in order to optimize the operating point on the resonator response function.
While the incorporation of a resonator improves the performance of the systems described within the above-incorporated patent applications, the resonator generally must be tuned precisely to a specific point in the response function. The tuning requirement is made even more stringent when the resonator operating point is set slightly off of resonance, producing improved phase slope contrast for use in particular applications of embodiments of the present invention. With reference to
Feedback control of the operating frequency and mechanical or electrical control of the cavity length have both been disclosed in the above-referenced patent application as a mechanism for maintaining the tuning of the various optical systems incorporating resonators described in the above-incorporated patent applications. However, as mentioned above, in some applications, it may be difficult or impossible to achieve a feedback control system that will properly maintain the tuning of the resonator, while maintaining the high speed operation required for most applications.
The present invention provides an alternative to tuned resonator measurement systems and an alternative tuning system that may be employed to tune the optical systems described in the above-incorporated patent applications. The measurement techniques use a time domain detection analysis that may be applied to both resonator and non-resonator optical systems such as interferometers. Rather than attempting to always maintain the effective resonator cavity length at a constant length or set the illumination wavelength to a wavelength that maintains the operating point of the resonator, the present invention uses time domain analysis to determine changes in the effective length of the cavity and/or to determine the absolute optical length of the cavity. The present invention also provides a measurement of other cavity changes, especially when a surface of the cavity is a surface under measurement with features detected by the time domain analysis, such as reflectivity/absorption, polarization, scattering (e.g. surface roughness), and so forth.
A swept wavelength illumination source is used to vary the effective cavity length through several discrete resonance points. The time domain relationship of the resonance points contains information about the cavity length, as the spread of the resonance points (detectable as pulses or other variations in the time domain detected signal) decreases with wavelength. Thus, both instantaneous changes in the detected signal time domain profile and the time domain profile it self can be analyzed to determine cavity length, cavity length changes or both. The time domain profile can be examined (or initially detected) to find any combination of pulse position, pulse width, pulse height and pulse shape. The information from the time domain analysis can be used to determine cavity length, resonance "Q" (which may indicate a gross variation in cavity length or a change in reflectivity/absorption/scattering, etc.)
The techniques of the present invention may also be extended to other optical systems such as interferometers, where while the intensity variation due to surface changes or other system parameters are not as great as for variations in resonator cavity length, the changes in local intensity maxima or minima positions or pulse shape as the wavelength is swept nevertheless can be detected and used to determine surface characteristics, optically encoded data and other changes within an optical system. All that is required is that a device for generating an interference be present in the optical path, that may be a multi-beam interference, an infinite beam interferometer forming an optical resonator such as a Fabry-Perot resonator, or a standard interferometer having a two-beam phase coherent combination.
With reference now to
In an alternative open-loop feedback control system embodiment, the optical system may subsequently be tuned at a predetermined operating point in a constant-wavelength mode of illumination subsystem 11. With an operating wavelength determined in conformity with the determined cavity length or changes in cavity length of resonator 15, 15A or 15B to provide the desired characteristics at detection subsystem 13 and/or 13A.
In beam narrowing applications, resonator 15A is employed to reduce the profile of illumination beam 17A. Resonator 15A may be included within illumination subsystem 11 or located between illumination subsystem and surface 12 as shown. Alternatively, or in combination, resonator 15 may be employed at surface 12 to increase sensitivity of the optical system. Resonator 15 includes a partially reflective surface 14 positioned above surface 12 at a predetermined distance to provide a predetermined resonance operating point.
Detection subsystem 13 provides information to analysis subsystem 14 so that the time domain relationship of resonance points can be determined, which is generally a pulse-shaped variation in intensity level (which may be "dark" or "gray" level) of an interferometric fringe detection (e.g., a dark level detector. Analysis subsystem 14 extracts information relating to one or more of the pulse peak positions (and differences between pulse peak positions), pulse width, pulse height and pulse shape.
Tuning of resonator 15, 15A or 15B may or may not be implemented in systems in accordance with various embodiments of the present invention. Since the measurement system is capable of determining multiple resonance points and their time relationships when illumination subsystem 11 is in swept-wavelength mode, it may not be necessary or desirable to provide other than a generally fixed cavity length for resonator 15, 15A or 15B (ignoring the actual cavity length variations provided by surface under measurement 12). However, when it is desirable to tune resonator 15, 15A or 15B, tuning may be accomplished by various means, such as a mechanical positioner (provided by a piezoelectric element, voice coil or other positioning device), a dielectric having an electrically alterable dielectric constant or thickness within resonator 15, 15A or 15B, or other mechanisms as described in the above-incorporated patent applications.
Tuning (including sweeping) of illumination source 11 may be accomplished by use of a broadband laser/tunable filter such as the external cavity laser (ECL) or semiconductor tunable lasers such as Distributed-feedback (DFB) lasers, distributed Bragg reflector (DBR) lasers and vertical cavity surface emitting lasers (VCSEL).
Referring now to
The output of detection subsystem 13 enters a peak location determination block 46 within analysis subsystem 14. Peak location determination block 46 determines a time relationship of multiple resonance peaks occurring in resonator 15, 15A or 15B as the wavelength of illumination subsystem 11 is swept in swept-wavelength mode. Peak location determination block may be a threshold comparator, but preferably a partial response detector or other precision pulse position estimation circuit having a characteristic suitably matched to the output of pulse detection circuit 45. Additionally, a maximum-likelihood detector may be included to further correlate the expected time locations of pulses as determined by the linearly-swept wavelength for a fixed cavity length, especially in applications where the time location set for a plurality of pulses is a non-contiguous functions, such as in optical detection systems using a reflector to form a resonator with the encoded surface, where detection subsystem 13 is attempting to discern and differentiate between two or more discrete cavity lengths.
A pulse shape determination block 46A is also coupled to an output of detection subsystem 13 and may measure the width, height or other shape characteristic of pulses received by detection subsystem 13. Width detection may be achieved using a threshold detection that measures the crossing points of a pulse through a particular threshold. Pulse symmetry may be detected by differentiating between the positive and negative transitions and comparing with the output of pulse shape determination block 46A. Pulse height may be measured by one or more thresholds, including analog-to-digital (A/D) conversion systems providing a quasi-continuous measurement range of pulse height.
Also, particular shapes may be correlated or a correlation to one or more predetermined shapes may be compared in order to determine the presence or absence of features on a surface under measurement or other measurement or optical data input to the system. A cavity parameters determination block 48A is coupled to the output of pulse shape determination block 46A for determining cavity parameters as a function of the pulse shape, such as reflectivity/absorption/scattering of a surface under measurement taken as a function of pulse width determined by pulse shape determination block.
Time differencing block 47 determines the differences between the multiple resonant peaks so that a cavity length determination block 48 can extract a cavity length or changes in cavity length of resonator 15, 15A or 15B. The cavity length information or change information may be used directly as a measurement output, for example when one of the resonator surfaces is a surface under measurement and variations in the height of the surface under measurement is the desired measurement or data detection output. A counter 49 is used to count the number of resonance points scanned through by the swept illumination wavelength and can be used to reset ramp generator 52 within sweep control circuit 16. Counter 49 thus ensures that a constant number of resonance points is scanned.
As an alternative to direct measurement output from analysis subsystem 14 while illumination subsystem 11 is in swept-wavelength mode, a sample/hold or programmable tuning source 54 may be used to provide a constant-wavelength mode for illumination source 11. A switch S1 provides selection of constant-wavelength mode vs. swept-wavelength mode and sample/hold may be used to sample a particular point in the ramp generator 52 sweep output corresponding to a particular resonance operating point (not necessarily a resonance peak) or the wavelength of illumination subsystem 11 may be programmed via a programmable register, divider, divider/multiplier loop or other means. Such a configuration provides open-loop control of the operating wavelength of tunable illumination source 11 while in constant-wavelength mode.
Referring now to
The figure shows a detector 44 output when the detector is positioned on a light-band fringe position. It is apparent from the figure, that the position of the intensity peaks (which may be translated to intensity nulls for dark-band detector positions) in time, varies with the cavity length as described above. Peak location determination block 46 determines the exact position of the peaks (or nulls for a dark-band detector position) and the spread of the peaks in time is used to determine the cavity length according to the analysis below.
With the general notations, the optical path between the two plates is given by the known formula:
where λ is the wavelength, d is the spacing between plates, n is the refractive index and θ is the incidence angle between the path and the plates. In a resonant cavity, the incidence angle θ is zero, and therefore the refracted one as well, so that:
giving a resonance for every:
where m is a modal resonance number.
When the illumination wavelength is swept and by differentiating [2a] with respect to time the resulting equation applies:
Where, for a constant refractive index,
When "m" is large compared to "λ" and "∂"(which is the usual case), the first term in equation [3a] can be neglected, as it is small in comparison with the second, giving:
A change in the cavity length "d" is therefore equivalent--up to a factor--to a change in the wavelength, "λ".
Since the optical path difference between two cavity resonance points is equal to one wavelength (due to the round trip in the cavity), the result illustrated in [3b] proves that a change of the nominal wavelength with a factor of "1/m", will produce the same effect. When the wavelength is swept continuously over time, according to a given pattern, for example a saw tooth pattern, during the linear portion of the sweep, the wavelength varies constantly with time, and therefore the resonance points will be detected as if the cavity length has changed correspondingly.
Since the variation of the wavelength is constant with time, one can consider--up to the first approximation--that the time difference between two neighboring resonance points is also constant and given by the formula [3b]. If there is a change in the cavity length while the wavelength sweeps, the distance between the resonances changes according to formula [2a], providing a time domain measurement of the change in the cavity. The change can be a change in position, shape, or height of the pulses produced by sweeping through the resonance (or interference slope for an interferometer) generated by any change in the optical path, such as a movement of the mirrors, a defect or change in the mirrors' optical characteristics, a change in the refractive index of the cavity, and so forth. Therefore detection of the spread and shape of the resonance peaks by the detection subsystem can be directly translated to determine cavity characteristics, either dynamically when the cavity is a parameter under measurement (as in the surface inspection systems or data storage systems described in the above-incorporated patent applications) or quasi-statically as in beam-narrowing applications.
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that the foregoing and other changes in form, and details may be made therein without departing from the spirit and scope of the invention.
Patent | Priority | Assignee | Title |
3521956, | |||
3885874, | |||
3901597, | |||
4659224, | Nov 28 1984 | National Research Council of Canada | Optical interferometric reception of ultrasonic energy |
4738527, | Jun 19 1986 | United Technologies Corporation | Apparatus and method for determining position with light |
5220403, | Mar 11 1991 | International Business Machines Corporation | Apparatus and a method for high numerical aperture microscopic examination of materials |
5956355, | Apr 29 1991 | Massachusetts Institute of Technology | Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser |
6160826, | Apr 29 1991 | Massachusetts Institute of Technology | Method and apparatus for performing optical frequency domain reflectometry |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 26 2003 | CLARK, BRYAN | BEYOND 3, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013927 | /0791 | |
Mar 28 2003 | Beyond 3, Inc. | (assignment on the face of the patent) | / | |||
Feb 23 2005 | BEYOND3, INC | XYRATEX | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016470 | /0306 |
Date | Maintenance Fee Events |
Feb 06 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 02 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 03 2016 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 17 2007 | 4 years fee payment window open |
Feb 17 2008 | 6 months grace period start (w surcharge) |
Aug 17 2008 | patent expiry (for year 4) |
Aug 17 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 17 2011 | 8 years fee payment window open |
Feb 17 2012 | 6 months grace period start (w surcharge) |
Aug 17 2012 | patent expiry (for year 8) |
Aug 17 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 17 2015 | 12 years fee payment window open |
Feb 17 2016 | 6 months grace period start (w surcharge) |
Aug 17 2016 | patent expiry (for year 12) |
Aug 17 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |