A system for cooling a canister has first, second and third heat pipes. The first heat pipe has an evaporator and a condenser. The first heat pipe is mounted with its evaporator inside the canister and its condenser outside the canister. The second heat pipe has an evaporator conductively coupled to the condenser of the first heat pipe. The second heat pipe has a condenser. The third heat pipe has an evaporator conductively coupled to the condenser of the second heat pipe. The third heat pipe has a condenser with a plurality of fins on the condenser of the third heat pipe.
|
13. An energy storage system, comprising:
a canister, an energy storage flywheel having a motor housing mounted inside the canister; a first heat pipe having an evaporator and a condenser, the evaporator of the first heat pipe, being mounted to the motor housing, the condenser of the first heat pipe outside the canister; a second heat pipe having an evaporator conductively coupled to the condenser of the first heat pipe, the second heat pipe having a condenser; a third heat pipe having an evaporator conductively coupled to the condenser of the second heat pipe, the third heat pipe having a condenser interfacing to a heat dissipating means.
1. A system for cooling a canister, comprising:
a first heat pipe having an evaporator and a condenser, the first heat pipe being mounted with the evaporator inside the canister and the condenser outside the canister; wherein the canister is at least partially buried below ground, and the first heat pipe is positioned entirely below a ground surface; a second heat pipe having an evaporator thermally coupled to the condenser of the first heat pipe, the second heat pipe having a condenser; a third heat pipe having an evaporator thermally coupled to the condenser of the second heat pipe, the third heat pipe having a condenser; and means for dissipating heat from the condenser of the third heat pipe.
2. The system of
5. The system of
6. The system of
7. The system of
8. The system of
10. The system of
11. The system of
12. The system of
15. The system of
16. The system of
18. The system of
19. The system of
20. The system of
|
The present invention relates to cooling systems generally, and more specifically to heat pipe systems.
Flywheel systems are used for energy storage in backup power supplies (e.g., for telecommunication systems, server farms, etc.). Energy is stored in the angular momentum of the flywheel. The flywheel systems are typically stored inside silo canisters, and these canisters can be located above or below ground. Typical prior-art flywheel systems dissipated a sufficiently small amount of waste heat that the canister could be cooled by passive conduction from the canister to the exterior.
Newer flywheel systems dissipate too much power in the form of heat to cool the flywheels by conduction alone.
The present invention is a cooling system 100 that brings heat from inside a flywheel 140 to the exterior where it is dissipated by one or more means. The cooling system 100 comprises one or more heat pipes that transfer the heat to the exterior of the flywheel and those heat pipes dissipated the heat to various heat sinks.
Another aspect of the invention is a system comprising: a first heat pipe having an evaporator and a condenser. The first heat pipe is mounted with the evaporator inside the canister and the condenser outside the canister. A second heat pipe has an evaporator thermally coupled to the condenser of the first heat pipe. The second heat pipe has a condenser. Means are provided for dissipating heat from the condenser of the second heat pipe.
Another aspect of the invention is a system comprising: a flywheel stored within a canister; and a heat pipe having an evaporator and a condenser. The heat pipe is mounted with the evaporator inside the canister and the condenser abutting a wall of the canister.
According to another aspect of the invention, a system is provided for cooling a canister, the system comprising first, second and third heat pipes. The first heat pipe has an evaporator and a condenser. The first heat pipe is mounted with its evaporator inside the canister and its condenser outside the canister. The second heat pipe has an evaporator thermally coupled to the condenser of the first heat pipe. The second heat pipe has a condenser. The third heat pipe has an evaporator thermally coupled to the condenser of the second heat pipe. The third heat pipe has a condenser with a heat dissipation mechanism thereon.
The present invention is a system 100 for cooling a canister 130. In the exemplary embodiment, the canister 130 is the silo of a flywheel energy storage system 200 that is partially buried or completely buried about 60 to 240 centimeters below the surface 160 of the ground. Canister 130 is a vacuum housing. Canister 130 has an energy storage flywheel having a motor housing 140 mounted inside the canister. It is contemplated that system 100 may be used for cooling other types of canisters that have internal heat sources. It is also contemplated that system 100 may be used for cooling canisters that are located above the surface 160 of the ground.
The system 100 includes a first heat pipe 10, a second heat pipe 20 and a third heat pipe 30. The first heat pipe 10 has an evaporator 12 and a condenser 14. The first heat pipe 10 is mounted with its evaporator 12 inside the canister 200 and its condenser 14 outside the canister. The first heat pipe 10 is mounted to the motor housing 140 within the canister 130. In the exemplary system 100, the first heat pipe 10 is positioned entirely below the ground surface 160, but it is contemplated that the first heat pipe 10 could be positioned partially above the ground surface 160, or entirely above the ground surface.
The second heat pipe 20 has an evaporator 22 conductively coupled to the condenser 14 of the first heat pipe 10. The second heat pipe 20 has a condenser 24. The exemplary second heat pipe 20 is a thermosyphon. A thermosyphon is a heat pipe that uses gravity to return fluid from the condenser 24 to the evaporator 22 thereof. The exemplary second heat pipe 20 is partially buried below the ground surface 160, and partly above the ground surface. It is contemplated that the second heat pipe 20 could be positioned entirely below the ground surface 160, or entirely above the ground surface.
The third heat pipe 30 has an evaporator 32 conductively coupled to the condenser 24 of the second heat pipe 20. The third heat pipe 30 has a condenser 34 with a plurality of fins 36 thereon. The exemplary fins 36 are thirty-four circular aluminum plate fins arranged in a fin stack 38. Fins having other shapes and/or number of fins are contemplated. The exemplary third heat pipe 30 is completely above the ground surface 160, but it is contemplated that the evaporator 32 of heat pipe 30 could be located at or below ground level. The evaporator 32 of the exemplary third heat pipe 30 is oriented substantially vertically, and the condenser 34 of the third heat pipe is at a substantial angle (90--α) away from vertical. The angle α of the condenser 34 of the third heat pipe 30 is at least about 5 degrees from horizontal. As an alternative to fins 36, an extruded heat sink (not shown) may be mounted on the condenser 34 of the third heat pipe 30.
The heat may be rejected by finstack 38 to the atmosphere by natural convection. Alternatively, forced convection may be used. An exemplary system transports 60 Watts of power from the flywheel system, with a temperature difference of about 10-12 degrees Centigrade between the canister 130 and the ambient temperature. Other power levels and/or temperature differences are also contemplated.
In the exemplary embodiment, all three of the heat pipes 10, 20 and 30 have wicks formed of sintered metal, such as copper, for example. In heat pipe 10, the wick 13 only is present in the evaporator section 12. The wick does not extend beyond the evaporator 12 into the condenser 14.
In the exemplary embodiment, all three of the heat pipes use methanol as the working fluid. Other known working fluids may be used.
As shown in
System 100 includes two thermocoupling devices 50 and 60.
Similarly, the first bore of thermocoupling 60 receives the condenser 24 of heat pipe 20, and the second bore of thermocoupling 60 receives the evaporator 32 of heat pipe 30. The block 60 is split in two portions, with one (or each) bore divided in half. A thermal interface material (e.g., thermal grease or thermally conductive adhesive is applied to provide good conduction between the heat pipe 20 and the thermocoupling 60. Heat pipe 30 is soldered to the bore of thermocoupling 60. Clamping fasteners 62 hold the two portions of coupling 60 together. The coupling 60 may be split as shown in
Although the exemplary thermocouplings 50, 60 are cylindrical, thermocouplings 50 and 60 may have other shapes, such as a parallelepiped (block) shape.
Thermocouplings 50, 60 have a sufficient length to achieve a desired temperature difference (ΔT). For example, experiments have indicated that a ΔT of about 3.25 degrees centigrade is achieved between the condenser of heat pipe 10 and the evaporator of heat pipe 20 using a thermocoupling 50 about 10 centimeters long. Thus, the ΔT from the two thermocouplings 50, 60 combined accounted for about 50% of the total ΔT between the motor housing 140 and the ambient. Other thermocoupling lengths are contemplated, ranging from about 5 centimeters to about 20 centimeters.
In the exemplary embodiment, the second heat pipe 20 passes through a cabinet 70, which may be a flywheel electronics module (FEM) cabinet. The cabinet 70 can provide support for the second heat pipe 20, if heat pipe 20 extends a long distance above the ground. Alternative support structures for heat pipe 20 are also contemplated.
The heat pipe system 100 operates passively, eliminating maintenance and reliability concerns. This makes the exemplary system 100 advantageous for use in areas that are remote from maintenance workers.
Although the exemplary heat pipe system has three heat pipes a similar design may include only a single heat pipe. The evaporator of the single heat pipe would penetrate the canister below ground and a condenser with a fin stack or extrusion would be positioned above ground.
It is also contemplated that systems may be constructed with any number of two or more heat pipes. For example, there may be a single thermocoupling, which may be positioned above or below ground. Alternatively, additional heat pipes and thermocouplings may be interposed between the first and second (or second and third) heat pipes. For example, an additional thermocoupling and fourth heat pipe may be used to thermally couple the second and third heat pipes. Thus, configurations including four, five or more heat pipes are also contemplated.
Although the exemplary embodiment includes a finstack, further variations of the exemplary embodiment are contemplated. These may include, for example, use of heat pipes to bring the heat inside the flywheel to the exterior of the canister, to be dissipated by interfacing to one or more heat dissipating means. The heat dissipating means may include heat sinks such as the ambient air, a pumped water loop, the surrounding ground, a phase change energy storage material, or the like.
For example, the various heat sinks could be ambient air, the ground 160 (if the canister 200 is buried) or some other cooling medium such as pumped water-cooling or energy storage medium for example. Either way, the heat pipe(s) are the conduit to transfer the heat to the heat sink. After the heat is transferred to the exterior to the canister 200, the selection of the appropriate cooling method is dependent upon many parameters such as geographical location, surrounding temperatures, availability of water, and whether the canister 200 is above or below ground. When below ground, one exterior cooling approach uses heat pipes in a spider like array leading away from the canister 200 which dissipates the heat to surrounding soil/aggregate. Separate heat storage mediums can be substituted without changing the cooling system. These heat storage mediums can be below ground or above ground. When the heat is brought to the surface for dissipation, one or more heat pipes can be used as described above.
Although the invention has been described in terms of exemplary embodiments, it is not limited thereto. Rather, the appended claim should be construed broadly, to include other variants and embodiments of the invention, which may be made by those skilled in the art without departing from the scope and range of equivalents of the invention.
Smith, Jr., James L., Mast, Brian E., Gernert, Nelson J., Lindemuth, James E., Todd, Jr., John J.
Patent | Priority | Assignee | Title |
10012417, | May 07 2012 | PHONONIC, INC | Thermoelectric refrigeration system control scheme for high efficiency performance |
10458683, | Jul 21 2014 | PHONONIC, INC | Systems and methods for mitigating heat rejection limitations of a thermoelectric module |
8261563, | Feb 29 2008 | External refrigerator condensing unit | |
8893513, | May 07 2012 | PHONONIC, INC | Thermoelectric heat exchanger component including protective heat spreading lid and optimal thermal interface resistance |
8991194, | May 07 2012 | PHONONIC, INC | Parallel thermoelectric heat exchange systems |
9103572, | May 07 2012 | PHONONIC, INC | Physically separated hot side and cold side heat sinks in a thermoelectric refrigeration system |
9234682, | May 07 2012 | PHONONIC, INC | Two-phase heat exchanger mounting |
9310111, | May 07 2012 | PHONONIC, INC | Systems and methods to mitigate heat leak back in a thermoelectric refrigeration system |
9341394, | May 07 2012 | PHONONIC, INC | Thermoelectric heat exchange system comprising cascaded cold side heat sinks |
9372016, | May 31 2013 | Tokitae LLC | Temperature-stabilized storage systems with regulated cooling |
9413396, | May 13 2008 | Tokitae LLC | Storage container including multi-layer insulation composite material having bandgap material |
9447995, | Feb 08 2010 | Tokitae LLC | Temperature-stabilized storage systems with integral regulated cooling |
9593871, | Jul 21 2014 | PHONONIC, INC | Systems and methods for operating a thermoelectric module to increase efficiency |
Patent | Priority | Assignee | Title |
3828845, | |||
3902547, | |||
3935900, | Aug 25 1971 | McDonnell Douglas Corporation | Permafrost structural support with integral heat pipe means |
4162701, | Nov 21 1977 | The United States of America as represented by the Administrator of the | Thermal control canister |
4345642, | Dec 24 1980 | Thermacore, Inc. | Articulated heat pipes |
4388964, | Oct 11 1979 | Arthur D. Little, Inc. | Thermal control system |
4921063, | Feb 22 1988 | Fujitsu Ten Limited | Fail-safe circuit for constant speed drive apparatus |
4982274, | Dec 14 1988 | The Furukawa Electric Co., Ltd. | Heat pipe type cooling apparatus for semiconductor |
5587880, | Jun 28 1995 | ANTARES CAPITAL LP, AS SUCCESSOR AGENT | Computer cooling system operable under the force of gravity in first orientation and against the force of gravity in second orientation |
5705018, | Dec 13 1995 | Micromachined peristaltic pump | |
6463755, | Dec 10 1996 | Edward R., Schulak | Energy transfer system for refrigerator/freezer components |
6595269, | May 24 1999 | Hewlett-Packard Development Company, L.P. | Flexible heat pipe structure and associated methods for dissipating heat in electronic apparatus |
6631755, | Jul 17 2002 | Compal Electronics, Inc. | Thermal module with temporary heat storage |
6674640, | Jul 02 2001 | Intel Corporation | Increased thermal capability of portable electronic device in stationary or docked mode |
6675872, | Sep 17 2001 | Beacon Power, LLC | Heat energy dissipation device for a flywheel energy storage system (FESS), an FESS with such a dissipation device and methods for dissipating heat energy |
20030066381, | |||
EP779436, | |||
JP57022440, | |||
JP61294223, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 26 2001 | Thermal.Corp. | (assignment on the face of the patent) | / | |||
Oct 16 2001 | TODD, JR , JOHN L | Thermal Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012588 | /0386 | |
Oct 16 2001 | SMITH, JR , JAMES L | Thermal Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012588 | /0386 | |
Oct 16 2001 | GERNERT, NELSON J | Thermal Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012588 | /0386 | |
Oct 16 2001 | MAST, BRIAN E | Thermal Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012588 | /0386 | |
Oct 16 2001 | LINDEMUTH, JAMES E | Thermal Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012588 | /0386 | |
Apr 30 2008 | Thermal Corp | NATIONAL PENN BANK | SECURITY AGREEMENT | 021398 | /0300 | |
Apr 30 2008 | FSBO VENTURE ACQUISITIONS, INC | NATIONAL PENN BANK | SECURITY AGREEMENT | 021398 | /0300 | |
Dec 30 2010 | NATIONAL PENN BANK | THERMACORE, INC F K A FSBO VENTURE ACQUISITIONS, INC | RELEASE OF SECURITY INTEREST RECORDED AT REEL FRAME 021398 0300 | 040508 | /0620 | |
Dec 30 2010 | NATIONAL PENN BANK | Thermal Corp | RELEASE OF SECURITY INTEREST RECORDED AT REEL FRAME 021398 0300 | 040508 | /0620 | |
Dec 30 2010 | THERMACORE, INC | SOVEREIGN BANK | SECURITY AGREEMENT | 026039 | /0865 | |
Dec 30 2010 | Thermal Corp | SOVEREIGN BANK | SECURITY AGREEMENT | 026039 | /0865 | |
Oct 13 2016 | SANTANDER BANK, N A F K A SOVEREIGN BANK | THERMACORE, INC | RELEASE OF SECURITY INTEREST RECORDED AT REEL FRAME 026039 0865 | 040508 | /0649 | |
Oct 13 2016 | SANTANDER BANK, N A F K A SOVEREIGN BANK | Thermal Corp | RELEASE OF SECURITY INTEREST RECORDED AT REEL FRAME 026039 0865 | 040508 | /0649 |
Date | Maintenance Fee Events |
May 05 2008 | REM: Maintenance Fee Reminder Mailed. |
Oct 26 2008 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 26 2007 | 4 years fee payment window open |
Apr 26 2008 | 6 months grace period start (w surcharge) |
Oct 26 2008 | patent expiry (for year 4) |
Oct 26 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 26 2011 | 8 years fee payment window open |
Apr 26 2012 | 6 months grace period start (w surcharge) |
Oct 26 2012 | patent expiry (for year 8) |
Oct 26 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 26 2015 | 12 years fee payment window open |
Apr 26 2016 | 6 months grace period start (w surcharge) |
Oct 26 2016 | patent expiry (for year 12) |
Oct 26 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |