An offset die stacking arrangement is disclosed having at least one upper level die having a width which is less than the distance separating the opposing bonding sites of the underlying die. The upper die is fixed above the lower die and rotated within a plane parallel to the lower die through an angle which insures that none of the bonding sites of the lower die are obstructed by the upper die. Once the dice are fixed in this manner, the entire assembly is subjected to the wire bonding process with all of the bonds being made in the same step.
|
1. A method of stacking a plurality of die, comprising
mounting an upper die on a lower die; and
defining an angular offset with said mounting, wherein said angular offset allows access to a bonding site on said lower die, and wherein at least one end of said upper die is unsupported.
4. A method of manufacturing a multichip module including dies, comprising:
stacking said dies, wherein corresponding portions of any two of said dies define respective axes, and wherein said axes define an offset angle; and
allowing at least one end of at least one of said dies to be free of support.
7. A method of stacking a plurality of chips
spiraling said plurality of chips around an axis perpendicular to said plurality of chips;
ensuring bond pad clearance to each chip of said plurality of chips; and
limiting reinforcement of at least one of said plurality of chips to regions intersecting said axis.
3. A method of manufacturing a multichip module including dies, comprising:
stacking said dies in a manner such that corresponding portions of any two of said dies define respective axes, and wherein said axes define an offset angle; and
refraining from propping at least one of said dies in a region extending laterally from any underlying die.
11. A method of arranging dies in a multidie device, comprising:
serially stacking said dies; and
establishing a unique orientation for each die of said dies, wherein said orientation for said each die defines an underlying bond pad clearance, and wherein at least one orientation leaves at least one end of at least one of said dies free of bolstering.
5. A method of manufacturing a multichip module including dies, comprising:
stacking said dies, wherein corresponding portions of any two of said dies define respective axes, and wherein said axes define an offset angle; and
limiting direct support for a first die of said dies to a region between said first die and a second die of said dies, said second die immediately underlying said first die.
6. A method of assembling a plurality of dies, comprising:
stacking said plurality of dies along an axis;
establishing an orientation for each die of said plurality of dies;
clearing a line of sight to contact areas of any immediately underlying die with said orientation for said each die, wherein said line of sight is parallel to said axis;
clearing a line of sight to contact areas of any underlying die with said orientation for said each die; and
directly holding up at least one of said plurality of dies only in a region that intersects said axis.
8. The method in
9. The method in
10. The method in
|
This application is a divisional of U.S. application Ser. No. 09/122,666, filed Jul. 24, 1998 and issued as U.S. Pat. No. 6,051,886; which is a continuation of U.S. application Ser. No. 08/741,579, filed Nov. 1, 1996 and issued as U.S. Pat. No. 5,874,781; which is a continuation of U.S. application Ser. No. 08/515,719, filed Aug. 16, 1995 and now abandoned.
This invention generally relates to semiconductor devices. More particularly, this invention relates to a multichip module which employs stacked dice.
Semiconductor devices are constructed from a silicon or gallium arsenide wafer through a process which comprises a number of deposition, masking, diffusion, etching, and implanting steps. Usually, many individual devices are constructed on the same wafer. When the devices are sawed into individual rectangular units, each takes the form of an integrated circuit (IC) die. In order to interface a die with other circuitry, normally it is mounted on a lead-frame paddle, in the case of single chip construction, or a multichip module substrate which in either case are surrounded by a number of lead fingers within a lead-frame. Hereafter general reference will be made by use of the word “substrate” as meaning either a paddle or a multichip module substrate or their functional equivalents.
The die-mounting substrate of a standard lead-frame is larger than the die itself, and it is surrounded by multiple lead fingers of individual leads. Bonding pads on the die are connected one by one in a wire-bonding operation to the lead-frame's lead finger pads with extremely fine gold or aluminum wire. The lead-frames are connected together for manufacturing purposes into a strip. Each strip generally consists of a linear series of interconnected lead-frames, typically ten in a row, one after another. Then the die and the portion of the lead-frame to which the die is attached, are encapsulated in a plastic or ceramic material to form the chip package, as are all other die/lead-frame assemblies on the lead-frame strip. A trim-and-form operation then separates the resultant interconnected packages and bends the leads of each package into the proper configuration.
In many cases, multichip devices can be fabricated faster and more cheaply than a corresponding single IC which incorporates the same functions. Current multichip module construction typically consists of a printed circuit board substrate to which a series of separate components are directly attached. This technology is advantageous because of the increase in circuit density achieved. With increased density comes improvements in signal propagation speed and overall device weight. While integrated circuit density has and continues to increase at a significant rate, the density of the interconnecting circuitry between a die and its leads, and between two components within a multichip module, has not kept pace. Consequently, interconnection density has become a significant limiting factor in the quest for miniaturization.
U.S. Pat. No. 5,012,323, issued Apr. 30, 1991, having a common assignee with the present application, discloses a pair of rectangular integrated-circuit dice mounted on opposite sides of the lead-frame. An upper, smaller die is back-bonded to the upper surface of the lead fingers of the lead-frame via a first adhesively coated, insulated film layer. The lower, slightly larger die is face-bonded to the lower surface of the lead extensions within the lower lead-frame die-bonding region via a second, adhesively coated, insulative, film layer. The wire-bonding pads on both the upper die and the lower die are interconnected with the ends of their associated lead extensions by gold or aluminum wire. The lower die needs to be slightly larger for accessibility to the die pads from above allowing gold wire connections to the lead extensions or fingers.
U.S. Pat. No. 4,996,587 shows a semiconductor chip package which uses a chip carrier to support the chips within a cavity. The chip carrier as shown in the figures has a slot that permits connection by wires to bonding pads which, in turn, connect to the card connector by conductors. An encapsulation material is placed only on the top surface of the chip in order to provide heat dissipation from the bottom surface when carriers are stacked.
Japanese Patent No. 56-62351 (A) issued to Sano in 1981 discloses three methods of mounting two chips on a lead-frame and attaching the pair of semiconductor chips or pellets to a common lead-frame consisting of: (method 1) two chips mounted on two paddles; (method 2) one chip mounted over a paddle and one below not attached to the paddle; and (method 3) one chip attached above and one chip attached below a common paddle.
U.S. Pat. Nos. 5,323,060 and 5,291,061, both having a common assignee with the present application, teach arrangements of multichip stacked devices wherein a first die is attached to the substrate and wire bonded to the lead fingers, followed by a second die and so on. Both patents teach using an adhesive layer between two dice to provide clearance between the dice for the loops of the wire bonds. The wire bonds attaching an underlying die must be completed before another die can be stacked on the stack. This means that the die attachment process must be repeated for each additional layer of the stack. In addition to adding extra process steps, there is a chance of damaging the underlying wires. Additionally, because the clearances between two adjacent dice in the stack are quite tight, small variances in the loop height and adhesive thickness can lead to a compound error which results with the wire loops of the underlying die contacting or interfering with the upper die.
Accordingly, it is one object of the present invention to provide a stacked multichip device which allows at least two dice in a stack to be attached to the substrate prior to wire bonding.
It is another object of the present invention to provide a stacked multichip device which does not restrict the loop height for the underlying die, thereby allowing thinner layers of adhesive separating the dies, facilitating ease and efficiency of wire bonding and reducing the overall height of the assembly.
In accordance with the present invention these and other objects are achieved by an offset die stacking arrangement in connection with at least one upper level die having a width which is less than the distance separating the opposing bonding sites of the underlying die. The upper die is fixed above the lower die and rotated within a plane parallel to the lower die through an angle which insures that none of the bonding sites of the lower die are obstructed by the upper die. Dependent upon the geometries of the dice, additional dice can be stacked in this manner until the addition of an additional die would interfere with wire bonding of any of the lower dice. Once the dice are fixed in this manner, the entire assembly is subjected to the wire bonding process with all of the bonds being made in the same step. The entire process can then be repeated using the upper most die of the previous stack as the substrate.
Additional objects, advantages and novel features of the invention will be set forth in part in the description that follows, and in part will become apparent to those skilled in the art upon examination of the following or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combinations particularly pointed out in the appended claims.
Referring now to
Referring first to stack 14, such includes a lower first die 18 having opposed base and upper bonding surfaces 20 and 22, respectively. Base surface 20 is here adhered to substrate 12 by means of an adhesive, such as epoxy, thermoplastic materials, tape, tape coated with thermoplastic materials, etc. First die bonding face 22 includes a central area 24 and a plurality of bonding pads 26 which are peripheral to central area 24 and generally lie adjacent opposing side edges 27.
Multichip stack 14 also includes an upper second die 28 having opposed base and upper bonding surfaces 30 and 32, respectively. Second die bonding surface 32 includes a central area 34 and a plurality of bonding pads 36 peripheral to central area 34. A first adhesive layer 38 is interposed between and connects first die bonding surface 22 and second die base surface 30. First adhesive layer 38 is deposited within central area 24 inside of peripheral bonding pads 26.
Referring particularly to
The maximum number, N, of chips or dies of a given opposite bonding pad separating distance, W, and a given distance, L, equal to the maximum distance between the outermost two edges of the two outermost bonding sites 26 on one of sides 27, is given by the formula
Table 1 below lists the approximate maximum decimal expressions of R, which are the ratios of the length, L, per allowable separation distance, W, for a given number of dies or chips, N.
N
R
2
1
3
.57
4
.41
5
.32
6
.26
7
.22
8
.19
9
.17
A plurality of bonding wires 44 are bonded to and between respective first die bonding pads 26 and substrate 12. Bonding wires 44 have outwardly projecting loops 46. A plurality of second bonding wires 50 are bonded to and between respective second die bonding pads 36 and substrate 12. An example of wire bonding equipment capable of producing such wire bonds and loops is the model, 1484 XQ manufactured by Kulicke and Soffa Industries Inc. of Willow Groove, Pa. Wires 44 and 50 can be provided bare or be externally insulated between their respective connections to the die bonding pads and multichip module substrate.
Second multichip stack 16 is substantially similar to first stack 14, and includes a subsequent second adhesive layer 52 and third upper die 54. Thus, at least one additional adhesive layer and at least one additional die is mounted outwardly relative to the second die bonding face. Here the offset angle, α, is equal to 90° simply for ease of illustration. In this case, third die 54 is attached in a separate wire bonding step. Such third die includes a plurality of third die bonding wires 56. Third die 54 includes a central area 58 and associated peripheral bonding pads 60 which connect with third wires 56. Third die 54 can also include an overlying adhesive layer which can provide a level of additional protection to the top-most die in a multichip stack. Thus, third die 54 can be considered as an outermost chip, with second adhesive layer 52 and/or second die 28 and/or first adhesive 38 being considered as intervening material interposed between the first die bonding surface and the outermost die base surface.
A third multichip stack is illustrated in
While there is shown and described the preferred embodiment of the invention, it is to be distinctly understood that this invention is not limited thereto but may be variously embodied to practice within the scope of the following claims.
Patent | Priority | Assignee | Title |
10985136, | Dec 11 2016 | Intel Corporation | Microelectronic die stack having at least one rotated microelectronic die |
11342315, | Apr 30 2018 | SK Hynix Inc. | Stack packages including through mold via structures |
8331094, | Jan 24 2011 | Oracle International Corporation | Thermal and power bus stacked package architecture |
8492884, | Jun 07 2010 | Analog Devices International Unlimited Company | Stacked interposer leadframes |
8921159, | Jun 07 2010 | Analog Devices International Unlimited Company | Stacked interposer leadframes |
9337146, | Jan 30 2015 | Qualcomm Incorporated | Three-dimensional integrated circuit stack |
9721924, | Mar 28 2014 | SK Hynix Inc. | Thin stack packages |
9985002, | Mar 28 2014 | SK Hynix Inc. | Thin stack packages |
Patent | Priority | Assignee | Title |
4996587, | Apr 10 1989 | International Business Machines Corporation | Integrated semiconductor chip package |
5012323, | Nov 20 1989 | Micron Technology, Inc. | Double-die semiconductor package having a back-bonded die and a face-bonded die interconnected on a single leadframe |
5198963, | Nov 21 1991 | Freescale Semiconductor, Inc | Multiple integrated circuit module which simplifies handling and testing |
5239447, | Sep 13 1991 | International Business Machines Corporation | Stepped electronic device package |
5291061, | Apr 06 1993 | Round Rock Research, LLC | Multi-chip stacked devices |
5313693, | Dec 06 1991 | Thomson-CSF | Device for the mounting of very wide-band microwave integrated circuits |
5323060, | Jun 02 1993 | Round Rock Research, LLC | Multichip module having a stacked chip arrangement |
5422435, | May 22 1992 | National Semiconductor Corporation | Stacked multi-chip modules and method of manufacturing |
5721452, | Aug 16 1995 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Angularly offset stacked die multichip device and method of manufacture |
5874781, | Aug 16 1995 | Micron Technology, Inc. | Angularly offset stacked die multichip device and method of manufacture |
5886412, | Aug 16 1995 | Micron Technology, Inc. | Angularly offset and recessed stacked die multichip device |
5963794, | Aug 16 1995 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Angularly offset stacked die multichip device and method of manufacture |
EP489643, | |||
JP274046, | |||
JP4162767, | |||
JP425166, | |||
JP5129516, | |||
JP56062351, | |||
JP5731166, | |||
JP58154254, | |||
JP6132474, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 21 1999 | Micron Technology, Inc. | (assignment on the face of the patent) | / | |||
Apr 26 2016 | Micron Technology, Inc | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTEREST | 043079 | /0001 | |
Apr 26 2016 | Micron Technology, Inc | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT | 038954 | /0001 | |
Apr 26 2016 | Micron Technology, Inc | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 038669 | /0001 | |
Jun 29 2018 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Micron Technology, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 047243 | /0001 | |
Jul 03 2018 | MICRON SEMICONDUCTOR PRODUCTS, INC | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 047540 | /0001 | |
Jul 03 2018 | Micron Technology, Inc | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 047540 | /0001 | |
Jul 31 2019 | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | MICRON SEMICONDUCTOR PRODUCTS, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 051028 | /0001 | |
Jul 31 2019 | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | Micron Technology, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 051028 | /0001 | |
Jul 31 2019 | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | Micron Technology, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 050937 | /0001 |
Date | Maintenance Fee Events |
Sep 24 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 26 2012 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 13 2016 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 26 2008 | 4 years fee payment window open |
Oct 26 2008 | 6 months grace period start (w surcharge) |
Apr 26 2009 | patent expiry (for year 4) |
Apr 26 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 26 2012 | 8 years fee payment window open |
Oct 26 2012 | 6 months grace period start (w surcharge) |
Apr 26 2013 | patent expiry (for year 8) |
Apr 26 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 26 2016 | 12 years fee payment window open |
Oct 26 2016 | 6 months grace period start (w surcharge) |
Apr 26 2017 | patent expiry (for year 12) |
Apr 26 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |