A method and apparatus for accessing internal nodes of an integrated circuit using a package substrate are provided. Embodiments of the present invention include an integrated circuit comprising an integrated circuit die comprising a principal side; a conductive element formed on the principal side of the integrated circuit die; a package substrate comprising a principal side facing the principal side of the integrated circuit die; a conductive element located on the principal side of the package substrate; a transmission path wherein a first end of the transmission path is coupled to the conductive element of the integrated circuit die and wherein a second end of the transmission path is coupled to the conductive element of the package substrate.
|
13. An integrated circuit comprising:
an integrated circuit die comprising a principal side; a buffer comprising an input terminal coupled to an internal circuit node of said integrated circuit die; a conductive element formed on said principal side of said circuit die coupled to an output terminal of said buffer; a multi-layer package substrate comprising a principal side facing said principal side of said integrated circuit die; a transmission path on a layer of said package substrate, wherein a first end of said transmission path is coupled to said conductive element of said circuit die; and an externally accessible conductive region on said principal side of said package substrate coupled to a second end of said transmission path.
1. An integrated circuit comprising:
an integrated circuit die comprising a principal side and having an internal circuit node; a conductive element formed on said principal side of said integrated circuit die and coupled to said internal circuit node; a package substrate comprising a principal side facing said principal side of said integrated circuit die; a conductive element mounted on said principal side of said package substrate and externally accessible to an integrated circuit testing apparatus; a transmission path wherein a first end of said transmission path is coupled to said conductive element of said integrated circuit die and wherein a second end of said transmission path is coupled to said externally accessible conductive element of said package substrate.
2. The integrated circuit as described in
3. The integrated circuit as described in
4. The integrated circuit as described in
5. The integrated circuit as described in
6. The integrated circuit as described in
7. The integrated circuit as described in
8. The integrated circuit as described in
9. The integrated circuit as described in
10. The integrated circuit as described in
11. The integrated circuit as described in
12. The integrated circuit as described in
14. The integrated circuit as described in
15. The integrated circuit as described in
16. The integrated circuit as described in
17. The integrated circuit as described in
18. The integrated circuit as described in
19. The integrated circuit as described in
20. The integrated circuit as described in
21. The integrated circuit as described in
22. The integrated circuit as described in
|
1. Field of the Invention
The present invention relates to the field of testing integrated circuits. More specifically, embodiments of the present invention relate to accessing internal nodes of flip-chip packaged integrated circuits to measure voltage transitions at the nodes.
2. Prior Art
Measurements of voltage transitions at internal circuit nodes are needed during the development and testing of complex integrated circuits ("ICs" hereafter). A circuit node is any point on the electrical connections of the IC (e.g., an input or output terminal of a logic gate). Despite use of sophisticated simulation tools, many ICs still fail to operate as designed, and diagnostic procedures must be undertaken to determine the cause of the failure. In some instances, mechanical probing and beam (electron beam) probing provide the requisite information. However, when the well-known flip-chip packaging (the die being mounted face down to its package substrate) technology is used, micro-mechanical and electron beam probe access to the principal (metal connection) side of the IC die is blocked.
It is known to use a light beam to measure voltage at an internal node in a conventional flip-chip packaged IC. An example of a conventional system for measuring circuit voltage at an internal node of an IC using light is IDS2000 manufactured by Schlumberger, and described in U.S. Pat. No. 5,905,577. To access the internal circuit elements, first the IC die is stripped of the package to expose the metal connection side of the IC die. A light beam is focused on a circuit element of the IC, such as a diode where the measurements are desired in the IC, from the metal connection side of the IC die.
A test program generating a series of commands (e.g., test patterns) is run on the IC, the test patterns are applied to the input pins of the IC. In response to the past patterns (vectors), voltage transitions take place at the circuit node, which is merely a point on an electrical connection to the circuit element. The light reflected from the circuit element, electrically connected to the circuit node, is modulated by changes in the electrical state of the node in response to the test patterns. Thus the reflected light provides a measure of voltage transitions (signals) at the node.
There are drawbacks associated with using this method to test integrated circuits. First, the modulation of the reflected beam is very weak and averaging techniques must be used to obtain low noise measurement waveforms. Second, many IC faults are intermittent, (e.g., in logic circuits) so that averaging will produce false results unless the IC activity is exactly repeated for every test pattern
Access to such internal circuit nodes can be achieved by providing an on-chip circuit called a scan chain The test method modifies the otherwise conventional flip-flops used in the IC, providing a two input data selector to the D input terminal of each flip-flop. The data selector control signal for all the flip-flops is a common signal called Scan Enable. With Scan Enable, in the low logic state, the data selector is set for normal IC operations. However, the Q output terminal of each flip-flop is coupled to the normally unused data selector input of another flip-flop. When Scan Enable is in the high logic state, this path is enabled, forming a continuous shift register structure from all the modified and connected flip-flops. By this means, serial data representing an arbitrary logic state can be loaded from one of the IC input pins into the shift register with Scan Enable high, and normal IC operation begun from this arbitrary internal state by switching Scan Enable low. Also at any point in the normal operation of the IC, Scan Enable can be made logic high, thus latching the logic state for all internal nodes into the shift register. The contents of the shift register can then be clocked to an output pin for analysis. For a detailed description of scan test methods, see Alfred L. Crouch, "Design For Test For Digital ICs And Embedded Core Systems," Prentice Hall, 1999.
However, the scan chain operations cannot be performed at full device operating speed. The internal scan chain can give accurate information to the IC logic state only when the associated processor clock is stopped. Thus at low speed all faults may be located, but faults occurring only at high speed may elude isolation in time and position. Latching of the scan chain can be done with the DUT (device under test, referring to the IC under test) operating at full clock speed, thereby obtaining a "snap shot" of the IC internal nodes at an instant of time. However, it is difficult to distribute simultaneously to the scan chain the latching lock pulse, or at least distribute the latching clock pulse within a small fraction of the device clock speed. Because of this, the data obtained in this manner is suspect. The on-chip time relationship between voltage transitions on two nodes is not accurately represented in the data obtained in this manner. This skew distribution problem becomes worse as the number of active circuits contained in a DUT increase.
Thus, it would be desirable to provide access to circuit nodes of a DUT to obtain reliable measurements of faults occurring at high speed. It would also be advantageous to provide signal outputs to an associated printed circuit board from internal circuit nodes for diagnostic purposes. However, the incremental cost of providing these connections will be very high, because a larger surface area package will be needed, and the difficulty of routing all the connections on the printed circuit board would be increased. This cost would have to be borne by every IC produced, even after the diagnostic process had been completed and the extra no longer needed. Hence, this would not be economical.
Accordingly, what is needed is a solution to the problems associated with conventional IC testing. The present invention provides access to the electrical state of the internal nodes of an IC DUT.
The well-known flip-chip method of packaging ICs has greatly increased the available number of electrical connections between the IC die and the associated mounting substrate of the IC package. ("Package" in the IC field refers to the plastic or ceramic housing for the die and its associated electrical leads.) In an integrated circuit, in accordance with an embodiment of the present invention, each electrical connection between the IC die and the top of the package substrate is made by a deformable "ball bond." The ball bonds can be made anywhere on the IC die surface; they are not constrained to the edge of the die. The package substrate is a multi-layered polyimide or ceramic structure, containing power planes (conductors) and impedance controlled signal transmission lines. The package substrate power planes and signal transmission lines are coupled by interlayer vertical connections (vias) to a flat pad or a pin on the bottom layer of the package substrate. The pads or pins are used conventionally to make electrical connections to the associated printed circuit board on which the package IC is mounted. A number of the ball bonds are used for power and ground connections to the substrate, so that the high current required by the IC is carried by many such bonds. The number of ball bonds may exceed, e.g., two thousand and hence many are also available to carry signals from internal nodes of the IC to the multi-layered package substrate.
In one embodiment a circuit internal node on the IC is coupled to a buffer on chip to drive the node's signal onto a path including an associated ball bond and a trace (conductor) that Is terminated in a pad on the top (principal) surface of the package substrate. An example of a buffer (amplifier) is an inverter. The pad is located beyond the edge of the die, thereby, being readily accessible by the test apparatus and is not used as a signal path for normal IC operations. There is sufficient space around the edges of the IC die on the top surface of a typical sized package substrate to place up to, e.g., 100 such pads. One embodiment of the present invention includes a package substrate that has more layers and is used for the testing (diagnostic) process only, thus avoiding the extra cost of using this special (diagnostic) package substrate with production IC's.
In another embodiment of the present invention, the buffer (amplifier) at the IC internal node is sized to output only about a hundred millivolt signal when the output diagnostic pad coupled to the internal circuit node is loaded with fifty ohm impedance. The area of the IC die taken up by the buffer is thereby minimized, and a wide band signal path impedance is obtained from the ball bond all the way to the test apparatus. In another embodiment of the present invention, a signal or data selector is set by the IC scan chain. By providing the data selector many internal nodes may be accessed sequentially.
These and other objects and advantages of the present invention will no doubt become obvious to those of ordinary skill in the art after having read the following detailed description of the preferred embodiments, which are illustrated in the various drawing figures.
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Reference will now be made in detail to the preferred embodiments of the invention examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to these embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims. Furthermore, in the following detailed description of the present invention, numerous specific details are set forth in order to provide a thorough understanding of the present invention. However, it will be obvious to one of ordinary skill in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail as not to unnecessarily obscure aspects of the present invention.
Package substrate 14 in one embodiment of the present invention is a multi-layered, e.g., polyimide, ceramic, or plastic (insulative) structure, containing several conductive power planes 16 (only one of which is shown) and many impedance controlled signal transmission lines 18 (only one of which is shown). Each power plane 16 or signal transmission line 18 is coupled by at least one vertically extending interlayer connection (a via) 20a, . . . , 22n to an associated conductive pad 22a, . . . 22i, . . . 22n on the lower surface of the substrate 14. Alternatively, a conductive pin extending down from substrate 14 is used instead of pads 22a, . . . , 22i, . . . , 22n are used to make electrical connections to conventional traces (not shown) on the upper surface of a supporting conventional printed circuit board 24. Some of the ball bonds on die 10 are used for power and ground connections to substrate 14, so that the high current required by IC die 10 is shared across many of the ball bonds. The number of ball bonds may exceed, e.g., two thousand and so many of them are also available to carry signals from internal nodes of IC die 10 to the substrate 14.
It is seen in
For example, if shift register 40 is 1 to 16 (serial one signal line in and 16 out), and the maximum bandwidth of the interconnect (path from node 28 of
The transmission path provided by the substrate 14 may also be used as an input path to the die 10. A signal applied to pad 23i may be used to operate on-chip latches so as to capture the logic state of internal nodes of the die 10 at the time accurately determined by the external test apparatus. One way to accomplish this is described in U.S. patent entitled "On-Chip Optically Triggered Latch For IC Time Measurement" filed by Kenneth Wilsher, U.S. Pat. No. 6,501,288 incorporated herein by reference in its entirety.
Also provided is logic analyzer 26 (to capture data of any logic signals on the board/system) and the associated display 66, connected to board 60 by connections (bus) 68.
Embodiments of the present invention, a method and apparatus for accessing internal nodes of an integrated circuit using IC package substrate have been described. While the present invention has been described in particular embodiments, it should be appreciated that the present invention should not be construed as limited by such embodiments but rather construed according to the following Claims.
The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed. The embodiments were chosen and described in order to best explain the principles of the invention and it's practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the Claims appended hereto and their equivalents.
Patent | Priority | Assignee | Title |
11054442, | Sep 26 2019 | International Business Machines Corporation | Ball grid array current meter with a current sense mesh |
11226369, | Sep 26 2019 | International Business Machines Corporation | Ball grid array current meter with a current sense loop |
11519957, | Sep 26 2019 | International Business Machines Corporation | Ball grid array current meter with a current sense wire |
11774486, | Jun 30 2021 | DELTA DESIGN, INC | Temperature control system including contactor assembly |
11879910, | Jan 09 2017 | Delta Design, Inc. | Socket side thermal system |
7378745, | Aug 31 2004 | Renesas Electronics Corporation | Package substrate for a semiconductor device having thermoplastic resin layers and conductive patterns |
7755083, | Dec 09 2005 | VIA Technologies, Inc. | Package module with alignment structure and electronic device with the same |
8878559, | May 19 2010 | Panasonic Corporation | IC current measuring apparatus and IC current measuring adapter |
Patent | Priority | Assignee | Title |
6469396, | Nov 20 1998 | SONY NETWORK ENTERTAINMENT PLATFORM INC ; Sony Computer Entertainment Inc | Integrated circuit chip having input/output terminals for testing and operation |
6590409, | Dec 13 2001 | Bell Semiconductor, LLC | Systems and methods for package defect detection |
6617181, | Feb 01 2002 | Bell Semiconductor, LLC | Flip chip testing |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 10 2002 | SCHLUMBERGER TECHNOLOGIES, INC | NPTest, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014260 | /0387 | |
Feb 28 2003 | WILSHER, KENNETH | NPTEST, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013848 | /0736 | |
Mar 04 2003 | NPTest, Inc. | (assignment on the face of the patent) | / | |||
Jul 13 2004 | NPTest, LLC | Credence Systems Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015242 | /0574 | |
Feb 20 2008 | Credence Systems Corporation | DCG Systems, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022783 | /0128 |
Date | Maintenance Fee Events |
Jan 17 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 21 2008 | LTOS: Pat Holder Claims Small Entity Status. |
Jan 25 2012 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Apr 01 2016 | REM: Maintenance Fee Reminder Mailed. |
May 02 2016 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
May 18 2016 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
May 18 2016 | M1556: 11.5 yr surcharge- late pmt w/in 6 mo, Large Entity. |
Date | Maintenance Schedule |
Aug 24 2007 | 4 years fee payment window open |
Feb 24 2008 | 6 months grace period start (w surcharge) |
Aug 24 2008 | patent expiry (for year 4) |
Aug 24 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 24 2011 | 8 years fee payment window open |
Feb 24 2012 | 6 months grace period start (w surcharge) |
Aug 24 2012 | patent expiry (for year 8) |
Aug 24 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 24 2015 | 12 years fee payment window open |
Feb 24 2016 | 6 months grace period start (w surcharge) |
Aug 24 2016 | patent expiry (for year 12) |
Aug 24 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |