An insulative body for producing two kinds of terminal modules is disclosed. The insulative body is moldable over two kinds of terminals sets, and has one end face formed with spaced apart parallel ribs confining grooves therebetween. Each terminals set includes two rows of terminals having retention sections surrounded by the insulative body, and tail sections extending out of the end face of the body such that the ribs and grooves extend between two rows of the tail sections. In one kind of the terminals sets, two rows of the tail sections include bent sections spaced from each other by the ribs and converging toward a plane, and soldering sections coplanar in the plane. In another terminals set, the tail sections are bent at right angle and are received in the respective grooves to be soldered to respective wires.
|
1. A cable connector comprising:
a cable having a plurality of wires;
a connector housing; and
a terminal module mountable on said connector housing to establish an electrical connection with said wires, said terminal module including an insulative body having two opposed first and second faces, and a plurality of spaced apart parallel ribs formed in said first face and confining grooves therebetween, said insulative body being molded over two rows of terminals,
wherein said terminals each include a retention section surrounded by said insulative body, and a tail section extending out of said insulative housing through said first face, said parallel ribs and grooves extending between said two rows of said tail sections, said grooves having first ends on the same side and second ends opposite to said first ends;
wherein said tail sections of said terminals include bent sections extending respectively from said retention sections, and soldering sections extending respectively from said bent sections and being coplanar with each other in a same plane, said soldering sections being soldered respectively to said wires, said bent sections having proximal ends adjacent to said first face and distal ends extending away from said first face and connected to said soldering sections, all of said bent sections converging from said proximal ends to said plane of said soldering sections, said proximal ends of said bent sections in one of said rows and said proximal ends of said bent sections in the other one of said rows alternately passing through said first and second ends of said grooves, every other one of said first ends of said grooves receiving one of said proximal ends of said terminals of one row, every other one of said second ends of said grooves receiving one of said proximal ends of said terminals of the other row, said proximal ends of said bent sections being spaced from each other by said ribs.
4. A cable connector comprising,
a terminal module which includes a terminals set and an insulative body molded over said terminals set through an insert molding process,
said insulative body having two opposed first and second faces, and a plurality of spaced apart parallel ribs formed in said first face and confining grooves therebetween,
said terminals set being selected from a group consisting of a first terminals set and a second terminals set,
each of said first and second terminals sets having two rows of terminals, said terminals including retention sections surrounded by said insulative body, and tail sections respectively extending from said retention sections, said tail sections extending out of said insulative body from said first face, said parallel ribs and grooves extending between said two rows of said tail sections, said grooves having first ends on the same side and second ends opposite to said first ends;
wherein said tail sections of said terminals of said first terminals set include bent sections extending respectively from said retention sections, and soldering sections extending respectively from said bent sections and being coplanar with each other in a same plane, said bent sections having proximal ends adjacent to said first face and distal ends extending away from said first face and connected to said soldering sections, all of said bent sections converging from said proximal ends to said plane of said soldering sections, said proximal ends of said bent sections in one of said rows and said proximal ends of said bent sections in the other one of said rows alternately passing through said first and second ends of said grooves, every other one of said first ends of said grooves receiving one of said proximal ends of said terminals of one row, every other one of said second ends of said grooves receiving one of said proximal ends of said terminals of the other row, said proximal ends of said bent sections being spaced from each other by said ribs, and
wherein said two rows of said tail sections of said second terminals set are bent substantially at right angles and are alternately received in said grooves.
2. The cable connector as claimed in
3. The cable connector as claimed in
5. A cable connector as claimed in
|
This application is also a continuation-in-part of U.S. patent application Ser. No. 09/991,677 filed by the applicant on Nov. 26, 2001 abandoned, the entire disclosure of which is incorporated herein by reference.
This application claims priority of Taiwanese Application No. 090215659 filed on Sep. 12, 2001.
1. Field of the Invention
This invention relates to an electrical connector, more particularly to a bus cable connector including an insulative body molded over a set of terminals and having an end face formed with parallel grooves and ribs.
2. Description of the Related Art
With the fast development of the information industry, use of a large amount of storage devices is becoming popular. The transmission and communication of data in the hardware requires use of bus cable connectors.
An object of the present invention is to provide a cable connector having two rows of terminals with soldering sections aligned in a same plane for electrical connection with wires of a cable, thus eliminating the need to separate paired wires of a cable into two rows.
Another object of the present invention is to provide one form of insulative body which can be insert-molded over either one of two types of terminals sets for producing two different terminal modules, thereby permitting the use of a common mold for producing different terminal modules.
According to one aspect of the present invention, a cable connector comprises: a cable having a plurality of wires; a connector housing; and a terminal module mountable on the connector housing to establish an electrical connection with the wires, the terminal module including an insulative body having two opposed first and second faces, and a plurality of spaced apart parallel ribs formed in the first face and confining grooves therebetween, the insulative body being molded over two rows of terminals, the terminals each including a retention section surrounded by the insulative body, and a tail section extending out of the insulative housing through the first face, the parallel ribs and grooves extending between the tail sections of the two rows, the grooves having first ends on the same side and second ends opposite to the first ends, wherein the tail sections of the terminals include bent sections extending respectively from the retention sections, and soldering sections extending respectively from the bent sections and being coplanar with each other in a same plane, the soldering sections being soldered respectively to the wires, the bent sections having proximal ends adjacent to the first face and distal ends extending away from the first face and connected to the soldering sections, all of the bent sections converging from the proximal ends to the plane of the soldering sections, the proximal ends of the bent sections in one of the rows and the proximal ends of the bent sections in the other one of the rows alternately passing through the first and second ends of the grooves, every other one of the first ends of the grooves receiving one of the proximal ends of the terminals of one of the rows, every other one of the second ends of the grooves receiving one of the proximal ends of the terminals in the other row, the proximal ends of the bent sections being spaced from each other by the ribs.
In another aspect of the present invention, a cable connector comprises a terminal module which includes a terminals set and an insulative body molded over the terminals set through an insert molding process, the insulative body having two opposed first and second faces, and a plurality of spaced apart parallel ribs formed in the first face and confining grooves therebetween, the terminals set being selected from a group consisting of a first terminals set and a second terminals set, each of the first and second terminals sets having two rows of terminals, the terminals including retention sections surrounded by the insulative body, and tail sections respectively extending from the retention sections, the tail sections extending out of the insulative body from the first face, the parallel ribs and grooves extending between the two rows of the tail sections, the grooves having first ends on the same side and second ends opposite to the first ends; wherein the tail sections of the first terminal set include bent sections extending respectively from the retention sections, and soldering sections extending respectively from the bent sections and being coplanar with each other in a same plane, the bent sections having proximal ends adjacent to the first face and distal ends extending away from the first face and connected to the soldering sections, all of the bent sections converging from the proximal ends to the plane of the soldering sections, the proximal ends of the bent sections in one of the rows and the proximal ends of the bent sections in the other one of the rows alternately passing through the first and second ends of the grooves, every other one of the first ends of the grooves receiving one of the proximal ends of the terminals of one of the rows, every other one of the second ends of the grooves receiving one of the proximal ends of the terminals of the other row, the proximal ends of the bent sections being spaced from each other by the ribs, wherein the two rows of the tail sections of the second terminals set are bent substantially at right angles and are alternatively received in the grooves.
Other features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiments of the invention, with reference to the accompanying drawings, in which:
Before the present invention is described in greater detail, it should be noted that same reference numerals have been used to denote like elements throughout the specification.
Referring to
Referring again to
The bent sections 34 have respective proximal ends 341 adjacent to the first face 20A of the insulative body 20, and respective distal ends 342 extending away from the first face 20A and connected to the respective soldering sections 35. The bent sections 34 of the terminals 30 in one row are staggered with respect to the bent sections 34 in the other row along a direction transverse to the directions of the rows of the terminals 30. The bent sections 34 converge from the proximal ends 341 to the plane of the soldering sections 35. As best shown in
Referring again to
Each terminal 30′ has a contact section 31′, a retention section (not shown) retained within the insulative body 20 and a tail section 34′ extending out of the insulative body 20 from the first face 20A of the insulative body 20. Ribs 21 and grooves 22 extend between two rows of the tail sections 34′ of the terminals 30′. The tail sections 34′ are staggered with respect to each other along a direction transverse to the direction of the rows of the tail sections 34′.
Referring to
As described above, the insulative body 20 of the terminal module (D) shown in
An example of a process for fabricating the insulative bodies 20 of the terminal modules (B) and (D) by using a common mold is described hereunder. As shown in
In view of the aforesaid, the insulative body 20 the present invention can be used to produce the terminal modules (B) and (D) of the cable connectors (A) and (C). In other words, the present invention permits production of two different types of cable connectors by using a common mold, thereby reducing the production costs for manufacturing two types of cable connectors.
While the present invention has been described in connection with what is considered the most practical and preferred embodiments, it is understood that this invention is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretations and equivalent arrangements.
Wang, Pai-Chuan, Liu, Yau-Hsuan
Patent | Priority | Assignee | Title |
7048573, | Jun 09 2003 | J.S.T. Mfg. Co., Ltd. | Plug-type connector and electric connector comprising the same |
7128596, | Jun 09 2003 | J.S.T. Mfg. Co., Ltd. | Plug-type connector and electric connector comprising the same |
7273390, | Mar 01 2004 | PANASONIC ELECTRIC WORKS CO , LTD | Connector assembly |
7430801, | Mar 01 2004 | PANASONIC ELECTRIC WORKS CO , LTD | Connector assembly |
7658640, | Sep 21 2007 | Japan Aviation Electronics Industry, Limited; NEC Corporation | Cable connector, method of connecting a cable connector and a cable |
8608512, | Apr 18 2011 | FCI Americas Technology, LLC | Cable connector |
Patent | Priority | Assignee | Title |
3907396, | |||
4035050, | May 05 1976 | AMP Incorporated | Ribbon coaxial cable connector |
4094564, | Mar 17 1977 | Minnesota Mining and Manufacturing Company | Multiple conductor electrical connector with ground bus |
4278314, | Oct 31 1979 | AMP Incorporated | Connector assembly for flat cable conductors in multiple rows |
4311356, | Jan 23 1980 | Transducer head having pin type connectors | |
4323295, | May 29 1980 | AT & T TECHNOLOGIES, INC , | Two-piece strain relief and connectorized flat cable assembly formed therewith |
4508403, | Nov 21 1983 | O.K. Industries Inc. | Low profile IC test clip |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 08 2003 | WANG, PAI-CHUAN | CHIU, HUNG-JEN | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013979 | /0042 | |
Apr 08 2003 | LIU, YAU-HSUAN | CHIU, HUNG-JEN | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013979 | /0042 | |
Apr 18 2003 | Hung-Jen, Chiu | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 03 2008 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Apr 10 2012 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Oct 07 2016 | REM: Maintenance Fee Reminder Mailed. |
Mar 01 2017 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 01 2008 | 4 years fee payment window open |
Sep 01 2008 | 6 months grace period start (w surcharge) |
Mar 01 2009 | patent expiry (for year 4) |
Mar 01 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 01 2012 | 8 years fee payment window open |
Sep 01 2012 | 6 months grace period start (w surcharge) |
Mar 01 2013 | patent expiry (for year 8) |
Mar 01 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 01 2016 | 12 years fee payment window open |
Sep 01 2016 | 6 months grace period start (w surcharge) |
Mar 01 2017 | patent expiry (for year 12) |
Mar 01 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |