A circuit for providing a current to an organic light emitting diode comprising: (a) an amorphous silicon field effect transistor having a gate electrode and a drain electrode through which the current is provided to the organic light emitting diode; and (b) a controller for controlling a bias between the gate electrode and the drain electrode to maintain a threshold voltage shift of less than about 1V. The organic light emitting diode is preferably a component in an active matrix. #1#
|
#1# 1. A circuit for providing a current to an organic light emitting diode comprising:
an amorphous silicon field effect transistor having a gate electrode and a drain electrode through which said current is provided to said organic light emitting diode; and
a controller for controlling a duration of voltage applied between said gate electrode and said drain electrode to maintain a threshold voltage shift of less than about 1 v,
wherein said range of duration for applying voltage between said gate electrode and said drain electrode is between about 1% to 99.9% of a frame time.
#1# 11. A field effect transistor comprising:
a substrate;
a gate electrode deposited upon a surface of said substrate;
a first amorphous siox layer disposed on said gate electrode;
a second amorphous siox or sinx layer deposited on at least a portion of said first amorphous siox layer;
a first amorphous silicon layer deposited on said second amorphous siox or sinx layer;
a third amorphous sinx layer deposited on at least a portion of said first amorphous silicon layer;
a second amorphous silicon layer deposited on a first and second side portions of said third amorphous sinx layer;
a drain electrode deposited on either said first or second side portions of said second amorphous silicon layer; and
a source electrode deposited on the side portion of said second amorphous silicon layer other than the side portion upon which said drain electrode is deposited,
wherein, when a bias is applied to said sate electrode, said first amorphous siox layer has a first voltage shift of a first polarity, and said second amorphous siox or sinx layer has a second voltage shift of a second polarity that is opposite of said first polarity.
#1# 2. The circuit according to
#1# 3. The circuit according to
#1# 4. The circuit according to
#1# 5. The circuit according to
#1# 6. The circuit according to
#1# 7. The circuit according to
a substrate;
said gate electrode deposited upon a surface of said substrate;
a first amorphous siox layer disposed on said gate electrode;
a second amorphous siox or sinx layer deposited on at least a portion of said first amorphous siox layer;
a first amorphous silicon layer deposited on said second amorphous siox or sinx layer;
a third amorphous sinx layer deposited on at least a portion of said first amorphous silicon layer;
a second amorphous silicon layer deposited on a first and second side portions of said third amorphous sinx layer;
said drain electrode deposited on either said first or second side portions of said second amorphous silicon layer; and
a source electrode deposited on the side portion of said second amorphous silicon layer other than the side portion upon which said drain electrode is deposited.
#1# 8. The circuit according to
#1# 9. The circuit according to
#1# 10. The circuit according to
#1# 12. The field effect transistor according to
#1# 13. The field effect transistor according to
|
The present invention claims priority to U.S. Provisional Patent Application No. 60/331,918, filed on Nov. 20, 2001.
The present invention is generally related to bias conditions and geometrical structures for amorphous silicon field effect transistors (FETs). More particularly, the present invention is directed to an amorphous silicon FET structure within a pixel that is directly supplying the current to the organic light emitting diode (OLED) and bias condition of that FET which reduces the threshold voltage instability with time and which does not degrade the performance of the device to deliver the needed current and gray scale. The resulting FET device and bias conditions are particularly useful in matrix addressed organic light emitting diodes (OLEDs).
Despite abundant conjecture to the contrary, it has been established for the first time that amorphous silicon (a-Si) technology is more than adequate to meet the pixel current drive requirements of an active matrix organic light-emitting diode (AMOLED) display. Prevailing wisdom, based almost exclusively on the industry's familiarity with AMLCD a-Si backplanes, suggests that even if current drive requirements can be met using a-Si thin film transistor (TFT), the well-known threshold instability of such devices precludes their use in a voltage-programmed active matrix design, since any loss of current drive in the OLED element results directly in a loss of luminance, whereas in an AMLCD, loss of TFT current results only in an increase in the pixel capacitance charging time (on the order of μs) rather than in a change in the final voltage, hence luminance levels may remain unchanged for voltage shifts as large as 10V for AMLCDs. It should be pointed out, however, that the range of voltages and the drive regime of the current drive TFT in an AMOLED display are, and in fact must be, dramatically different. Refer to a
In an AMOLED display, the luminance level is not a function of the final voltage applied to the LC cell, but rather is a function of the current level supplied by a drive TFT (see FIG. 1B). The switch TFT operates in the same fashion as the single TFT in the AMLCD unit cell. However, the data voltage is written onto a storage capacitor attached to the gate of the current drive transistor, and it is the threshold stability of this current drive TFT which must remain stable over a long period of operation (i.e., a good fraction of the frame time) for the AMOLED display to be commercially useful.
The belief in this technology area has always been that amorphous silicon TFTs do not have the performance needed for integration into the matrix addressed pixel to drive OLEDs (J. Kanicki et al, SID 20th IDRC Proceedings, September 25-28, Palm Beach, Fla., pp 354-358) and that all prototypes and products to date reflect this belief by using poly-silicon TFT technology.
The present inventors have developed the following unique drive schemes tailored explicitly to combat threshold shift, thus making the use of a-Si technology practical for AMOLED. Providing for amorphous silicon TFTs to meet the AMOLED requirements, such as that provided by the present invention, the less expensive amorphous silicon (a-Si) TFT technology compared to the more costly poly-SI TFT technology would provide substantially lower manufacturing cost.
The present invention also provides many additional advantages which shall become apparent as described below.
The present invention is directed to an amorphous silicon FET structure within a pixel that is directly supplying the current to the organic light emitting diode (OLED) and bias condition of that FET which reduces the threshold voltage instability with time and which does not degrade the performance of the device to deliver the needed current and gray scale. The resulting FET device and bias conditions are particularly useful in matrix addressed organic light emitting diodes (OLEDs).
The present invention is a circuit for providing a current to an organic light emitting diode comprising: (a) an amorphous silicon field effect transistor having a gate electrode and a drain electrode through which the current is provided to the organic light emitting diode; and (b) a controller for controlling a bias between the gate electrode and the drain electrode to maintain a threshold voltage shift over time of less than about 1V. The organic light emitting diode is preferably a component in an active matrix.
The bias is a condition selected from the group consisting of: range of voltage applied between the gate electrode and the drain electrode, and duration of voltage applied between the gate electrode and the drain electrode. The range of voltage difference applied between the drain electrode and the gate electrode is in the range between about −Vth to 20V. The range of duration for applying voltage between the gate electrode and the drain electrode is between about 1% to 99.9% of the frame time.
For the case of average resolution AMOLED display (i.e., about 75 pixels-per-inch to 150 ppi) of average brightness (in the range of about 50 to 500 Cd/m2), the current is preferably in the range from about 10 nA to 10 μA. The current is inversely proportional to the pixel fill factor of the OLED, inversely proportional to the illumination duty cycle (i.e., ratio of OLED illumination on-time-to-frame-time, multiplied by 100 percent), proportional to the pixel area, inversely proportional to the organic film efficiency, and proportional to the pixel brightness.
The field effect transistor is typically a thin film transistor. The field effect transistor comprises: a substrate; the gate electrode deposited upon a surface of the substrate; a first amorphous SiOx layer disposed on the gate electrode; a second amorphous SiOx or SiNx layer deposited on at least a portion of the first amorphous SiOx layer; a first amorphous silicon layer deposited on the second amorphous SiOx or SiNx layer; a third amorphous SiNx layer deposited on at least a portion of the first amorphous silicon layer; a second amorphous silicon layer deposited on a first and second side portions of the third amorphous SiNx layer; the drain electrode deposited on either the first or second side portions of the second amorphous silicon layer; and the source electrode deposited on the side portion of the second amorphous silicon layer other than the side portion upon which the drain electrode is deposited, where the drain electrode and source electrode may be deposited at the same time and defined by the same photolithography step
Other and further objects, advantages and features of the present invention will be understood by reference to the following specification in conjunction with the annexed drawings, wherein like parts have been given like numbers.
As a point of introduction, consider
Since it has been established that threshold instability may result from both injection of carriers into the SiNx gate insulator as well as breaking of weak bonds at the a-Si/SiNx interface (F. R. Libsch and J. Kanicki, Applied Physics Letters, Vol. 62, No. 11, pp1286-1288), there exists a notion that a-Si is unsuitable for current driving since neither mechanism can be fully mitigated. Because sustained TFT current densities are needed for good OLED brightness, it is assumed that degradation of the near-interface region of the a-Si channel will only worsen the threshold shift problem. As will be shown below, by correct sizing of the unit cell TFTs and storage capacitor, the current density requirements for OLED can easily be met. Moreover, we show clearly in
The results above lead us to conclude that a practical driving scheme for AMOLED must ensure that little or no shift of the current drive TFT takes place by simultaneously controlling the range and duration of voltage applied to both the gate electrode and the drain electrode. Effectively, this requires defining a set range of gate bias, a corresponding drain bias range and an appropriate set of waveforms (i.e., duty cycles for each) such that the net result leads to net compensation of the shift instability. The exact set of bias ranges and waveforms will depend on the a-Si and SiNx materials properties, and accordingly these must be optimized and the film deposition conditions known. That such a scheme is workable can be understood from FIG. 4. Here a simple experiment with a fixed drain bias of 10V and a variable gate bias from 0 to 10 V (both DC in this case) demonstrates how partial compensation can be achieved simply by driving the TFT deeper in saturation. A useful set of drive currents from about 50 nA up to more than 1.5 μA (grayscale) exist for gate bias from 3 to 10 V, and we note that for Vg less than about 4 V, the threshold shift is negative. In general, to account for various pixel size designs, a pixel current normalized by area may be more useful. In general, useful pixel current densities are less than 20 mA/cm2. For NTSC type application we expect the panel bias conditions to average to mid-gray over the panel lifetime, hence we may choose the appropriate set of signals to give us zero shift at a target current level.
Experimental Results
It was experimentally determined by the inventors that a-Si TFTs driven in saturation always exhibit less threshold shift for a given Vg than when driven in the linear regime (small Vd typically 0.1 to 1.0 V). This was found to be universally true and has been verified in many single PECVD gate insulator material combination as we as devices which employ a composite SiOx/SiNx gate insulator (GI). All SiNx gate insulators, typically exhibit half the shift in saturation that occurs in the linear regime, despite the fact that the current in the channel is usually an order of magnitude greater with Vd=Vg. In fact, it was quickly determined that there is continuous improvement in threshold stability for a given device as Vd is increased from 0 to Vg, and even beyond. This trend is shown in
It does not take long to realize that the experimental behavior is entirely to be expected, although the magnitude of the benefit requires some calculation. The threshold shift model takes the form shown in Eq. 1, where the prefactor V0 is assumed to be the gate drive, or V0˜(Vg−VT0), with VT0 equal to the initial threshold of the device before stress. As long as
ΔVT=|V0|{1−exp(−t/τ)β} (1)
the condition Vd<<Vg (e.g. Vs=0, Vd=0.1 V, Vg>5) is satisfied during the stress experiment, then the field across the gate insulator is essentially uniform from the source to the drain, and Eq. 1 is directly applicable. As Vd is increased however, one must take into account the voltage drop along the channel, V(y), from drain, V(y)=Vd, to source, V(y)=Vs, and incorporate this into the model by replacing the constant prefactor in Eq. 1 with the function [Vg−VT0−V(y)], 0. Calculation takes place in three parts. First the initial potential distribution from source to drain is calculated using initial conditions including Id@t=0 by means of the standard long channel approximation given in Eq. 2. It is helpful to assume a polynomial form for V(y) and proceed by self-consistent iteration until the desired
dV(y)/dy=Id/[WμCi(Vg−VT−V(y)] (2)
accuracy is achieved. A family of position-dependent “driving force” potentials calculated using the starting D/S channel potentials is given in FIG. 5. In the second part of the simulation, the starting prefactor profile is then fed into Eq. (1) and the numerical calculation of Id is initiated using logarithmic timestep intervals. After each shift recalculation, the prefactor at any point along the channel changes, and numerical integration of Eq. 2 yields a value for Vd which must be scaled down to its constant value by decreasing Id proportionally. What results from this simulation is an Id decay curve. Examples of these are shown in
Simulated (lines) and data (points) current decay curves using the modified theory which takes the D/S potential into account are shown in
Simulated effective threshold shifts for Vd approaching saturation are shown in
For the moment we cannot precisely calculate the shift once saturation has been reached, since the channel field completely collapses near the drain, and this requires another modification to calculate how fast the pinch-off point moves away from the drain as Vd is further increased. Regardless, the boundary conditions indicate that the field across the gate insulator near the drain must actually reverse up to the classical pinch-off point, which assures us that there is only benefit in driving the TFT deeper into saturation as long as no degradation of the a-Si near the drain takes place. This appears to be an area where a-Si probably has an advantage over poly-Si since large fields near the drain of poly-Si TFTs are known to cause instability problems. One final observation which was first seen in the data of
We may confirm that the reduction of the effective ΔVT prefactor truly persists throughout the lifetime of the TFT by accelerating the shift using high temperature BTS.
At the heart of the question of a-Si feasibility lies a fundamental challenge, i.e., to establish a window of acceptable stability using all of the parameters under our control, namely PECVD materials properties, maximum bias values, duty cycle and driving schemes which may include compensation. It was quickly determined that for “standard” TFT SiNx gate insulator properties, gate voltages beyond about 10 V lead to unacceptably large shifts. For example, the Vg=15 V, Vd=11.5 V simulations of TFTs in
TABLE I
(Projected current half-lives for a variety of TFTs and bias conditions)
GI SiNx
ΔVT
thickness
Vg/Vd
duty
Id0
GI Emax
Vto
(½)
t (½)
plate
(Å)
(V)
(%)
(uA)
(kV/cm)
(V)
(V)
(hours)
4306
3900
10/10
100
4.3
256
1.3
2.5
730
4306
3900
10/15
100
4.7
256
1.5
2.5
900
4306
3900
10/10
50
4.3
256
1.4
2.5
2500
4492
3300
12/10
100
6.3
364
1.6
3.0
180
4492
3300
10/10
100
3.6
303
1.8
2.4
400
4492
3300
8/10
100
2.4
242
1.9
1.8
4200
4492
3300
10/10
50
3.6
303
1.8
2.4
1800
4492
3300
8/8
50
2.1
242
1.8
1.8
1900
4668
2550
10/10
100
6.5
392
1.1
2.6
200
4668
2550
8/10
100
3.6
314
1.1
2.0
420
4668
2550
6/10
100
1.5
235
1.1
1.4
450
4668
2550
10/10
50
6.5
392
1.1
2.6
1620
4668
2550
10/10*
50
6.5
392
1.2
2.6
3200*
4668
2550
8/10
50
3.6
314
1.1
2.0
3300
4668
2550
5/10
50
1.0
196
1.1
1.1
3900
*denotes that the AC low level was set at −2 V instead of zero to investigate compensations
While data were collected on many plates, Table I shows a collection for three in particular. Plate 4306 had a thick gate insulator deposited using our “standard” TEL PECVD SiNx, plate 4492 had a thinner TEL SiNx GI which employed H2 dilution, and plate 4668 had all Balzers Kai PECVD materials and the thinnest GI SiNx of them all. The starting ON currents, Id0, are specified for driver TFTs which have W/L=100/7, the same driver TFTs used in the 40 mm AMOLED display. Note that each 1.0 uA of drive current corresponds to a pixel current density of approximately 9 mA/cm2 in the actual display, so that the test conditions which is more than sufficient to achieve good AMOLED brightness according to ZRL data. Some entries correspond to 60 Hz/50% duty data rather than DC data. Unless otherwise noted, the AC low level is zero volts. There are a couple of fairly clear trends: 1) AC operation results in much greater stability than DC operation for the same bias conditions, 2) a thicker GI (i.e. lower maximum electric field across the GI) generally results in greater stability for the same bias conditions, 3) lower gate bias (i.e. lower maximum electric field across the GI) results in greater stability for a given gate insulator thickness, and 4) a low negative gate bias replacing the zero volt bias during a portion of the AC operation can result in a lower TFT threshold voltage shift. All of these results agree with the fundamental assumptions contained within the threshold shift model. Moreover, the trend of the data suggests that we may indeed define an operational window wherein a-Si TFTs will be sufficient to supply the required AMOLED drive current, and at the same time sufficiently stable for TV application. There are a number of reasons for making this optimistic claim. First, the data from Table I show that the half-life improvement seen by decreasing the duty cycle from 100% to 50% is not simply linear; the data show an increase in lifetime ranging from a factor approximately 3 to 8 for the same bias conditions. Since we expect perceived brightness to decrease by only 50%, then by proper design of the driver TFT we take advantage of improvement in lifetime. One may also note that as OLED material efficiency improves with time, further reduction in duty cycle should lead to further superlinear improvement in lifetime. Another reason to be optimistic is that for television (TV) applications, the entire display should average to some midgray level rather than to the “full ON” state given by data (Vg of driver TFT) of 10 V, so the 50% duty cycle lifetimes ranging from about 1600 to 2500 hours are worst case (every pixel full on), not the typical scenario. Some of the longer times of closer to 4000 hours are more reasonable in this respect. There is however an even more compelling reason to expect that a-Si technology is feasible, and this hinges on the fact that not all gate insulators behave the same way under stress—as it turns out, the composite GI stack of SiOx/SiNx exhibits some striking differences from the pure SiNx deposited GI stack.
The AC/DC results on SiOx/SiNx GI TFTs at 35° C. under a variety of bias conditions are shown in
Band diagram of composite SiOx/SiNx gate insulator showing reduction of SiNx electric field relative to SiOx, electron injection into SiNx from a-Si, and positive charge moving across SiOx, as shown in FIG. 9. The compensation flow is merely illustrative. Because of the higher dielectric constant of PECVD SiNx relative to SiOx (approximately 7 vs. approximately 4.5), more gate voltage is dropped across the SiOx than the SiNx, hence the electric field (which we know drives injection and trapping of electrons in the SiNx) across the SiNx portion of the GI is reduced proportionally. This in itself is obviously beneficial, but the fact that the data show strong composition behavior (sometimes resulting in a negative threshold shift over some initial period of time) indicates that a competing mechanism of opposite sign charge carrier must be at work on the SiOx side of the GI. The figure is meant to show that compensation can take place, although we do not explicitly suggest that holes hop via trap sites in SiOx the same way electrons hop through SiNx via the Poole-Frenkel mechanism. It behooves us to understand and exploit this behavior as much as we can, since it bodes particularly well for proposed AMOLED negative gate pulse compensation drive schemes.
A further improvement in reducing the TFT threshold voltage shift can be understood from
In comparing the TFT source current versus gate voltage characteristics as a function of constant gate bias stress time of
Another further improvement in reducing the TFT threshold voltage shift or reducing the rate of decrease in on current can be understood from
In comparing the normalized time dependence of the source to drain on currents of FIG. 13 and
While we have shown and described several embodiments in accordance with our invention, it is to be clearly understood that the same are susceptible to numerous changes apparent to one skilled in the art. Therefore, we do not wish to be limited to the details shown and described but intend to show all changes and modifications which come within the scope of the appended claims.
Andry, Paul S, Libsch, Frank R, Takatoshi, Tsujimura
Patent | Priority | Assignee | Title |
8098536, | Jan 24 2008 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Self-repair integrated circuit and repair method |
8422322, | Jan 24 2008 | GLOBALFOUNDRIES Inc | Self-repair integrated circuit and repair method |
8687445, | Nov 03 2011 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Self-repair integrated circuit and repair method |
8773518, | Jan 19 2009 | Panasonic Corporation | Image display apparatus and image display method |
8848153, | Dec 12 2003 | Innolux Corporation | Image display device |
8860911, | Dec 12 2003 | Innolux Corporation | Image display device |
Patent | Priority | Assignee | Title |
5034340, | Feb 26 1988 | SEIKO PRECISION INC | Amorphous silicon thin film transistor array substrate and method for producing the same |
5132745, | Oct 05 1990 | General Electric Company | Thin film transistor having an improved gate structure and gate coverage by the gate dielectric |
5311040, | Mar 27 1990 | Kabushiki Kaisha Toshiba | Thin film transistor with nitrogen concentration gradient |
5684555, | Dec 19 1994 | JAPAN DISPLAY CENTRAL INC | Liquid crystal display panel |
5952789, | Apr 14 1997 | HANGER SOLUTIONS, LLC | Active matrix organic light emitting diode (amoled) display pixel structure and data load/illuminate circuit therefor |
6023259, | Jul 11 1997 | ALLIGATOR HOLDINGS, INC | OLED active matrix using a single transistor current mode pixel design |
6107640, | Jul 02 1996 | LG DISPLAY CO , LTD | Semiconductor device for a thin film transistor |
6229506, | Apr 23 1997 | MEC MANAGEMENT, LLC | Active matrix light emitting diode pixel structure and concomitant method |
6229508, | Sep 29 1997 | MEC MANAGEMENT, LLC | Active matrix light emitting diode pixel structure and concomitant method |
20010030323, | |||
GBO9425954, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 11 2002 | ANDRY, PAUL S | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013523 | /0098 | |
Nov 11 2002 | LIBSCH, FRANK R | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013523 | /0098 | |
Nov 11 2002 | TAKATOSHI, TSUJIMURA | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013523 | /0098 | |
Nov 20 2002 | International Business Machines Corporation | (assignment on the face of the patent) | / | |||
Jul 11 2005 | International Business Machines Corporation | Toppoly Optoelectronics Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016536 | /0563 | |
Jun 05 2006 | Toppoly Optoelectronics Corp | TPO Displays Corp | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 025681 | /0260 | |
Mar 18 2010 | TPO Displays Corp | Chimei Innolux Corporation | MERGER SEE DOCUMENT FOR DETAILS | 025919 | /0563 | |
Dec 19 2012 | Chimei Innolux Corporation | Innolux Corporation | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 032604 | /0487 |
Date | Maintenance Fee Events |
Sep 29 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 01 2012 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 29 2016 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 29 2008 | 4 years fee payment window open |
Sep 29 2008 | 6 months grace period start (w surcharge) |
Mar 29 2009 | patent expiry (for year 4) |
Mar 29 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 29 2012 | 8 years fee payment window open |
Sep 29 2012 | 6 months grace period start (w surcharge) |
Mar 29 2013 | patent expiry (for year 8) |
Mar 29 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 29 2016 | 12 years fee payment window open |
Sep 29 2016 | 6 months grace period start (w surcharge) |
Mar 29 2017 | patent expiry (for year 12) |
Mar 29 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |