fluid-based switches are disclosed. In one embodiment, the switch comprises first and second mated substrates defining therebetween at least portions of a number of cavities, the first substrate defining a plurality of indentations defined within a first one of the cavities, a plurality of electrical contacts, each electrical contact deposited within one of the indentations, a switching fluid, held within the first cavity, that serves to open and close at least a pair of the plurality of electrical contacts in response to forces that are applied to the switching fluid, and an actuating fluid, held within one or more of the cavities, that applies the forces to the switching fluid.
|
21. A switch, comprising:
first and second mated substrates defining therebetween at least portions of a number of cavities; a switching fluid, held within one or more of the cavities, that is movable between at least first and second switch states in response to forces that are applied to the switching fluid; and a plurality of seal belts deposited within indentations on one of the substrates at a location within one or more of the cavities holding the switching fluid.
1. A switch comprising:
first and second mated substrates defining therebetween at least portions of a number of cavities, the first substrate defining a plurality of indentations defined within a first one of the cavities; a plurality of electrical contacts, each electrical contact deposited within one of the indentations; a switching fluid, held within the first cavity, that serves to open and close at least a pair of the plurality of electrical contacts in response to forces that are applied to the switching fluid; and an actuating fluid, held within one or more of the cavities, that applies the forces to the switching fluid.
11. A switch comprising:
first and second mated substrates defining therebetween at least portions of a number of cavites, at least one of the substrates defining a plurality of indentations defined within a first one of the cavities; a plurality of wettable pads, each wettable pad deposited within one of the indentations; a switching fluid, wettable to said pads and held within the first cavity, that serves to open and block light paths through the first cavity in response to forces that are applied to the switching fluid; and an actuating fluid, held within one or more of the cavities, that applies the forces to said switching fluid.
2. The switch of
3. The switch of
9. The switch of
10. The switch of
12. The switch of
13. The switch of
19. The switch of
20. The switch of
24. The switch of
|
Liquid metal micro switches (LIMMS) have been made that use a liquid metal, such as mercury, as the switching fluid. The liquid metal may make and break electrical contacts. To change the state of the switch, a force is applied to the switching fluid, which causes it to change form and move. If the adhesion between the electrical contacts and the substrate is poor, the moving switching fluid can sometimes lift the edges of the contacts and cause them to delaminate from the underlying substrate, damaging the switch.
Fluid-based switches are disclosed. In one embodiment, the switch comprises a first substrate and a second substrate mated together. Defined between the substrates are a number of cavites. Additionally, the first substrate defines a plurality of indentations within a first one of the cavities. A plurality of electrical contacts are each deposited within one of the indentations. Held within the first cavity is a switching fluid that serves to open and close at least a pair of the plurality of electrical contacts in response to forces that are applied to the switching fluid. The switch also includes an actuating fluid, held within one or more of the cavities, that applies the forces to the switching fluid.
In another embodiment, the switch comprises first and second substrates mated together so that a number of cavities are defined between the substrates. The first substrate additionally defines a plurality of indentations within a first one of the cavities. A plurality of wettable pads are each deposited within one of the indentations. Held within the first cavity is a switching fluid that is wettable to the pads. The switching fluid serves to open and block light paths through the first cavity in response to forces that are applied to the switching fluid. An actuating fluid, held within one or more of the cavities, applies the forces to the switching fluid.
Illustrative embodiments of the invention are illustrated in the drawings in which:
FIG. 6. illustrates a plan view of a third exemplary embodiment of a switch having indentations; and
The indentations 102-106 recede the wettable pads 112-116 from the surface of the substrate 100. As will be described in further detail below, the substrate may be used in a fluid-based switch that uses a switching fluid to change the state of the switch. Creating indentations on the substrate 100 that recede the wettable pads 112-116 from the surface of the substrate may help prevent the switching fluid from lifting the edge of the wettable pads during a switch state change.
The second layer defines a plurality of ducts 214, 216, 218 that lead from the electrical contacts 222, 224, 226 to a surface of the second layer 203 opposite the electrodes 222, 224, 226. The ducts comprise a bell shape, with the openings of the ducts at the electrodes being wider than the openings of the ducts at the opposite surface of the second layer. The bell shape may have a variety of profiles and may be formed, for example, by masking the second layer and then sandblasting the bell shape(s) into the second layer. Indentations 204, 206, 208 defined by the second layer may be used to recede the openings of the ducts from the surface of the second layer. The indentations have a diameter larger than that of the ducts at the surface of the second layer.
Liquid electrodes (e.g., mercury electrodes) 234, 236, 238 fill at least a portion of each of the ducts. The walls of the ducts may be lined with a wettable material to help the liquid electrodes 234, 236, 238 wet to the ducts. The indentations may also be lined with a wettable material so that a switching fluid used in a fluid-based switch may wet to the indentations. The shape of the ducts 214, 216, 218 may cause the liquid electrodes 234, 236, 238 deposited within each of the ducts to remain within their respective ducts as a switching fluid makes and breaks connections between the electrical contacts 222, 224, 226. The indentations 204, 206, 208 provide a greater contact area for the liquid electrodes 234, 236, 238, and the recessed edges of the indentations may help prevent the wettable linings from lifting their edges and moving out of the indentations.
In one embodiment of the switch 400, the forces applied to the switching fluid 418 result from pressure changes in the actuating fluid 410. The pressure changes in the actuating fluid 410 impart pressure changes to the switching fluid 418, and thereby cause the switching fluid 418 to change form, move, part, etc. In
The indentations 102-106 recede the electrical contacts 112-116 from the surface of the substrate 100. This may help prevent the switching fluid from lifting the edge of the electrical contacts during a switch state change.
By way of example, pressure changes in the actuating fluid 410 may be achieved by means of heating the actuating fluid 410, or by means of piezoelectric pumping. The former is described in U.S. Pat. No. 6,323,444 of Kondoh et al. entitled "Electrical Contact Breaker Switch, Integrated Electrical Contact Breaker Switch, and Electrical Contact Switching Method", which is hereby incorporated by reference for all that it discloses. The latter is described in U.S. patent application Ser. No. 10/137,691 of Marvin Glenn Wong filed May 2, 2002 and entitled "A Piezoelectrically Actuated Liquid Metal Switch", which is also incorporated by reference for all that it discloses. Although the above referenced patent and patent application disclose the movement of a switching fluid by means of dual push/pull actuating fluid cavities, a single push/pull actuating fluid cavity might suffice if significant enough push/pull pressure changes could be imparted to a switching fluid from such a cavity. Additional details concerning the construction and operation of a switch such as that which is illustrated in
A second exemplary embodiment of a switch will now be described with reference to FIG. 5. The switch 500 comprises a first substrate 100 and a second substrate 502 mated together. The substrates 100 and 502 define between them a number of cavities 506, 508, 510. Exposed within one or more of the cavities are a plurality of wettable pads 112-116. A switching fluid 518 (e.g., a liquid metal such as mercury) is wettable to the pads 112-116 and is held within one or more of the cavities. The switching fluid 518 serves to open and block light paths 522/524, 526/528 through one or more of the cavities, in response to forces that are applied to the switching fluid 518. By way of example, the light paths may be defined by waveguides 522-528 that are aligned with translucent windows in the cavity 508 holding the switching fluid. Blocking of the light paths 522/524, 526/528 may be achieved by virtue of the switching fluid 518 being opaque. Indentations 102-106 recede the wettable pads 112-116 from the surface of the substrate 100 which may help prevent the switching fluid from lifting the edge of the pad during a switch state change. An actuating fluid 520 (e.g., an inert gas or liquid) held within one or more of the cavities serves to apply the forces to the switching fluid 518.
Additional details concerning the construction and operation of a switch such as that which is illustrated in
Portions on one of the substrates 602, 604 may be metallized for the purpose of creating "seal belts" 612, 614, 616. The creation of seal belts 612-616 within a cavity holding switching fluid 618 provides additional surface areas to which the switching fluid 618 may wet. This not only helps in latching the various states that a switching fluid can assume, but also helps to create a sealed chamber from which the switching fluid cannot escape, and within which the switching fluid may be more easily pumped (i.e., during switch state changes).
The seal belts 612-616 may be each deposited in an indentation on one of the substrates 602, 604. The indentations recede the seal-belts from the surface of the substrate. This may help prevent the switching fluid 618 from lifting the edge of the seal belts during a change of state of the switch.
The switch additionally includes wettable pads (possibly serving as electrical contacts) 606, 608, 610. The wettable pads are also deposited in indentations on one of the substrates 602. It should be appreciated that in alternate embodiments, the wettable pads may be deposited on a flat surface of the substrate 602 and the substrate may not include the indentations for the wettable pads.
While illustrative and presently preferred embodiments of the invention have been described in detail herein, it is to be understood that the inventive concepts may be otherwise variously embodied and employed. The appended claims are intended to be construed to include such variations, except as limited by the prior art.
Patent | Priority | Assignee | Title |
7449649, | May 23 2006 | WSOU Investments, LLC | Liquid switch |
7554046, | May 23 2006 | WSOU Investments, LLC | Liquid switch |
Patent | Priority | Assignee | Title |
2312672, | |||
2564081, | |||
3430020, | |||
3529268, | |||
3600537, | |||
3639165, | |||
3657647, | |||
3955059, | Aug 30 1974 | Electrostatic switch | |
4103135, | Jul 01 1976 | International Business Machines Corporation | Gas operated switches |
4158118, | Aug 30 1974 | Electrostatic switch | |
4200779, | Sep 06 1977 | Moscovsky Inzhenerno-Fizichesky Institut | Device for switching electrical circuits |
4238748, | May 27 1977 | COMPAGNIE DE CONSTRUCTIONS ELECTRIQUES ET ELECTRONIQUES CCEE | Magnetically controlled switch with wetted contact |
4245886, | Sep 10 1979 | International Business Machines Corporation | Fiber optics light switch |
4336570, | May 09 1980 | FLOWIL INTERNATIONAL HOLDING B V | Radiation switch for photoflash unit |
4419650, | Aug 23 1979 | Georgina Chrystall, Hirtle | Liquid contact relay incorporating gas-containing finely reticular solid motor element for moving conductive liquid |
4434337, | Jun 26 1980 | W. G/u/ nther GmbH | Mercury electrode switch |
4475033, | Mar 08 1982 | Nortel Networks Limited | Positioning device for optical system element |
4505539, | Sep 30 1981 | Siemens Aktiengesellschaft | Optical device or switch for controlling radiation conducted in an optical waveguide |
4582391, | Mar 30 1982 | AMPHENOL CORPORATION, A CORP OF DE | Optical switch, and a matrix of such switches |
4628161, | May 15 1985 | Distorted-pool mercury switch | |
4652710, | Apr 09 1986 | The United States of America as represented by the United States | Mercury switch with non-wettable electrodes |
4657339, | Feb 26 1982 | U.S. Philips Corporation | Fiber optic switch |
4742263, | Aug 15 1987 | PACIFIC BELL, 140 NEW MONTGOMERY STREET, SAN FRANCISCO, CA 94105, A CA CORP | Piezoelectric switch |
4786130, | May 29 1985 | GENERAL ELECTRIC COMPANY, P L C , THE, A BRITISH COMPANY | Fibre optic coupler |
4797519, | Apr 17 1987 | Mercury tilt switch and method of manufacture | |
4804932, | Aug 22 1986 | NEC Corporation | Mercury wetted contact switch |
4988157, | Mar 08 1990 | TTI Inventions A LLC | Optical switch using bubbles |
5278012, | Mar 29 1989 | Hitachi, Ltd. | Method for producing thin film multilayer substrate, and method and apparatus for detecting circuit conductor pattern of the substrate |
5415026, | Feb 27 1992 | Vibration warning device including mercury wetted reed gauge switches | |
5502781, | Jan 25 1995 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Integrated optical devices utilizing magnetostrictively, electrostrictively or photostrictively induced stress |
5644676, | Jun 23 1994 | Instrumentarium Oy; Vaisala Oy | Thermal radiant source with filament encapsulated in protective film |
5675310, | Dec 05 1994 | General Electric Company | Thin film resistors on organic surfaces |
5677823, | May 06 1993 | Cavendish Kinetics Ltd. | Bi-stable memory element |
5751074, | Sep 08 1995 | Edward B. Prior & Associates | Non-metallic liquid tilt switch and circuitry |
5751552, | May 30 1995 | Freescale Semiconductor, Inc | Semiconductor device balancing thermal expansion coefficient mismatch |
5828799, | Oct 31 1995 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD ; AVAGO TECHNOLOGIES GENERAL IP PTE LTD | Thermal optical switches for light |
5841686, | Nov 22 1996 | Super Talent Electronics, Inc | Dual-bank memory module with shared capacitors and R-C elements integrated into the module substrate |
5849623, | Dec 05 1994 | General Electric Company | Method of forming thin film resistors on organic surfaces |
5874770, | Oct 10 1996 | General Electric Company | Flexible interconnect film including resistor and capacitor layers |
5875531, | Mar 27 1995 | U S PHILIPS CORPORATION | Method of manufacturing an electronic multilayer component |
5886407, | Apr 14 1993 | Frank J., Polese; POLESE, FRANK J | Heat-dissipating package for microcircuit devices |
5889325, | Apr 24 1998 | NEC Corporation | Semiconductor device and method of manufacturing the same |
5912606, | Aug 18 1998 | Northrop Grumman Corporation | Mercury wetted switch |
5915050, | Feb 18 1994 | Gooch & Housego PLC | Optical device |
5972737, | Apr 14 1993 | Frank J., Polese | Heat-dissipating package for microcircuit devices and process for manufacture |
5994750, | Nov 07 1994 | Canon Kabushiki Kaisha | Microstructure and method of forming the same |
6021048, | Feb 17 1998 | High speed memory module | |
6180873, | Oct 02 1997 | Polaron Engineering Limited | Current conducting devices employing mesoscopically conductive liquids |
6201682, | Dec 19 1997 | U.S. Philips Corporation | Thin-film component |
6207234, | Jun 24 1998 | Vishay Vitramon Incorporated | Via formation for multilayer inductive devices and other devices |
6212308, | Aug 03 1998 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD ; AVAGO TECHNOLOGIES GENERAL IP PTE LTD | Thermal optical switches for light |
6225133, | Sep 01 1993 | NEC Corporation | Method of manufacturing thin film capacitor |
6278541, | Jan 10 1997 | Lasor Limited | System for modulating a beam of electromagnetic radiation |
6304450, | Jul 15 1999 | Molex, LLC | Inter-circuit encapsulated packaging |
6320994, | Dec 22 1999 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Total internal reflection optical switch |
6323447, | Dec 30 1998 | Agilent Technologies | Electrical contact breaker switch, integrated electrical contact breaker switch, and electrical contact switching method |
6351579, | Feb 27 1998 | Los Alamos National Security, LLC | Optical fiber switch |
6356679, | Mar 30 2000 | Emcore Corporation | Optical routing element for use in fiber optic systems |
6373356, | May 21 1999 | InterScience, Inc.; INTERSCIENCE, INC | Microelectromechanical liquid metal current carrying system, apparatus and method |
6396012, | Jun 14 1999 | BLOOMFIELD, RODGER E | Attitude sensing electrical switch |
6396371, | Feb 02 2000 | Raytheon Company | Microelectromechanical micro-relay with liquid metal contacts |
6408112, | Mar 09 1998 | BARTELS MIKROTECHNIK GMBH | Optical switch and modular switching system comprising of optical switching elements |
6446317, | Mar 31 2000 | Intel Corporation | Hybrid capacitor and method of fabrication therefor |
6453086, | Mar 06 2000 | Corning Incorporated | Piezoelectric optical switch device |
6470106, | Jan 05 2001 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Thermally induced pressure pulse operated bi-stable optical switch |
6487333, | Dec 22 1999 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Total internal reflection optical switch |
6501354, | May 21 1999 | InterScience, Inc. | Microelectromechanical liquid metal current carrying system, apparatus and method |
6512322, | Oct 31 2001 | Agilent Technologies, Inc | Longitudinal piezoelectric latching relay |
6515404, | Feb 14 2002 | Agilent Technologies, Inc | Bending piezoelectrically actuated liquid metal switch |
6516504, | Apr 09 1996 | The Board of Trustees of the University of Arkansas | Method of making capacitor with extremely wide band low impedance |
6559420, | Jul 10 2002 | Agilent Technologies, Inc. | Micro-switch heater with varying gas sub-channel cross-section |
6633213, | Apr 24 2002 | Agilent Technologies, Inc | Double sided liquid metal micro switch |
6646527, | Apr 30 2002 | Agilent Technologies, Inc | High frequency attenuator using liquid metal micro switches |
6647165, | May 31 2001 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Total internal reflection optical switch utilizing a moving droplet |
20020037128, | |||
20020146197, | |||
20020150323, | |||
20020168133, | |||
20030035611, | |||
EP593836, | |||
FR2418539, | |||
FR2458138, | |||
FR2667396, | |||
JP3618575, | |||
JP4721645, | |||
JP62276838, | |||
JP63294317, | |||
JP8125487, | |||
JP9161640, | |||
WO9946624, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 14 2003 | Agilent Technologies, Inc. | (assignment on the face of the patent) | / | |||
Apr 14 2003 | WONG, MARVIN GLENN | Agilent Technologies, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013836 | /0012 |
Date | Maintenance Fee Events |
Feb 21 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 07 2012 | REM: Maintenance Fee Reminder Mailed. |
Sep 21 2012 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 21 2007 | 4 years fee payment window open |
Mar 21 2008 | 6 months grace period start (w surcharge) |
Sep 21 2008 | patent expiry (for year 4) |
Sep 21 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 21 2011 | 8 years fee payment window open |
Mar 21 2012 | 6 months grace period start (w surcharge) |
Sep 21 2012 | patent expiry (for year 8) |
Sep 21 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 21 2015 | 12 years fee payment window open |
Mar 21 2016 | 6 months grace period start (w surcharge) |
Sep 21 2016 | patent expiry (for year 12) |
Sep 21 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |