An apparatus partially carried on and partially towed behind a railroad track mounted highway truck or box car for conveying tie plates from the truck or car for deposit in a predetermined spaced apart sequence along the bed of a railroad track as the truck or car and the apparatus move in unison along the track. A method executed by this apparatus is also disclosed.
|
1. An apparatus for depositing tie plates from a mobile railroad track mounted tie plate carrier vehicle onto and along a railroad track, said apparatus comprising:
a gravity feed roller conveyor having an upper input end mounted on the output end of the carrier vehicle for receiving a succession of tie plates thereon, said roller conveyor extending diagonally downwardly and away from the carrier vehicle such that the succession of tie plates received thereon will gravitate downwardly thereon, a lower end portion of said roller conveyor being disposed on support structure carried on railroad wheels which are adapted for movement along the track with movement of the carrier vehicle; and a device mounted over an output end portion of said roller conveyor for intercepting each of the tie plates in succession as it gravitates downwardly to a preselected position on said roller conveyor for successively discharging each of the tie plates from a lower output end of said roller conveyor onto the railroad track in a preselected spaced apart manner as a function of the movement of said railroad wheels along the railroad track.
9. A method for depositing tie plates in a spaced apart sequence along a bed of a railroad track from a mobile tie plate carrier vehicle mounted on said track, the steps of which comprise:
providing a gravity feed roller conveyor, an upper end portion of which is mounted in a tie plate receiving position on the carrier vehicle, a lower tie plate discharging end portion of said roller conveyor being attached to support structure carried by a pair of railroad wheels mounted on the track for movement along the track with the carrier vehicle; loading the tie plates, one after another, on the upper end portion of said roller conveyor such that the tie plates gravitate toward the lower end portion of the roller conyener and away from the carrier vehicle; capturing each of the tie plates separately and in sequence as it gravitates down said roller conveyor to a preselected position on said roller conveyor near a discharge end of said lower end portion; and releasing each of the tie plates, following the step of capturing it, at a predetermined release rate which depends on the distance traveled along the track by said pair of wheels since release of an immediately preceding one of the tie plates such that successive ones of the tie plates being released gravitate off of said discharge end onto the track bed at predetermined, spaced apart positions as the carrier vehicle and conveyor move along the track.
2. The apparatus of
3. The apparatus of
4. The apparatus of
5. The apparatus of
6. The apparatus of
7. The apparatus of
8. The apparatus of
10. The method of
providing a motorized endless belt conveyor on the carrier vehicle for discharging the tie plates placed thereon from storage on the carrier vehicle onto the upper end portion of the roller conveyor; and placing a series of the tie plates on the belt conveyor such that each of the tie plates so placed is discharged therefrom onto the roller conveyor, one after another.
|
This invention relates generally to an apparatus for conveying railroad tie plates placed thereon from the bed of a railroad track mounted highway truck or railroad car to the bed of a railroad track in a predetermined and spaced apart sequence as the apparatus and the truck or car move in unison along the track.
Machines which apply or drive tie plates to or on railroad ties have long been known in the prior art. See, for example, U.S. Pat. No. 567,232 granted to W. H. Greenshield on Sep. 8, 1896, U.S. Pat. No. 594,731 granted to G. W. Dowe on Nov. 30, 1897 and U.S. Pat. No. 636,702 granted to G. R. Wilton on Nov. 7, 1899. These and other such patents relate to machines which affix or secure tie plates to railroad ties.
But there has been a long felt need in the railroad art for an apparatus which can deposit tie plates, one at a time, on and along the bed of a railroad track at convenient spaced apart positions so that, later, as old railroad rails and tie plates are removed, the previously deposited new tie plates can be readily handled and substituted in place of the old tie plates, preparatory to laying new rails. Since each railroad tie requires a pair of such tie plates, one under each rail, it would be convenient to deposit one of such pair of replacement tie plates on a tie, centered between the rails, and the other, so as to be approximately centered between that tie and the next succeeding tie and also centered between the rails. According to the present custom, ties are located on successive longitudinal centerlines which are about 22 inches apart on a straight course of track in the United States. Thus, it would be desirable to provide an apparatus for depositing such replacement plates about eleven inches apart along the centerline of a railroad track. This will readily permit a worker to reach any two successively deposited tie plates for replacement of the two old tie plates on a nearest one of the railroad ties, preparatory to replacing the rails thereon.
By means of my invention, this particular long felt need in the prior art can now be met.
It is an object of my invention to provide an apparatus and method for conveying railroad tie plates from storage on a railroad track mounted carrier to the bed of a railroad track in a predetermined, spaced apart sequence as the apparatus and carrier move in unison along the track.
Briefly, in accordance with this object, a method for depositing tie plates in a spaced apart sequence along a bed of a railroad track from a mobile tie plate carrier mounted on the track is provided. The steps of the method include providing a gravity feed roller conveyor, an upper end portion of which is mounted in a tie plate receiving position on the carrier. A lower tie plate discharging end portion of the roller conveyor is attached to support structure carried by a pair of railroad wheels mounted on the track for movement with the carrier. The method further includes loading the plates, one after another, on the upper end portion of the roller conveyor such that the tie plates gravitate toward the lower end portion. The method also includes capturing each of the tie plates separately and in sequence as it gravitates down the roller conveyor to a preselected position on the roller conveyor near a discharge end of the lower end portion. The method additionally includes releasing each of the tie plates, following the step of capturing it, at a predetermined rate which depends on the distance traveled along the track by the pair of wheels since release of an immesiately preceding one of the tie plates such that successive ones of the tie plates can gravitate off of the discharge end onto the track bed at predetermined spaced apart positions as the carrier and conveyor move along the track.
These and other objects, features and advantages of the present invention will become apparent to those skilled in the art from the following detailed description and attached drawings which, by way of example, only a preferred embodiment of my invention is explained and illustrated.
FIG. 8. shows a peripheral view of a railroad wheel and portions of the support structure of the apparatus of
Referring now to the drawing figures, there is shown in a preferred embodiment of my invention, a conveyor apparatus, generally designated 12, for sequentially unloading railroad tie plates 14 from a suitable tie plate carrier, such as a railroad track mounted truck 16, as shown in
The conveyor apparatus 12 includes a tie loading end portion, which is mounted on the bed 26 of the truck 16, for example, as is shown best in
The belt conveyor 30 delivers the tie plates 14 onto an upper input end 34 of a diagonally downwardly and rearwardly sloping gravity feed, roller conveyor, generally designated 36. The slope of the gravity feed roller conveyor 36 is suitable at about 10 to 15 degrees from horizontal. The roller conveyor 36 includes a series of parallel and closely spaced apart cylindrically shaped rollers 38 of conventional type which are freely rotatable about their longitudinal axes, as for example, on conventional bearings. The rollers 38 are suitably journaled in opposing and parallel extending side beams 39, which may be angle irons. The tie plates 14 thus are conveyed by gravity along the rollers 38 until intercepted by a device such as, for example, an inflatable pneumatic tire 40. The tire 40 is mounted above a central part of several of the rollers 38 and is connected by a gear chain 42 to an axle 44 of the railroad wheels 28 for rotation as a function of rotation of the railroad wheels. In the present example, the tire 40 can be a standard inflatable go cart slick, having 5½ inches in tread width and 6 inches in radius.
In the alternative, an inclined chute with a metal base could be substituted in place of the roller conveyor 36 provided it is operatively inclined at a sufficient angle to assure that the tie plates 14 placed on an upper input end thereof will readily slide downwardly along the base for individual capture by the tire 40 and subsequent release to the track bed. Clearly, the angle of incline in such a chute would need to be greater than that of the roller conveyor 36.
The tire 40 rotates with the railroad wheels 28 but in an angular direction which is opposite that of the rollers 38 when transporting the tie plates 14 thereon. As the tie plates 14 are gravity fed down the rollers 38, a tread of the tire 40 engages and bears downwardly on one of the plates at a time, thus pinning or capturing that plate against the underlying rollers. Upon initial engagement of the tire 40 with a given one of the plates 14, the tire must rotate a full 360 degrees on its axle 46 each time the railroad wheels 28 move the desired tie plate drop distance, i.e. every eleven inches in the present example, along the rails 24 where the tie plates are to be replaced under both of the rails 24 or every twenty two inches where the tie plates under only one of the rails are to be replaced. In this way, a different one of the tie plates 14 will pass completely under and become released from contact with the tire 40 each time the wheels 28 have moved eleven or twenty two inches along the tracks 24, as the particular case requires. After release of each of the plates 14 by the tire 40, the plate freely gravitates off of a lower output end of the roller conveyor 36 for disposition along a centerline of the tracks 24. 1 recommend that a discharge end of the roller conveyor 36 be positioned at a height of about 3-4 inches above the track bed such that the plates will not flip over or bounce out of the alignment as shown (FIG. 3). Accordingly, once the apparatus 12 is indexed so as to drop one of the plates 14, either on one of the ties 22, or mid-way between two adjacent ties, and the tire 40 is adjusted to make one full rotation while the wheels 28 are traveling a desired plate drop distance along the rails 24 the plates will thereafter be discharged with the desired spacing. The apparatus 12 will deposit all other ones of the plates 14 at the desired locations and with the desired spacing. As shown in
It may be necessary to adjust the speed of travel of the belt conveyor 30 to synchronize closer to the speed of rotation of the tire 40, and, hence, the speed of rotation of the wheels 28 in order to prevent the plates 14 from backing up along the roller conveyor 36 in front of the tire all the way to the input end 34. A back-up of, say, about four of the plates 14 in front of the tire 40 at all times should assure even spacing between the plates being deposited along the track 20. Of course, sometimes the back-up might grow to seven or eight of the tie plates 14 while at other times the back-up might drop as low as two or three. A visual inspection of the back-up by workers standing in the bed 26 of the truck 16 will readily determine whether their rate of loading the tie plates 14 on the belt conveyor 30 is too great or too small or whether the speed of the belt conveyor 30 or, for that matter, the speed of the truck 16 along the track 20 should be increased or decreased. In many cases, merely reducing the rate at which the tie plates 14 are being placed on the conveyor 30 by the workman will prevent back up of the plates behind the tire 40 from becoming too great.
The side beams 39 at the upper end 34 of roller conveyor 36 are welded to a pair of angles 48 which are, in turn, bolted to an upper end portion of a pair of parallel and spaced apart support rails 50. See
Referring now specifically to
Referring now to FIGS. 3 and 5-8, a support structure, generally designated 75, for supporting a lower output end portion of the roller conveyor 36 over the railroad wheels 28 and axle 44 is shown. A lower surface of the roller conveyor side beams 39 rests essentially flush on an upper side of an elongated channel member or cross beam 76. The cross beam 76 is welded, bolted or otherwise suitably secured to the underside of the two side beams 39 at their intersections. Opposite ends of the cross beam 76 are welded to opposing sides 78 of a pair of channel elements 80, each of which elements is located partially within a different one of the wells of the wheels 28 (See FIG. 8).
The cross beam 76 thus extends parallel to and spaced apart from the axle 44 of the wheels 28. Upper and lower end portions of each of the channel elements 80 are, in turn, removably connected, as by bolts 82, to a pair of angle brackets 84. See
Although the present invention has been shown and described with respect to specific details of a certain preferred embodiment thereof, it is not intended that such details limit the scope and coverage of this patent other than as expressly set forth in the following claims, taking into consideration modifications which are equivalent thereto.
Patent | Priority | Assignee | Title |
10865527, | Nov 22 2017 | B & B METALS, INC. | Tie plate rotator for field and gauge orientation |
11427408, | Nov 06 2018 | B & B METALS, INC. | Tie plate dispenser and method therefore |
11578464, | Jun 24 2020 | B & B METALS, INC.; B & B METALS, INC | Tie plate dispenser and method therefore |
11772903, | Nov 06 2018 | B & B METALS, INC. | Tie plate dispenser and method therefore |
11885074, | Jun 24 2020 | B & B METALS, INC. | Tie plate dispenser and method therefore |
7406919, | Nov 02 2005 | B & B METALS, INC | Method and apparatus for operating a vehicle on rails of a railroad track with an auxiliary drive assembly |
7547894, | Sep 15 2006 | PERFORMANCE INDICATOR, L L C | Phosphorescent compositions and methods for identification using the same |
7827916, | Nov 23 2007 | B & B METALS, INC | Sensor and apparatus for positioning railroad tie plates along a railroad track |
7842128, | Sep 13 2007 | Performance Indicator LLC | Tissue marking compositions |
7910022, | Sep 15 2006 | PEFORMANCE INDICATOR, L L C ; PERFORMANCE INDICATOR, L L C | Phosphorescent compositions for identification |
8039193, | Sep 13 2007 | Performance Indicator LLC | Tissue markings and methods for reversibly marking tissue employing the same |
8042473, | Nov 03 2009 | Timothy Charles, Taylor | Tie plate singularization device |
8082852, | Dec 18 2009 | Progress Rail Services Corporation; PROGRESS RAIL CORPORATION | System and method for railroad track tie plate orientation |
8132512, | Mar 04 2009 | H & H Railroad Contracting, Inc. | Railroad tie plate apparatus and method |
8166883, | Jul 02 2009 | B & B METALS, INC | Slide rail for a high-rail vehicle |
8282858, | Dec 20 2004 | Performance Indicator, LLC | High-intensity, persistent photoluminescent formulations and objects, and methods for creating the same |
8287757, | Dec 20 2004 | Performance Indicator, LLC | High-intensity, persistent photoluminescent formulations and objects, and methods for creating the same |
8293136, | Dec 20 2004 | Performance Indicator, LLC | High-intensity, persistent photoluminescent formulations and objects, and methods for creating the same |
8316774, | Jul 02 2009 | B & B METALS, INC | Auxiliary drive system for a high-rail vehicle |
8365673, | Dec 18 2009 | Progress Rail Services Corp | System and method for railroad track tie plate collection from a rail bed |
8409662, | Dec 20 2004 | Performance Indicator, LLC | High-intensity, persistent photoluminescent formulations and objects, and methods for creating the same |
8443733, | Nov 23 2007 | B&B Metals, Inc. | Sensor and apparatus for positioning railroad tie plates along a railroad track and method |
8528484, | Mar 04 2009 | H & H RAILROAD CONTRACTING, INC | Railroad tie plate apparatus and method |
9446662, | Feb 22 2013 | B & B METALS, INC. | Auxiliary drive system |
RE44254, | Sep 15 2006 | Performance Indicator, LLC | Phosphorescent compositions and methods for identification using the same |
Patent | Priority | Assignee | Title |
1593423, | |||
2762313, | |||
3943858, | Feb 12 1973 | OAK INDUSTRIES INC , A DE CORP | Machine for setting tie plates and the like |
4168771, | Oct 07 1977 | Rexnord Inc. | Roller conveyor system having speed control |
4241663, | Oct 13 1978 | Canron Corporation | Tie plate handling means for rail changing machine |
4691639, | Feb 04 1986 | Harsco Technologies Corporation | Rail tie plate placing vehicle and method |
4942822, | Jun 07 1988 | NORDCO INC | Method and apparatus for automatically setting rail tie plates |
4974518, | Aug 01 1988 | NORDCO INC | Automatic tie plate setting machine |
5655455, | May 31 1996 | Progress Rail Services Corporation | Tie plate placer |
567232, | |||
594731, | |||
636702, | |||
712167, | |||
832332, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 03 2009 | COOTS, WILLIAM R , JR | B & B METALS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022449 | /0212 |
Date | Maintenance Fee Events |
Jan 15 2008 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Apr 26 2012 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Apr 06 2016 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Oct 26 2007 | 4 years fee payment window open |
Apr 26 2008 | 6 months grace period start (w surcharge) |
Oct 26 2008 | patent expiry (for year 4) |
Oct 26 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 26 2011 | 8 years fee payment window open |
Apr 26 2012 | 6 months grace period start (w surcharge) |
Oct 26 2012 | patent expiry (for year 8) |
Oct 26 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 26 2015 | 12 years fee payment window open |
Apr 26 2016 | 6 months grace period start (w surcharge) |
Oct 26 2016 | patent expiry (for year 12) |
Oct 26 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |