A wrist-worn device comprising a display for showing a heart rate parameter value, such as a heart rate measured from a person's body or a heart rate variable derived from the heart rate. The display comprises at least two display areas which display areas the wrist-worn device is arranged to employ to show that a heart rate parameter momentarily belongs to a heart rate parameter value range corresponding to the display area and which wrist-worn device comprises at least one sliding means for selecting a desired heart rate parameter value range by mechanically sliding the sliding means to cover at least one display area at a time.
|
1. A wrist-worn device comprising:
a display for showing a heart rate parameter value, said display having at least two display areas arranged to show a measured heart rate parameter, each display area representing a heart rate parameter value range; and at least one sliding means mechanically engageable with said display for selecting a desired heart rate parameter value range by mechanically sliding the sliding means to cover at least one display area at a time.
15. A wrist-worn device comprising:
a display for showing a heart rate parameter value, said display having at least two display areas arranged to show a measured heart rate parameter, each display area representing a heart rate parameter value range; and at least one sliding means for selecting a desired heart rate parameter value range by mechanically sliding the sliding means to cover at least one display area at a time, wherein the sliding means comprises a first toothing and the wrist-worn device comprises a second toothing, which first toothing and second toothing can be engaged with each other to secure the sliding means in place on a desired location on top of the display of the wrist-worn device.
2. A wrist-worn device according to
3. A wrist-worn device according to
4. A wrist-worn device according to
5. A wrist-worn device according to
6. A wrist-worn device according to
7. A wrist-worn device according to
8. A wrist-worn device according to
9. A wrist-worn device according to
10. A wrist-worn device according to
11. A wrist-worn device according to
12. A wrist-worn device according to
13. A wrist-worn device according to
14. A wrist-worn device according to
|
The field of application of the invention comprises wrist-worn devices, such as heart rate monitors, wrist-worn computers, or the like. The invention particularly relates to the setting of user-specific heart rate parameter limits in a wrist-worn device.
The evaluation and planning of the intensity of an exercise is important both to a fitness enthusiast as well as a competing athlete. A reliable method for evaluating the intensity is to monitor the frequency of heartbeat, i.e. heart rate, measured from the person's body. Depending on the target intensity set for the exercise, the user may try to maintain the heart rate within a desired range. For example, in a fat-burning exercise of a long duration, the aim may be to keep the heart rate between 100 and 120 beats per minute, whereas a competing athlete engaged in a high-tempo interval training may aim for example at momentarily raising the heart rate level to 160-180 and then again lowering it to 120-140.
Heart rate is measured from the body using a heart rate monitor. The measurement may be carried out in various ways, for example from electric signals caused by heartbeat to the chest, from a pressure pulse caused by blood on the wrist, or optically from the circulation of blood in the wrist. A common embodiment of a heart rate monitor comprises a transmitter electrode belt to be placed on the chest to transmit measured heart rate information to a receiver unit carried on the wrist, the receiver unit displaying the information to the user. The wrist-worn receiver usually comprises, in addition to a liquid crystal display, keys for the user to input data and sound signalling means. With the keys, the heart rate limits within which the user wishes his heart rate to remain during the exercise are supplied to the heart rate monitor. If the user's heart rate does not remain within the set limits, the monitor produces a sound signal to allow the user to check his momentary heart rate on the display and to adjust the exercise intensity accordingly.
The prior art solutions for monitoring heart rate limits are not convenient to use. A heart rate value is difficult to read from a liquid crystal display, particularly in the dark. The setting of heart rate limits with the keys is often complicated, difficult and slow.
It is an object of the invention to provide an improved solution for setting heart rate parameter limits in a wrist-worn device. This is achieved with a wrist-worn device comprising a display for showing a heart rate parameter value, such as a heart rate measured from a person's body or a heart rate variable derived from the heart rate. The display comprises at least two display areas which display areas the wrist-worn device is arranged to employ to show that a heart rate parameter momentarily belongs to a heart rate parameter value range corresponding to the display area and which wrist-worn device comprises at least one sliding means for selecting a desired heart rate parameter value range by mechanically sliding the sliding means to cover at least one display area at a time.
The preferred embodiments of the invention are disclosed in the dependent claims.
The invention thus relates to a novel solution for setting heart rate parameter limits in a wrist-worn device. In this specification of the invention, the term wrist-worn device refers to equipment comprising heart rate measurement functions and the displaying of a measured heart rate or a heart rate variable derived from the heart rate. Heart rate monitors and wrist-worn computers provided with a heart rate measuring function are thus examples of equipment the invention relates to. The heart rate parameters to be displayed for which the limits are to be set include heart rate, average heart rate or rate deviation.
In this context, the term display refers to the parts of the device used for visually displaying an exercise variable value to the user. In a preferred embodiment of the invention, the display is composed of separate display areas. The display is preferably formed on a resilient and flexible circuit board, and each display area corresponding to a specific exercise variable value can be illuminated with a display-area-specific illumination element, such as a LED (Light Emitting Diode). The illumination elements, or light sources, do not necessarily have to be close together, but they may be arranged on various locations on the wristband. The number of the display areas used for displaying the exercise variable values is naturally not limited in invention either. In a preferred embodiment, the topmost layer of the display is made of a translucent plastic to make the light emitted by a display-area-specific light source visible to the user. The light sources may also be placed on the surface of the wrist-worn device, uncoated by the plastic encapsulating the device. The display is preferably a bar display comprising a string of display areas arranged along a substantially straight line with respect to each other in the longitudinal direction of the wristband. A first end of the bar display thus comprises a value range corresponding to the lowest exercise variable values that can be displayed, a second end comprising in turn a value range corresponding to the highest exercise variable values that can be displayed. An exercise variable value can be displayed for example by only illuminating the display area to which the exercise variable value relates. Alternatively, all value ranges lower than said value range are illuminated, in addition to the value range concerned. Instead of a bar display, a display forming an arc can also be used.
The wrist-worn device preferably comprises an electronics unit, which receives the heart rate information from a heart rate transmitter or from the electrodes of the wrist-worn device. The wristband, the display and the electronics unit are preferably integrated to form a single entity, i.e. a uniform piece. Integration as used in this context means that the parts of the device are joined together process-technically during the manufacturing phase, for example by injection moulding, in which the parts are coated with plastic to produce a uniform piece. The parts thus form a wrist-worn device in which the display and the electronics unit can be thought of as integral parts of the wristband with which the device can be attached to the wrist. With injection moulding, the wrist-worn device can be manufactured in a plural number of phases, whereby different plastics with different transparency and colour properties can be used. For example, the part of the wrist-worn device that encapsulates the display is made using transparent plastic.
The heart rate limits are set using mechanical sliding means, i.e. a piece which at least partly surrounds the wristband or the display area and can be slid on the wristband. The sliding means is meant to cover a portion of the display, for example the display areas of the display forming a bar-shaped arrangement which correspond to unwanted heart rate parameter value ranges. If the display areas are in a ring-shaped formation on the wrist-worn device, the device is provided for example with slide protrusions on the surface, on both sides of the display areas, the protrusions allowing the sliding means to be slid on the display areas. In a ring-shaped arrangement, the display areas form a part of a sector, for example, the sliding means being preferably of a corresponding formation. It is apparent that the above solution of slide protrusions can also be applied to a bar display. To ensure that the sliding means stays in place on the desired location on the wristband, it preferably comprises a slot or a toothing that can be engaged with counter pieces provided on the wristband to secure the sliding means in place. The wrist-worn device preferably comprises two sliding means, an upper sliding means for covering an area above the desired heart rate parameter area, and a lower sliding means for covering an area below the desired heart rate parameter area. The user thus aims at keeping the heart rate parameter value, such as heart rate, between the sliding means during the exercise. In a preferred embodiment of the invention, the sliding means are transparent, the light emitted by the light source of the bar display being at least partly visible through the sliding means. In a preferred embodiment of the invention, the sliding means are made in different colours corresponding to the area covered by the sliding means; for example, the upper sliding means may be red and lower sliding means yellow. Alternatively, the heart rate parameter value may be controlled with a wrist-worn device having a single sliding means, which may be green, for example. The sliding means is placed on top of the allowed heart rate area, the transparent sliding means thus allowing the user to control that the heart rate parameter value remains on the display areas covered by the sliding means, i.e. within the desired value range.
An advantage of the invention is that it provides an improved wrist-worn device solution in which the setting of heart rate limits is quick and simple. The solution offers to the user a concrete means for monitoring that the heart rate parameter value remains within the desired value range.
In the following, the invention will be described in greater detail with reference to the accompanying drawings, in which
In the following, the invention will be described with reference to preferred embodiments and the accompanying
The wrist-worn device 100 comprises mechanically slidable sliding means 112A and 112B for setting heart rate limits. The sliding means 112A is an upper sliding means covering a heart rate range to which the heart rate should not rise during the exercise, and the sliding means 112B in turn is a lower sliding means covering a heart rate range to which the heart rate should not drop during the exercise. In
With a further reference to
In the heart rate information 420 to be transmitted, one heartbeat or heart rate data bit is represented for example by one 5 kHz burst 422A or a group 422A, 422B, 422C of several bursts. Intervals 424A, 424B between the bursts may be of an equal duration, or their duration may vary. The heart rate information 420 to be transmitted may consist of heartbeat information, as described above, or the heartbeats may be used already in the transmitter 400 to form computational exercise variables, such as an average heart rate or heart rate deviation. The computational variables can naturally also be formed in the wrist-worn device 100, on the basis of the heart rate information. The information 420 may be transmitted inductively, or it may be sent optically or through a wire. The wrist-worn device 100 and its electronics unit 108 in particular comprise receiver means 108B, such as a coil. A signal received with the receiver means 108B is supplied to control electronics 108D which control and coordinate the operation of the electronic parts of the wrist-worn device 100. The control electronics 108D together with the related memory are preferably implemented using a general-purpose microprocessor provided with the necessary system and application software, although diverse hardware implementations are also possible, such as a circuit built of separate logic components, or one or more ASICs (Application Specific Integrated Circuit).
The wrist-worn device 100 comprises electric current produced for the electronics unit 108 and the display by a power source 108A. The device 100 preferably comprises a memory 108C for storing the received heart rate information 420 and the computer software of the device 100. The received heart rate information 420 is processed in a computation unit 108E of the electronics unit 108 to produce the user's heart rate and/or other heart rate variables for display on the display 104 connected to the electronics unit 108. The wrist-worn device 100 preferably comprises a user interface 108F for supplying information to the device 100 and for transferring information stored on the device 100 to an external computer, for example, for further processing. Input functions at the user interface 108F are implemented for example using push-buttons and/or membrane keys for making selections and for activating and stopping functions, such as a heart rate measurement. The user interface 108F preferably also comprises means for producing sound signals to indicate when the time reserved for the exercise has elapsed, for example. The user interface 108F, which may also incorporate a telecommunications port, for example, can also be used for updating the software of the wrist-worn device.
Although the heart rate monitor described with reference to
Although the invention is described above with reference to examples according to the accompanying drawings, it is apparent that the invention is not restricted to them, but may vary in many ways within the inventive idea disclosed in the claims.
Patent | Priority | Assignee | Title |
10060745, | Feb 20 2001 | adidas AG | Performance monitoring systems and methods |
10062297, | Aug 17 2007 | adidas International Marketing B.V. | Sports electronic training system, and applications thereof |
10082396, | Feb 20 2001 | adidas AG | Performance monitoring systems and methods |
10166436, | May 18 2009 | adidas AG | Methods and program products for building a workout |
10244984, | Apr 13 2012 | adidas AG | Wearable athletic activity monitoring systems |
10369410, | Apr 13 2012 | adidas AG | Wearable athletic activity monitoring methods and systems |
10369411, | Apr 13 2012 | adidas AG | Sport ball athletic activity monitoring methods and systems |
10523053, | May 23 2014 | adidas AG | Sport ball inductive charging methods and systems |
10571577, | Jan 16 2004 | adidas AG | Systems and methods for presenting route traversal information |
10715759, | Jun 26 2014 | adidas AG | Athletic activity heads up display systems and methods |
10765364, | Apr 13 2012 | adidas AG | Wearable athletic activity monitoring systems |
10922383, | Apr 13 2012 | adidas AG | Athletic activity monitoring methods and systems |
10943688, | Feb 20 2001 | adidas AG | Performance monitoring systems and methods |
10991459, | Feb 20 2001 | adidas AG | Performance monitoring systems and methods |
11097156, | Apr 13 2012 | adidas AG | Wearable athletic activity monitoring methods and systems |
11119220, | Jan 16 2004 | adidas AG | Systems and methods for providing a health coaching message |
11150354, | Jan 16 2004 | adidas AG | Systems and methods for modifying a fitness plan |
11217341, | Apr 05 2011 | adidas AG | Fitness monitoring methods, systems, and program products, and applications thereof |
11493637, | Jan 16 2004 | adidas AG | Systems and methods for providing a health coaching message |
11557388, | Aug 20 2003 | adidas AG | Performance monitoring systems and methods |
11562417, | Dec 22 2014 | adidas AG | Retail store motion sensor systems and methods |
11650325, | Jan 16 2004 | adidas AG | Systems and methods for providing a health coaching message |
11839489, | Apr 13 2012 | adidas AG | Wearable athletic activity monitoring systems |
11931624, | Apr 13 2012 | adidas AG | Wearable athletic activity monitoring methods and systems |
12070655, | Apr 13 2012 | adidas AG | Sport ball athletic activity monitoring methods and systems |
12105208, | Jun 30 2004 | adidas AG | Systems and methods for providing a health coaching message |
12168165, | May 18 2009 | adidas AG | Methods and program products for building a workout |
7519537, | Jul 19 2005 | GOOGLE LLC | Method and apparatus for a verbo-manual gesture interface |
7577522, | Dec 05 2005 | GOOGLE LLC | Spatially associated personal reminder system and method |
7846067, | Oct 22 2004 | MYTRAK HEALTH SYSTEM INC | Fatigue and consistency in exercising |
7887492, | Sep 28 2004 | Impact Sports Technologies, Inc. | Monitoring device, method and system |
7894888, | Sep 24 2008 | CHANG GUNG UNIVERSITY | Device and method for measuring three-lead ECG in a wristwatch |
7901326, | May 04 2006 | Polar Electro Oy | User-specific performance monitor, method, and computer software product |
7914425, | Oct 22 2004 | CURVES INTERNATIONAL, INC | Hydraulic exercise machine system and methods thereof |
7927253, | Aug 17 2007 | adidas International Marketing B.V. | Sports electronic training system with electronic gaming features, and applications thereof |
8105208, | May 18 2009 | adidas AG | Portable fitness monitoring systems with displays and applications thereof |
8200323, | May 18 2009 | adidas AG | Program products, methods, and systems for providing fitness monitoring services |
8221290, | Aug 17 2007 | ADIDAS INTERNATIONAL MARKETING B V | Sports electronic training system with electronic gaming features, and applications thereof |
8313416, | Feb 20 2001 | adidas AG | Reconfigurable personal display system and method |
8360904, | Aug 17 2007 | ADIDAS INTERNATIONAL MARKETING B V | Sports electronic training system with sport ball, and applications thereof |
8360936, | May 18 2009 | adidas AG | Portable fitness monitoring systems with displays and applications thereof |
8694136, | Feb 20 2001 | TECHNIKKA CONEXION, LLC | Performance monitoring devices and methods |
8702430, | Aug 17 2007 | ADIDAS INTERNATIONAL MARKETING B V | Sports electronic training system, and applications thereof |
8801577, | May 18 2009 | adidas AG | Portable fitness monitoring systems with displays and applications thereof |
8855756, | May 18 2009 | adidas AG | Methods and program products for providing heart rate information |
9087159, | Aug 17 2007 | adidas International Marketing B.V. | Sports electronic training system with sport ball, and applications thereof |
9242142, | Aug 17 2007 | adidas International Marketing B.V. | Sports electronic training system with sport ball and electronic gaming features |
9257054, | Apr 13 2012 | adidas AG | Sport ball athletic activity monitoring methods and systems |
9401098, | Feb 20 2001 | adidas AG | Performance monitoring systems and methods |
9415267, | Feb 20 2001 | adidas AG | Performance monitoring systems and methods |
9478149, | Feb 20 2001 | adidas AG | Performance monitoring systems and methods |
9489863, | Feb 20 2001 | adidas AG | Performance monitoring systems and methods |
9500464, | Mar 12 2013 | adidas AG | Methods of determining performance information for individuals and sports objects |
9504414, | Apr 13 2012 | adidas AG | Wearable athletic activity monitoring methods and systems |
9550090, | May 18 2009 | addidas AG | Portable fitness monitoring systems with displays and applications thereof |
9589480, | Feb 20 2001 | adidas AG | Health monitoring systems and methods |
9615785, | Apr 01 2009 | adidas AG | Method and apparatus to determine the overall fitness of a test subject |
9625485, | Aug 17 2007 | adidas International Marketing B.V. | Sports electronic training system, and applications thereof |
9645165, | Aug 17 2007 | adidas International Marketing B.V. | Sports electronic training system with sport ball, and applications thereof |
9679494, | Feb 20 2001 | adidas AG | Performance monitoring systems and methods |
9683847, | Feb 20 2001 | adidas AG | Performance monitoring systems and methods |
9710711, | Jun 26 2014 | adidas AG | Athletic activity heads up display systems and methods |
9711062, | Feb 20 2001 | adidas AG | Performance monitoring systems and methods |
9721141, | Oct 30 2014 | Polar Electro Oy | Wrist-worn apparatus control with fingerprint data |
9737212, | Dec 26 2014 | Intel Corporation | Electronic device system to display biometric feedback |
9737261, | Apr 13 2012 | adidas AG | Wearable athletic activity monitoring systems |
9759738, | Aug 17 2007 | adidas International Marketing B.V. | Sports electronic training system, and applications thereof |
9767709, | Feb 20 2001 | adidas AG | Performance monitoring systems and methods |
9849361, | May 14 2014 | adidas AG | Sports ball athletic activity monitoring methods and systems |
9908001, | May 18 2009 | adidas AG | Portable fitness monitoring systems with displays and applications thereof |
9983007, | Feb 20 2001 | adidas AG | Performance monitoring systems and methods |
ER1759, | |||
ER1830, |
Patent | Priority | Assignee | Title |
4151707, | Jul 26 1976 | Multibrev Anstalt | Water proof watch |
4186489, | May 25 1978 | Measuring, pressing and hemming device | |
4843720, | Jun 06 1988 | Dental measuring instrument | |
5214624, | Oct 30 1990 | VON BRAUN, FRIEDRICH | Display device having a scale |
5579777, | Feb 18 1992 | Casio Computer Co., Ltd. | Exercise level of difficulty data output apparatus |
5732475, | Dec 12 1995 | Circumference monitor | |
5769755, | Jun 23 1995 | Precor Incorporated | Workout level indicator |
5980060, | Sep 01 1995 | Portable object having a fastening band illuminated by a super thin light element | |
CH276769, | |||
EP165505, | |||
GB2247838, | |||
GB2284156, | |||
GB2383416, | |||
JP58195540, | |||
WO50963, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 03 2001 | Polar Electro Oy | (assignment on the face of the patent) | / | |||
Oct 03 2001 | NISSILA, SEPPO | Polar Electro Oy | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012446 | /0319 |
Date | Maintenance Fee Events |
May 22 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 28 2012 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 18 2016 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 14 2007 | 4 years fee payment window open |
Jun 14 2008 | 6 months grace period start (w surcharge) |
Dec 14 2008 | patent expiry (for year 4) |
Dec 14 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 14 2011 | 8 years fee payment window open |
Jun 14 2012 | 6 months grace period start (w surcharge) |
Dec 14 2012 | patent expiry (for year 8) |
Dec 14 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 14 2015 | 12 years fee payment window open |
Jun 14 2016 | 6 months grace period start (w surcharge) |
Dec 14 2016 | patent expiry (for year 12) |
Dec 14 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |