A silicon controlled rectifier electrostatic discharge protection circuit with external on-chip triggering and compact internal dimensions for fast triggering. The ESD protection circuit includes a silicon controlled rectifier (scr) having an anode coupled to the protected circuitry and a cathode coupled to ground, where the cathode has at least one high-doped region. At least one trigger-tap is disposed proximate to the at least one high-doped region and an external on-chip triggering device is coupled to the trigger-tap and the protected circuitry.
|
1. An electrostatic discharge (ESD) protection circuit in a semiconductor integrated circuit having protected circuitry, the ESD protection circuit comprising:
a silicon controlled rectifier (scr) having an anode coupled to the protected circuitry and a cathode coupled to ground, said cathode having at least one first high-doped region; at least one trigger-tap, disposed proximate to the at least one high-doped region; and an external on-chip triggering device coupled to the trigger-tap arid the protected circuitry.
15. An electrostatic discharge (ESD) protection circuit in a semiconductor integrated circuit (IC) having protected circuitry, the ESD protection circuit comprising:
a scr further comprising: a substrate; a n-well and an adjacent p-well formed in said substrate and defining a junction therebetween; at least one n+ doped region in said p-well and coupled to ground; a p+ doped region in said n-well and coupled to a pad of said protected circuitry; at least one p+ doped trigger tap disposed proximate to at least one n+ doped region in said p-well; and an external on-chip triggering device coupled to the scr, wherein one terminal is coupled to the pad end a second terminal is coupled to the trigger tap. 24. An electrostatic discharge (ESD) protection circuit in a semiconductor integrated circuit (IC) having protected circuitry, the ESD protection circuit comprising:
a scr further comprising: a substrate; a p-will and an adjacent n-well formed In said substrate and defining a junction therebetween; at least one p+ doped region dispersed in said n-well; a n+ doped region dispersed in said p-well and coupled to ground; at least one n+ doped trigger tap disposed proximate and between the at least one p+ doped region in said n-well; and a pmos transistor triggering device coupled to the scr, wherein a drain is coupled to ground and a source is coupled to the trigger tap; the at least one p+ doped region is further coupled to a pad: the source is further coupled to the pad via a shunt resistor; and the pad is further coupled to said protected circuitry.
2. The ESD protection circuit of
3. The ESD protection circuit of
4. The ESD protection circuit of
5. The ESD protection circuit of
6. The ESD protection circuit of
7. The ESD protection circuit of
8. The ESO protection circuit of
9. The ESD protection circuit of
10. The ESD protection circuit of
11. The ESD protection circuit
12. The ESD protection circuit of
13. The ESD protection circuit or
14. The ESD protection circuit of
16. The ESO protection circuit of
17. The ESD protection circuit of
18. The ESD protection circuit of
19. The ESD protection device of
20. The ESD protection circuit of
21. The ESD protection circuit or
22. The ESD protection circuit of
23. The ESD protection circuit of
25. The ESD protection circuit of
26. The ESD protection device of
27. The ESD protection circuit of
28. The ESD protection circuit of
29. The ESD protection circuit of
30. The ESD protection circuit of
31. The ESD protection circuit of
|
This patent application claims the benefit of U.S. Provisional Applications, Ser. No. 60/280,345, filed Mar. 30, 2001; Ser. No. 60/246,123, filed Nov. 6, 2000; and Ser. No. 60/266,171, filed Feb. 2, 2001, the contents of which are incorporated by reference herein.
This invention generally relates to the field of electrostatic discharge (ESD) protection circuitry, and more specifically, improvements for silicon controlled rectifier (SCR) structures in the protection circuitry of an integrated circuit (IC).
Integrated circuits (IC's) and other semiconductor devices are extremely sensitive to the high voltages that may be generated by contact with an ESD event. As such, electrostatic discharge (ESD) protection circuitry is essential for integrated circuits. An ESD event commonly results from the discharge of a high voltage potential (typically, several kilovolts) and leads to pulses of high current (several amperes) of a short duration (typically, 100 nanoseconds). An ESD event is generated within an IC, illustratively, by human contact with the leads of the IC or by electrically charged machinery being discharged in other leads of an IC. During installation of integrated circuits into products, these electrostatic discharges may destroy the IC's and thus require expensive repairs on the products, which could have been avoided by providing a mechanism for dissipation of the electrostatic discharge to which the IC may have been subjected.
The ESD problem has been especially pronounced in complementary metal oxide semiconductor (CMOS) field effect transistors. To protect against these over-voltage conditions, silicon controlled rectifiers (SCR) and other protection devices such as the grounded-gate NMOS have been incorporated within the circuitry of the CMOS IC to provide a discharge path for the high current produced by the discharge of the high electrostatic potential. Prior to an ESD event, the SCR is in a nonconductive state. Once the high voltage of an ESD event is encountered, the SCR then changes to a conductive state to shunt the current to ground. The SCR maintains this conductive state until the voltage is discharged to a safe level.
The triggering device 105 is illustratively a grounded gate NMOS (GGNMOS) transistor, which has its source 127 and gate 126 coupled to ground. Additionally, the drain 129 and source 127 of the GGNMOS transistor 105 are respectively coupled to the collector 110 and the emitter 112 of the NPN transistor T1131. Furthermore, the gate 126 and source 127 of the GGNMOS transistor are also connected to the grounded third node 124 (i.e., cathode of the SCR).
Within the N-well 104, a first P+ region 108 is formed. Furthermore, within the P-well 106, a first N+ region 112 and a second P+ region 114 are formed thereupon. In addition, a second N+ region 110 is formed over both the P-well 106 and N-well 104 regions such that the second N+ region 110 overlaps the junction 107 of the P-well and N-well regions 106 and 104. The regions denoted P+ an N+ are regions having higher doping levels than the N-well and P-well regions 104 and 106.
Shallow trench isolation (STI) is used in most state-of-the-art CMOS processing technologies to laterally separate the high-doped regions. Shallow trench isolation is performed prior to forming the high P+ and N+ doped regions. In particular, trenches are etched in specific areas from the silicon surface, and an insulator material (e.g., silicon dioxide (SiO2)) is deposited to fill the trenches. A gate dielectric layer such as silicon dioxide (SiO2) 130 is grown over the parts of the surface exposing bare silicon. A gate electrode material (e.g. poly silicon) is deposited over the entire surface. The gate electrode material and the gate dielectric are structured by a photo-lithographical masking followed by an etching step. After the masking and etching steps, only the photo patterned area of the gate dielectric 130 and the gate electrode 128 remain, as illustrated. Then, the silicon between the STI receives ion implants to form the high-doped P and N regions as discussed above.
Specifically, after performing the STI and creating the high-doped regions, a first STI region 1161 is positioned illustratively to the left of the first P+ doped region 108. Additionally, a second STI region 1162 is positioned between the first P+ region 108 and the second N+ region 110. Furthermore, a third STI region 1163 is positioned between the first N+ region 112 and the second P+ region 114, and a fourth STI region 1164 is positioned to the left of the second P+ region 114.
The gate 126 of the GGNMOS transistor 105 separates the first and second N+ regions 112 and 110. Furthermore, the GGNMOS transistor 105 is used to "trigger", i.e., turn on the SCR. In particular, the GGNMOS transistor 105 is an N-channel MOS transistor, which includes a drain 129 and source 127, which are respectively formed by the second N+ region 110 and the first N+ region 112. The NMOS-channel is formed at the surface of the P-well region 120 between the first and second N+ regions 112 and 110. Additionally, since the gate 126 is grounded, the P-well region 120 is prevented from forming the NMOS-channel between the first and second N+ regions 112 and 110, thereby preserving the functionality of the SCR's bipolar transistor T1131.
The NPN transistor T1131 has its emitter formed by the first N+ region 112, the base formed by the P-well 106, and the collector formed by the N-well 104, which is electrically in parallel with the second N+ region 110 (NMOS drain). The PNP transistor T2132 has its emitter formed by the first P+ region 108, the base formed by the N-well 104 and the second N+ region 110, and the collector formed by the P-well 106. It should be noted that the N-well 104 and the drain region 110 define both the collector of the NPN transistor T1131 and the base of the PNP transistor T2132.
The first P+ region 108 is spaced apart from the second N+ region 110. If the N-well 104 is optionally connected by an additional N+ region (not shown) to the anode 122, then the N-well resistance RB2 142 is defined therebetween (For example, an additional N+ region in the N-well 104). Otherwise, if the N-well is floating the resistor RB2 142 is not defined (as drawn in phantom in FIG. 1B). As such, the well resistance RB2 142 is the base resistance of the PNP transistor T2132, and has a resistance value that depends on the N-type material resistivity value. The N-type material includes the level of doping, as well as the length and cross-sectional area of the N-well 104 (i.e., base). Typically, the resistance RB2 142 is in the range of 500 Ohm to 5000 Ohms, or it is an open if the N-well is floating (as shown in FIG. 1B). Furthermore, since the second N+ region 110 is coupled to the N-well 104, the N+ region 110 also functions as part of the base of the PNP transistor T2132. Likewise, the P-well region 106 forms the base of the NPN transistor T1131 and also has a substrate resistance RB1 141. Typically, the resistance RB1 141 is in the range of 500 to 5000 Ohms.
The anode 122, cathode 124, and a substrate-tie 125 are respectively coupled to the first P+ region 108, the first N+ region 112, and the second P+ region 114 through silicide layers 118A, 118C, and 118S (collectively silicide layers 118). Furthermore, one skilled in the art will recognize that there are older process technologies that do not have the silicide layer. As such, the anode 122, cathode 124, and substrate-tie 125 are directly connected to the N+ and P+ regions. The silicide layers 118 are formed such that a conductive metal (typically, tungsten or cobalt) is deposited as a very shallow film over the entire IC wafer. A heating step follows and the metal reacts only with the silicon surface to form an alloy of silicon and metal ("silicide"). The other surfaces such as oxides or nitrides do not react with the metal. The non-reacted metal is selectively etched away so that only the silicide layers remain on the silicon. The silicide layers 118 serve as a conductive bonding material respectively between each metal contact 121A, 121C, and 121S (collectively metal contacts 121) of the anode 122, cathode 124, and substrate-tie 125.
In operation, the protective SCR circuit 102, which comprises the NPN and PNP transistors T1131 and T2132, will not conduct current between the anode 122 and the grounded cathode 124. That is, the SCR 102 is turned off, since there is no high voltage (e.g., ESD voltage) applied to the SCR 102, but only the regular signal voltage of the IC. Once an ESD event occurs at the pad 148, a voltage potential appears on the anode 122. Furthermore, the voltage potential created by the ESD event is transferred in part to the N+ region 110 via the N-well 104. That is, the anode 122, P+ region 108, N-well region 104, and N+ region 110 are connected in series such that a voltage will form at the N+ region 110.
The N+ region 110 and the P-well 106 form a diode that functions as a triggering mechanism for the SCR 102. In particular, the N+ region 110 and the P-well region 120 act as a diode DR. The diode DR (drawn in phantom) will conduct when the voltage across the diode exceeds the diode reverse breakdown voltage, typically 6-10 volts. That is, once the voltage transferred in part from the ESD event on the N+ region 110 exceeds the diode DR reverse breakdown voltage, an avalanche effect occurs such that holes and electrons are generated in the PN-junction of the diode DR. The holes flow into the P-well regions 120 and 119 of the P-well 106 and to the grounded P+ region 114. The potential in the P-well regions 120 and 119 increases and electrons flow from the N+ region 112 (emitter) mainly into the P-well region 120 and also into the part of the P-well region denoted 119. The flow of minority carriers (electrons) into the P-well region 120 causes the SCR 102 to trigger. Likewise, the electrons generated in the PN-junction of the diode DR will flow into the N-well 104 and cause the P+ emitter 108 to inject minority carriers (holes) into the N-well 104.
Specifically, the majority carriers (i.e., holes) generated at the PN-junction of the N+ region 110 and the P-well region 120 recombine in the P-well regions 120 and 119 with the minority carriers (electrons) injected from the N+ region 112 (emitter). As such, the base of the NPN transistor T1131 draws current, illustratively at the gate G1 in the P-well region 120, which subsequently turns on the NPN transistor T1131. Furthermore, the collector of the NPN transistor T1131 is coupled to the base of the PNP transistor T2132, which turns on the PNP transistor T2132. The collector current of the NPN transistor T1131 equals the current gain of T1131 (β1) times the base current of the transistor T1131. The current gain β1 is dependent on the geometrical dimensions and the doping levels in the base and emitter of the NPN transistor T1131. Likewise, a current gain β2 is dependent on the geometrical dimensions and the doping level of the PNP transistor T2132.
As such, once the NPN transistor T1131 is turned on, the T1131 collector provides the base current to the PNP transistor T2132. Therefore, the base current of the PNP transistor T2132 is greater than the base current of the NPN transistor T1131. Moreover, the current gain β2 of the PNP transistor T2132 is realized as the T2132 collector current, which is then fed back to the base of the NPN transistor T1131, thereby amplifying the base current of the NPN transistor T1131. This amplification of the base currents in the SCR 102 progressively continues to increase in a loop between both transistors T1131 and T2132. Therefore, the conduction in a turned on SCR is also called a "regenerative process".
The SCR 102 becomes highly conductive and sustains the current flow with a very small voltage drop between the anode and cathode (typically, 1-2V). Accordingly, once the SCR 102 is turned on, the current from the ESD event passes from anode 122 to the grounded cathode 124. As such, the SCR 102 protects the remaining portion of the IC circuitry 100. Once the ESD event has been discharged from the anode 122 to the cathode 124, the SCR 102 turns off because it cannot sustain its regenerative conduction mode.
It is critical to discharge the ESD event as quickly as possible to prevent damage to the circuitry of the IC, as well as to the protective SCR itself. In the above prior art LVTSCR, the NMOS transistor 105 is integrated within the SCR 102. The N+ region diffusion 110 inserted as an integrated trigger means is disadvantageous due to the excessive base widths of the NPN transistor T1131 and the PNP transistor T2132. Therefore, the large lateral T1 and T2 transistor dimensions, due to the insertion of the N+ diffusion and the high recombination of charge carriers, results in slow SCR triggering. In particular, the N+ region 110 ("trigger diffusion region"), which is also part of the base of the PNP transistor T2132, deteriorates the current gain of this part of T2132. That is, since the N-well region 104 has the higher doped N+ region 110 disposed therein, the overall current gain β2 of the transistor T2132 is reduced, which may impede (e.g., delay or prevent) the SCR 102 from triggering during an ESD event. Therefore, there is a need in the art for a fast triggering SCR protection device having a reliable and controllable triggering mechanism.
The disadvantages heretofore associated with the prior art are overcome by the present invention of a silicon controlled rectifier electrostatic discharge protection circuit with external on-chip triggering and compact internal dimensions for fast triggering. The ESD protection circuit includes a silicon controlled rectifier (SCR) having an anode coupled to the protected circuitry and a cathode coupled to ground, where the cathode has at least one high-doped region. At least one trigger-tap is disposed proximate to the at least one high-doped region and an external on-chip triggering device is coupled to the trigger-tap and the protected circuitry.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures.
The process steps and structures described below do not form a complete process flow for manufacturing integrated circuits (ICs). The present invention can be practiced in conjunction with integrated circuit fabrication techniques currently used in the art, and only so much of the commonly practiced process steps are included as are necessary for an understanding of the present invention. The figures representing cross-sections and layouts of portions of an IC during fabrication are not drawn to scale, but instead are drawn so as to illustrate the important features of the invention. Furthermore, where possible, the figures illustratively include a schematic diagram of the circuitry (e.g., an SCR circuit) as related to the P and N-type doped regions of the integrated circuit.
The present invention is described with reference to CMOS devices. However, those of ordinary skill in the art will appreciate that selecting different dopant types and adjusting concentrations allows the invention to be applied to NMOS, PMOS, and other processes that are susceptible to damage caused by ESD.
Referring to the schematic diagram A of
A first node 134 includes the base of the PNP transistor T2232, the other side of the resistor RB2 242, and the collector of a NPN transistor T1231. Additionally, the collector of the PNP transistor T2232 is connected to a second node 136, which is also connected to the base of the NPN transistor T1231, as well as to one side of a resistor RB1 241, and into the trigger 205 (discussed below). The other side of resistor RB1 241 is connected to a third node 124, which is grounded and serves as the cathode. The resistor RB1 241 represents a substrate resistance in a base of a transistor T1231 of the SCR 202, which is discussed in further detail below. Furthermore, the emitter of the PNP transistor T1231 is also connected to the grounded third node 124, which functions as a cathode.
The triggering device 205 in the schematic diagram A includes a NMOS transistor 206, where the gate is connected to the source and an external resistor 210. Specifically, the drain of the NMOS transistor 206 is coupled to the pad 148, the gate connected to the source to turn off any MOS current, and the source and the gate of the NMOS transistor 206 are coupled to the second node 136 in the SCR 202. Furthermore, the resistor 210 is coupled to the second node 136 on one end, and to the third node 124 on the other end. That is, the resistor 210 is external to the SCR transistors T1231 and T2232, and is provided in parallel to the intrinsic resistance RB1 241 of the P-substrate 103 when no P-well is present, or the P-well 104. The resistor 210 is selected with a resistance value that is lower than the inherent base resistance RB1 241, and serves as a shunt resistor for directing small amounts of current to ground. Therefore, resistor 210 provides a path for undesirable leakage currents between the source of the trigger device 205 and ground, which otherwise might unintentionally trigger the SCR 202. Furthermore, as recognized by those skilled in the art, the resistor 210 will control the so-called holding current of the SCR.
The remaining three schematics depicted in diagrams B-D of
The coupled trigger NMOS transistor 206 (as shown in the schematics of
Furthermore, a person skilled in the art for which this invention pertains will understand that a PMOS triggered SCR ESD protection device may also be utilized. For example,
The illustrative schematic diagram in
The P-well 306 has an intrinsic resistance, which is observed as the well/substrate or as the base resistance RB1 241 of the NPN transistor T1231. The well/substrate resistance RB1 241 appears between the substrate-tie 125 (which includes the P+ region 314) and the intrinsic base node of transistor T1231. Likewise, the N-well 304 has an intrinsic resistance, which is observed as the base resistance RB2 242 of the PNP transistor T2232. The N-well or base resistance RB2 242 appears between the intrinsic base node of transistor T2232 and an optional N-well tie (not shown in
Shallow trench isolation (STI) is used to separate regions that will receive high doping (e.g., regions 308, 312, and 314) as illustrated in FIG. 6. In particular, trenches are etched in specific areas, and an insulator material (e.g., silicon dioxide (SiO2)) is illustratively deposited. The regions 308 and 312 may also be separated by other techniques known in the art, which are beneficial to the SCR operation.
N+ and P+ implant and annealing steps are conducted after the STI region formations to form the high-doped N+ and P+ regions, respectively. The implantations are done through separate photo masks for the N+ and P+ to allow the dopands to penetrate only into the dedicated regions of the IC 200.
Furthermore, a silicide layer 318 is formed over the N+ region 312 and P+ regions 308 and 314. In particular, a conductive layer (e.g., using cobalt, titanium, and the like) is formed on the surface of the IC 200. A silicide blocking-mask is provided to block unwanted silicide layers over certain areas of the IC. The silicide layers 318 serve as a conductive material respectively between each metal contact 121A, 121C, and 121S (collectively metal contacts 121) at the anode 122, cathode 124, and substrate-tie 125. By using the silicide layers 318 only in certain parts of region 308 (for the anode 122) and region 312 (for the cathode 124), the risks of a shorting between the anode 122 and the surface of region 320N, and between the cathode 124 and the surface of region 320P (e.g., from thermal and mechanical stresses) is greatly reduced.
Specifically, looking from left to right in
Each of the high-doped regions (i.e., N+ region 312, and P+ regions 308 and 314) has a depth having a value "Xj", which is defined by the underlying semiconductor technology. In one embodiment, the depth Xj is in the range of 0.1 to 0.3 microns. Additionally, the distance from the silicided anode to the anode edge 311 has a length "Aj". Likewise, the distance from the silicided cathode 124 to the cathode edge 313 has a length "Cj". The lengths Aj and Cj are maintained within a particular range to reduce the possible detrimental impact of mechanical stress during the formation of the silicide 318, which could later lead to increased leakage currents. In particular, the physical lengths Aj and Cj are proportionally based on the height Xj of the P+ and N+ doped regions 308 and 312. The lengths Aj and Cj are in the range of two to five times the depth of the doped regions, where Aj and Cj are approximately equal. That is, Aj and Cj have values approximately in the range of 2Xj to 5 Xj. Preferably, the distance from the silicided anode to the anode edge Aj and distance from the silicided cathode to the cathode edge Cj is equal to approximately three times the height Xj of the doped regions 308 and 312. By maintaining such distances between the anode 122 and junction 307, as well as the cathode 124 and junction 307, the probability of stress related leakage currents and shorting of the silicide layers 318 is greatly reduced.
One objective of the present invention is to increase the speed in which the SCR 202 turns on. Recall that in the prior art, the N+ doped region 110 reduced the gain of the PNP transistor of the SCR because of the high recombination of the hole-electron pairs. Decreasing the turn on time of the SCR 202 is realized by two particular differences over the prior art. The first difference is a reduction in the size of the respective base regions of the transistors T1231 and T2232 in the SCR 202. The dimensions WP and WN in
The SCR turn on time (SCRTon) is proportionally related to the combined base widths of each SCR transistor T1231 and T2232. In particular, the turn on time Ton1 for the NPN transistor T1231 is proportionally related to the square of the base width WP of the NPN transistor T1231. Likewise, the turn on time Ton2 for the PNP transistor T2232 is proportional to the square of the base width WN of the PNP transistor T2232. As such, the turn on time of the SCRTon =((Ton1)2+(Ton2)2)1/2. Accordingly, since the base widths have been reduced compared to the prior art, the turn on time SCRTon has also been reduced.
The second difference over the prior art is the eliminated second N+ region 110. This reduces the overall doping level of the transistor T2232 base (N-well 304). As such, the N-well 304, in the embodiment of
Referring to
The cross-sectional view in
In particular,
Referring to
The cathode 124 is formed from N+ regions 3121 through 312m (collectively N+ region 312). A plurality of metal contacts 121C connects the cathode 124 to ground. A portion of each (interspersed) N+ region 312m beneath the metal contacts 121C is covered by a corresponding silicide layer (e.g., silicide layers 318C-1 and 318C-m) as discussed above in reference to FIG. 3. Furthermore, the distance Cj is also shown in FIG. 4.
Disposed in the vicinity of the N+ regions 312 is a trigger tap 401. The trigger tap 401 is formed by a P+ region 402 having a silicide layer 418T disposed over a portion of the P+ region 402, and one or more metal contacts 121T disposed over the silicide layer 418T. Furthermore, the illustrative trigger tap 401 may be one of a plurality of trigger taps, with a P-well spacing 404 defined therebetween.
Specifically, the P+ region 402 of the trigger tap 401 is disposed in close proximity to the N+ regions 312. Preferably, the trigger tap 401 is also aligned with the N+ regions 312. By disposing the trigger tap 401 in close proximity to the N+ regions 312, the base resistance from the trigger tap to the intrinsic base node of the NPN transistor T1231 is reduced. The P-well spacing 404 is defined by the P-well material 306 and is preferably minimal in size. The P+ region 402 of the trigger tap 401, combined with the adjacent P-well spacing 404 and the N+ regions 312 together form a diode, which is forward biased when a positive voltage appears on the P+ region 402. In particular, the triggering device 105 acts as a current source at the base of the NPN transistor T1231, by injecting majority carriers (holes) into the P-type base material, which forward biases the base-emitter (P-well spacing/region 404/306 and N+ 312) of the NPN transistor T1231. Furthermore, for normal circuit operation (i.e. no ESD event), the close proximity of the trigger tap 401 to the SCR 202 and the N+ emitter regions 312 of the SCR 202 is advantageous as will be described in hereafter. Unintended triggering of an SCR by certain circuit over-voltage conditions is known to disrupt the circuit (e.g., cause a Latch-Up condition). As the trigger tap is grounded through the shunt resistor 210, the p-well 306 of the SCR receives additional coupling to ground, which will prevent Latch-Up.
The STI regions 316 circumscribe the SCR 202 and the trigger device 205 such that the anode 122, cathode 124, and portions of the SCR 202 therebetween are not covered with the STI material as discussed above with regard to FIG. 3. In particular, the doped P+ region 308, intermittent N+ regions 312, the surface area 309 between the P+ and N+ doped regions 308 and 312, the trigger taps 401, and the P-well spacing 404 do not have any STI 316 disposed thereupon in this preferred embodiment. However, the P-well spacing 404 may also be covered with STI as only negligible influence on the diodes (402-404-312) takes place. As such, the combination of the area-reduced layout from omitting the N+ region 110 and the gate 126, and the trigger taps 401 introduced in-line with the N+ regions 312 (emitter of the NPN transistor T1231) results in faster triggering of the SCR 202 of the present invention.
In the embodiment shown in
In one embodiment, the triggering device 205 is illustratively the NMOS transistor 206. Referring to the schematic diagram A of
The resistor 210 has a selected resistance value in the range of 100 Ohms to 2000 Ohms, which is substantially lower than the inherent resistance of the P-substrate 302 and P-well 306. The latter may be in a range of several kilo Ohms depending on the location of the P+ substrate ties 125. As such, those skilled in the art will appreciate that resistor 210 can easily control the total resistance to ground, and thus control triggering and holding current of the SCR. Furthermore, any leakage currents from the trigger device 205 are shunted to ground via the path through this resistor. In one embodiment, the resistor 210 is fabricated from a silicide-blocked poly-silicon, because the poly-silicon sheet resistance value allows easy dimensioning of the desired resistor value and because the poly-silicon resistor 210 is completely isolated from the substrate 30 by the STI. Moreover, those skilled in the art will understand that any other resistive material that is available in the IC manufacturing process may used as well.
In the illustrative embodiment shown in
In operation, the trigger current is provided by the external NMOS trigger device 205, and is injected into the trigger taps 401 of the SCR 202. Specifically, the external triggering current is provided from the source of the NMOS trigger device 205, which goes into breakdown, and subsequently into snapback. The NMOS trigger device 205 ensures a low trigger voltage of the ESD protection element, since the trigger voltage is determined by the drain-substrate breakdown voltage (e.g., 8 volts) of the NMOS transistor 206, and not by the intrinsically high breakdown voltage of the SCR 202 (in the range of 15 to 25V). The trigger current is injected as a base current into the base of the NPN transistor T1231. As such, the inventive embodiment, as shown in
As discussed above, the inventive trigger device 205 and SCR 202 are respectively depicted as a NMOS triggering device. However, one skilled in the art will recognize that a PMOS triggered SCR structure for ESD protection may be utilized. For purposes of completeness of illustrating the present invention,
In normal operation of the IC, the PMOS gate is tied high together with the PMOS source through the external resistor 210 such that no MOS-current will flow through the source to drain channel. When a positive ESD event with an excessive voltage occurs at the pad, an avalanche breakdown occurs between the drain and the N-well junction above a predetermined threshold voltage (e.g., 8 to 10 volts), and the PMOS transistor will operate as a parasitic, lateral PNP transistor. Consequently, current will flow through the PMOS device and the voltage across the source and drain terminals will drop to a lower value. The gate G2 (schematic drawing E in
Moreover, the respective base widths WN and WP of the transistors T2232 and T1231 are determined by the length of the STI region 616. In particular, during manufacturing of the IC 200, the STI material is selectively deposited over the SCR 202. Thereafter, the P+ and N+ doped regions 308, 312, and 314 and respective silicide layers 618A, 618C, and 618S are formed. As discussed with regard to the embodiment of
Furthermore, by utilizing a triggering device 205, which is also fully silicided and covered with the STI, wafer processing costs may be reduced because the additional and costly procedure of silicide blocking is not required. In particular, a back-end-ballasted, NMOS (BEBNMOS) device may be used as triggering device. Such BEBNMOS device is disclosed in US application S/N 09/583/141, entitled "Apparatus For Current Ballasting ESD Sensitive Devices", filed May 30, 2000, and is incorporated by reference herein in its entirety.
Referring to
A single vertically meandering strip 730 illustratively connects to a common terminal 732D to the drain region of the device 705. Following the path of the strip 730 and starting at the external common terminal 732D, the strip 730 includes a metal contact 7341, down to a segment of polysilicon 736, up to a second metal contact 7342, to a first metal layer 738, to a first via 740, to a segment of a second metal layer 742, to a second via 744, and to a segment of a third metal layer 746. The segment of the third metal layer 746 is connected to a second segment of the polysilicon layer 736 through a series connection of a via, a segment of the second metal layer 742, another via, a segment of the first metal layer 738, and another metal contact. This second segment of polysilicon is connected to a second segment of the third metal layer 746 through a metal contact, a segment of the first metal layer 738, a via, a segment of the second metal layer 742, and another via. Finally, in this exemplary embodiment, the second segment of the third metal layer 746 is connected to the drain region 714 of the ESD device 705 through a series connection of a via, a segment of the second metal layer 742, another via, a segment of a the first metal layer 738, and a connecting metal contact 748.
In the exemplary embodiment of the BEBNMOS triggering device 705, the first, second, and third metal layers 738, 742, and 746 may be fabricated from aluminum or copper films and the vias and connecting metal contact may be tungsten plugs or copper. These series connections form the ballasting resistor 730. In this embodiment, each of the vias and the metal contact adds a significant resistance (e.g., 5 to 10 ohms in advanced deep sub-micron technologies) and each of the segments of the polysilicon layers 736 add a significant resistance (e.g., 40 to 80 ohms in advanced deep sub-micron technologies) to the ballasting resistor 730. Each of the other layers also adds resistance to the ballasting resistor 730. However, the resistance of the metal layers 738, 742, and 746 is negligible as compared to the combined resistance of the polysilicon layers 736, the connecting metal contacts 734, and the vias 740.
Furthermore, a similar ballasting resistor 731 is formed over the source 716 of the BEBNMOS triggering device 705. However, the resistance is typically less than the resistance at the drain 714. In particular, less metal layer segments 738, 742, and 746, vias 740, polysilicon layer segments 736 and metal contacts 734 are utilized. Moreover, one skilled in the art will recognize that a satisfactory ballasting resistor may be fabricated using more or fewer layers and/or more or fewer meanders.
The remaining circuitry of the BEBNMOS triggered SCR ESD protection device 800 is the same as described with regard to the embodiment in FIG. 6. As such, BEBNMOS trigger 705 and SCR 602 of the ESD protection device 800 have the STI 316 disposed over the entire surface area of the SCR, except for the high-doped anode 122, cathode 124, substrate ties 125, and trigger tap 401 regions 308, 312, 314, and 402, respectively, that are fully silicided.
The embodiments depicted in
Although various embodiments that incorporate the teachings of the present invention have been shown and described in detail herein, those skilled in the art can readily devise many other varied embodiments that still incorporate these teachings.
Avery, Leslie R., Armer, John, Russ, Christian C., Verhaege, Koen G. M., Mergens, Markus P. J.
Patent | Priority | Assignee | Title |
10181464, | Sep 27 2013 | Sofics BVBA | Semiconductor device for electrostatic discharge protection |
7106562, | Apr 19 2002 | Kabushiki Kaisha Toshiba | Protection circuit section for semiconductor circuit system |
7202532, | Jan 17 2003 | Micronas GmbH | Integrated circuit |
7408754, | Nov 18 2004 | Altera Corporation | Fast trigger ESD device for protection of integrated circuits |
7541648, | Jan 21 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Electrostatic discharge (ESD) protection circuit |
7576961, | Dec 14 2004 | Electronics and Telecommunications Research Institute | Electrostatic discharge protection circuit using triple welled silicon controlled rectifier |
7589944, | Mar 16 2001 | Sofics BVBA | Electrostatic discharge protection structures for high speed technologies with mixed and ultra-low voltage supplies |
7709896, | Mar 08 2006 | Infineon Technologies AG | ESD protection device and method |
7719870, | Feb 01 2002 | Hitachi, Ltd. | Storage device |
7732834, | Jan 26 2007 | Infineon Technologies AG | Semiconductor ESD device and method of making same |
7763908, | Jul 25 2005 | Bell Semiconductor, LLC | Design of silicon-controlled rectifier by considering electrostatic discharge robustness in human-body model and charged-device model devices |
7773356, | Mar 19 2008 | Semiconductor Components Industries, LLC | Stacked SCR with high holding voltage |
7773442, | Jun 25 2004 | Infineon Technologies LLC | Memory cell array latchup prevention |
7943438, | Feb 14 2008 | GLOBALFOUNDRIES Inc | Structure and method for a silicon controlled rectifier (SCR) structure for SOI technology |
7985983, | Jan 26 2007 | Infineon Technologies AG | Semiconductor ESD device and method of making same |
8045410, | Jun 25 2004 | Infineon Technologies LLC | Memory cell array |
8253203, | Jan 21 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Electrostatic discharge (ESD) protection circuit |
8283698, | Apr 15 2009 | Sofics BVBA | Electrostatic discharge protection |
8384125, | Feb 14 2008 | GLOBALFOUNDRIES U S INC | Structure and method for a silicon controlled rectifier (SCR) structure for SOI technology |
8493804, | Jun 25 2004 | Infineon Technologies LLC | Memory cell array latchup prevention |
8837245, | Jun 25 2004 | Infineon Technologies LLC | Memory cell array latchup prevention |
9685431, | Sep 27 2013 | Sofics BVBA | Semiconductor device for electrostatic discharge protection |
9842629, | Jun 25 2004 | Infineon Technologies LLC | Memory cell array latchup prevention |
Patent | Priority | Assignee | Title |
5262344, | Apr 27 1990 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | N-channel clamp for ESD protection in self-aligned silicided CMOS process |
5276582, | Aug 12 1992 | National Semiconductor Corporation | ESD protection using npn bipolar transistor |
5311391, | May 04 1993 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD ; AVAGO TECHNOLOGIES GENERAL IP PTE LTD | Electrostatic discharge protection circuit with dynamic triggering |
5404041, | Mar 31 1993 | Board of Trustees of the University of Illinois, The | Source contact placement for efficient ESD/EOS protection in grounded substrate MOS integrated circuit |
5465189, | Mar 05 1990 | Texas Instruments Incorporated | Low voltage triggering semiconductor controlled rectifiers |
5498892, | Sep 29 1993 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Lightly doped drain ballast resistor |
5502317, | Jul 14 1993 | Texas Instruments Incorporated | Silicon controlled rectifier and method for forming the same |
5594611, | Jan 12 1994 | LSI Logic Corporation | Integrated circuit input/output ESD protection circuit with gate voltage regulation and parasitic zener and junction diode |
5602404, | Jan 18 1995 | National Semiconductor Corporation | Low voltage triggering silicon controlled rectifier structures for ESD protection |
5615073, | Jun 22 1995 | National Semiconductor Corporation | Electrostatic discharge protection apparatus |
5640299, | Mar 28 1991 | Texas Instruments Incorporated | Electrostatic discharge protection in integrated circuits, systems and methods |
5675469, | Jul 12 1995 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Integrated circuit with electrostatic discharge (ESD) protection and ESD protection circuit |
5708288, | Nov 02 1995 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Thin film silicon on insulator semiconductor integrated circuit with electrostatic damage protection and method |
5754380, | Apr 06 1995 | Transpacific IP Ltd | CMOS output buffer with enhanced high ESD protection capability |
5856214, | Mar 04 1996 | Winbond Electronics Corp. | Method of fabricating a low voltage zener-triggered SCR for ESD protection in integrated circuits |
5870268, | Oct 22 1997 | Winbond Electronics Corp. | Early trigger of ESD protection device by a current spike generator |
5907462, | Sep 07 1994 | Texas Instruments Incorporated | Gate coupled SCR for ESD protection circuits |
5945714, | Apr 03 1997 | Winbond Electronics Corporation | Lateral silicon-controlled rectifier for electrostatic discharge protection |
5962876, | Apr 06 1998 | Winbond Electronics Corporation | Low voltage triggering electrostatic discharge protection circuit |
6004838, | Jun 11 1996 | Round Rock Research, LLC | ESD protection using selective siliciding techniques |
6034388, | May 15 1998 | International Business Machines Corporation | Depleted polysilicon circuit element and method for producing the same |
6130117, | Dec 17 1996 | Bell Semiconductor, LLC | Simple bicmos process for creation of low trigger voltage SCR and zener diode pad protection |
6172404, | Oct 31 1997 | Texas Instruments Incorporated | Tuneable holding voltage SCR ESD protection |
20020041007, | |||
EP803955, | |||
JP11204737, | |||
WO9804001, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 05 2001 | Sarnoff Corporation | (assignment on the face of the patent) | / | |||
Nov 05 2001 | Sarnoff Europe | (assignment on the face of the patent) | / | |||
Aug 26 2002 | ARMER, JOHN | Sarnoff Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013370 | /0719 | |
Aug 26 2002 | MERGENS, MARKUS P J | Sarnoff Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013370 | /0719 | |
Aug 26 2002 | VERHAEGE, KOEN G M | Sarnoff Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013370 | /0719 | |
Aug 26 2002 | RUSS, CHRISTIAN C | Sarnoff Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013370 | /0719 | |
Aug 26 2002 | AVERY, LESLIE R | Sarnoff Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013370 | /0719 | |
Sep 05 2002 | VERHAEGE, KOEN G M | Sarnoff Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013383 | /0743 | |
Sep 05 2002 | VERHAEGE, KOEN G M | Sarnoff Europe | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013383 | /0743 | |
Apr 17 2007 | Sarnoff Corporation | Sarnoff Europe | ASSIGNMENT OF UNDIVIDED ONE-HALF RIGHT, TITLE AND INTEREST | 019204 | /0304 | |
Jun 23 2009 | Sarnoff Corporation | Sarnoff Europe BVBA | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022938 | /0643 | |
Jul 08 2009 | Sarnoff Europe | Sofics BVBA | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 022994 | /0903 |
Date | Maintenance Fee Events |
Mar 14 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 24 2008 | REM: Maintenance Fee Reminder Mailed. |
Mar 14 2012 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 14 2016 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 14 2007 | 4 years fee payment window open |
Mar 14 2008 | 6 months grace period start (w surcharge) |
Sep 14 2008 | patent expiry (for year 4) |
Sep 14 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 14 2011 | 8 years fee payment window open |
Mar 14 2012 | 6 months grace period start (w surcharge) |
Sep 14 2012 | patent expiry (for year 8) |
Sep 14 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 14 2015 | 12 years fee payment window open |
Mar 14 2016 | 6 months grace period start (w surcharge) |
Sep 14 2016 | patent expiry (for year 12) |
Sep 14 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |