A dual depth trench isolation structure formed between active devices and conductive well regions of same conductivity type which comprises a first inter-well isolation structure having a first isolation trench depth, a second inter-well isolation structure having a second isolation trench depth which combine to form a dual depth trench containing the dual depth trench isolation structure comprising the first inter-well isolation structure and the second inter-well isolation structure, with the dual depth trench isolation interposed at the boundary of an n-well conductive region and a p-well conductive region, a first intra-well isolation structure having a first isolation trench depth, the first intra-well isolation structure interposed between a pair of p-channel transistors residing in the n-well region, and a second intra-well isolation structure having a second isolation trench depth, the second intra-well isolation structure interposed between a pair of n-channel transistors residing in the p-well region.
|
4. A process for forming trench isolation in a semiconductor memory device, said process comprising the steps of:
etching a first trench to a first level, into a conductively doped portion of a semiconductor assembly; etching a second trench to a second level, into said conductively doped portion of said semiconductor assembly, including said second trench spanning said first trench, said step of etching a second trench comprises simultaneously etching said first trench to a third level that corresponds to said second level; forming isolation material in said first and second trenches; forming conductive wells of opposite conductivity types having a single common boundary that forms between dopants of each conductive well at said third level within said conductively doped portion, said isolation material interposed directly above said common boundary of said conductive wells.
1. A process for forming trench isolation in a semiconductor memory device, said process comprising the steps of:
etching a first trench to a first level, into a conductively doped portion of a semiconductor assembly; etching a second trench to a second level, into said conductively doped portion of said semiconductor assembly, including second trench spanning said first trench, said step of etching a second trench simultaneously etching said first trench to a third level that corresponds to said second level; forming isolation material in said first and second trenches; forming first and second conductive wells having a common boundary but having opposite conductivity types within said conductively doped portion, said common boundary consisting of said first conductive well directly bordering said second conductive well, said isolation material interposed directly above said common boundary of said conductive wells.
2. The process as recited in
3. The process as recited in
5. The process as recited in
6. The process as recited in
|
This application is a divisional to U.S. patent application Ser. No. 09/905,278, filed Jul. 13, 2001, now U.S. Pat. Ser. No. 6,583,060.
This invention relates to semiconductor fabrication processing and, more particularly, to a Complimentary Metal Oxide Semiconductor (CMOS) fabrication method for forming dual depth trench isolation for inter-well regions in semiconductor devices, such as semiconductor memory devices.
A current trend in the fabrication of CMOS devices is to use various techniques, known in the industry as "shrinks," to reduce the size of the device and thus enable fabrication of a greater number of devices per each semiconductor wafer or other substrate. The rapid numbers of shrinks a given device may go through presents several challenges. Some of those challenges involve isolation between intra-well and inter-well isolation regions. Intra-well isolation is defined as the isolation between similarly doped field effect transistors. For example, n-channel field effect transistors (FETs) that reside within a common p-well region must be isolated from each other so that there is minimal interaction between the neighboring FETs. Likewise, isolation is needed between p-channel FETs that reside in a common n-well region.
Inter-well isolation is defined as the isolation between similar type dopants of a FET and a neighboring conductively doped region. For example, n-channel FETs that reside close to a neighboring n-well region require sufficient isolation to minimize the leakage current between the n-channel devices and the neighboring n-well region, that will result in isolation breakdown. Likewise, isolation is required for p-channel FETs that reside close to a neighboring p-well region.
Due to rapidly shrinking die sizes of devices, the spacing allowed for intra-well and inter-well isolation is becoming increasingly tight. The present invention provides sufficient inter-well and intra-well isolation for CMOS devices.
Exemplary implementations of the present invention comprise processes for forming dual depth trench isolation for inter-well and intra-well isolation regions in a semiconductor memory device.
An exemplary implementation of the present invention discloses a dual depth trench isolation structure formed between active devices and conductive well regions of same conductivity type for a complimentary metal oxide semiconductor device. The inter-well isolation structure comprises a stepped structure where an overlying step is wider than underlying step and the underlying step is longer (deeper) than the overlying step. The dual depth trench isolation is interposed at the boundary of an n-well conductive region and a p-well conductive region.
Additionally, the first exemplary implementation of the present invention may include a first intra-well isolation structure interposed between a pair of p-channel transistors residing in the n-well region, and a second intra-well isolation structure interposed between a pair of n-channel transistors residing in the p-well region. Each intra-well isolation structure has substantially the same length (depth) as the depth of the overlying step of the inter-well isolation.
Another exemplary implementation of the present invention teaches process steps to form variations of a dual depth trench isolation structure. On exemplary process comprises, etching an inter-well trench to a first inter-well trench depth, into a conductively doped portion of a semiconductor assembly, followed by etching intra-well trenches to an intra-well trench depth on opposing sides of the inter-well trench, while simultaneously etching the inter-well trench to a second inter-well trench depth. Isolation material is then formed in the intra-well and inter-well trenches. Conductive wells that have a common boundary, but have opposite conductivity type, are formed within the conductively doped region and the isolation material is interposed at the common boundary of the conductive wells. The conductive wells (typically p-type and n-type) can be formed either before or after the isolation structures are formed. During the etching of the second inter-well trench it is preferred to consume a portion of each conductive well at their common boundary.
In yet another exemplary implementation of the present invention, the intra-wells and inter-well isolation structures are formed by a multilevel photoresist pattern with a first level defining active areas within a silicon substrate, a second level defining each intra-well width and depth, a first inter-well width and a first inter-well depth, and a third level defining a second inter-well width and a second inter-well depth. An etch step is performed that transfers the multilevel photoresist pattern to the underlying silicon substrate to form the final inter-well trench, as well as the intra-well trenches. Isolation material is then formed into the trenches to form the final inter-well and intra-well isolation structures. The conductive wells are formed as indicated previously.
The formation of the multilevel photoresist pattern comprises using gradient photolithography to impose a gradient exposure on the photoresist material or by using masks in succession to form the desired levels of the photoresist pattern.
Exemplary implementations of the present invention directed to processes for forming dual depth trench isolation between n-channel active devices and n-well regions and p-channel active devices and p-well regions in a semiconductor assembly, such as a memory device, are depicted in
A first exemplary implementation of the present invention is depicted in
Referring now to
Referring now to
Referring now to
Referring now to
Next, n-type dopants, such as arsenic or phosphorous atoms, are implanted into the exposed region of substrate 10 to form n-well region 54. The formation of a typical n-well may include multiple implant steps. As an exemplary implementation of the present invention, three n-well implants using phosphorous (species P31) are used to form the n-well. A first phosphorous implant dose comprises 4.0E12 atoms/cm2 at 100 KeV. A second phosphorous implant dose comprises 2.4E12 atoms/cm2 at 280 KeV. A third phosphorous implant dose comprises 1.5E13 atoms/cm2 at 600 KeV. The final depth of the n-well is from 1 μm to 2 μm. This step also defines p-well region 55 that has been implanted earlier in the process.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
A second exemplary implementation of the present invention that combines with the process steps demonstrated in
Referring now to
Referring now to
Gradient photolithography imposes a gradient exposure on the photoresist material and is implemented by using a gradient (gray-scale) mask so that the exposure intensity assumes at least three levels (accomplished by varying exposure time, light intensity, and/or mask material). Alternately, the gradient exposure can be implemented using masks in succession. Regardless of how the gradient exposure is implemented, the resulting photoresist pattern 142 is created by removing substantially all of the photoresist at region 143, by leaving an intermediate depth of photoresist at locations 144, 145, 146 and 147 and by leaving a relatively thick photoresist at locations 148.
Referring now to
The dual depth inter-well isolation that results from the exemplary implementations of the present invention, provides sufficient isolation between n+ to n-well and p+ to p-well regions.
It is to be understood that although the present invention has been described with reference to several preferred embodiments, various modifications, known to those skilled in the art, may be made to the process steps presented herein without departing from the invention as recited in the several claims appended hereto.
Patent | Priority | Assignee | Title |
7422955, | Apr 13 2005 | Seiko Epson Corporation | Method for manufacturing a semiconductor device, as well as a semiconductor substrate |
9355887, | Aug 19 2005 | GLOBALFOUNDRIES U S INC | Dual trench isolation for CMOS with hybrid orientations |
Patent | Priority | Assignee | Title |
5360753, | Sep 25 1992 | SAMSUNG ELECTRONICS CO , LTD | Manufacturing method for a semiconductor isolation region |
5455194, | Mar 06 1995 | Motorola Inc. | Encapsulation method for localized oxidation of silicon with trench isolation |
5702870, | Aug 27 1993 | VLSI Technology, Inc. | Integrated-circuit via formation using gradient photolithography |
6077733, | Sep 03 1999 | Taiwan Semiconductor Manufacturing Company | Method of manufacturing self-aligned T-shaped gate through dual damascene |
6127232, | Dec 30 1997 | Texas Instruments Incorporated | Disposable gate/replacement gate MOSFETS for sub-0.1 micron gate length and ultra-shallow junctions |
6144086, | Apr 30 1999 | International Business Machines Corporation | Structure for improved latch-up using dual depth STI with impurity implant |
6190979, | Jul 12 1999 | International Business Machines Corporation | Method for fabricating dual workfunction devices on a semiconductor substrate using counter-doping and gapfill |
6225646, | Jan 14 2000 | MONTEREY RESEARCH, LLC | Integrated circuit incorporating a memory cell and a transistor elevated above an insulating base |
6294419, | Apr 30 1999 | International Business Machines Corporation | Structure and method for improved latch-up using dual depth STI with impurity implant |
6406963, | Dec 17 1999 | NXP B V | Method of manufacturing a semiconductor device |
6476445, | Apr 30 1999 | GLOBALFOUNDRIES Inc | Method and structures for dual depth oxygen layers in silicon-on-insulator processes |
JP7297273, | |||
KR9409365, | |||
TW274153, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 02 2003 | Micron Technology, Inc. | (assignment on the face of the patent) | / | |||
Dec 23 2009 | Micron Technology, Inc | Round Rock Research, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023786 | /0416 |
Date | Maintenance Fee Events |
Feb 15 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 15 2012 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Apr 22 2016 | REM: Maintenance Fee Reminder Mailed. |
Sep 14 2016 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 14 2007 | 4 years fee payment window open |
Mar 14 2008 | 6 months grace period start (w surcharge) |
Sep 14 2008 | patent expiry (for year 4) |
Sep 14 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 14 2011 | 8 years fee payment window open |
Mar 14 2012 | 6 months grace period start (w surcharge) |
Sep 14 2012 | patent expiry (for year 8) |
Sep 14 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 14 2015 | 12 years fee payment window open |
Mar 14 2016 | 6 months grace period start (w surcharge) |
Sep 14 2016 | patent expiry (for year 12) |
Sep 14 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |