A semiconductor device comprises a semiconductor substrate, and a capacitor provided above the semiconductor substrate, the capacitor comprises a lower electrode containing metal, a first dielectric film provided above the lower electrode and containing tantalum oxide or niobium oxide, a top surface of the first dielectric film including a projecting portion, an upper electrode provided above the projecting portion of the first dielectric film and containing metal, a second dielectric film provided between the lower electrode and the first dielectric film and having a lower permittivity than the first dielectric film, and a third dielectric film provided between the projecting portion of the first dielectric film and the upper electrode and having a lower permittivity than the first dielectric film.
|
1. A semiconductor device comprising:
a semiconductor substrate; and
a capacitor provided above the semiconductor substrate,
the capacitor comprising:
a lower electrode containing metal;
a first dielectric film provided above the lower electrode and containing tantalum oxide or niobium oxide, a top surface of the first dielectric film including a projecting portion;
an upper electrode provided above the projecting portion of the first dielectric film and containing metal;
a second dielectric film provided between the lower electrode and the first dielectric film and having a lower permittivity than the first dielectric film; and
a third dielectric film provided between the projecting portion of the first dielectric film and the upper electrode and having a lower permittivity than the first dielectric film.
2. The semiconductor device according to
5. The semiconductor device according to
6. The semiconductor device according to
7. The semiconductor device according to
8. The semiconductor device according to
9. The semiconductor device according to
10. The semiconductor device according to
|
This application is based upon and claims the benefit of priority from the prior Japanese Patent Application No. 2003-053184, filed Feb. 28, 2003, the entire contents of which are incorporated herein by reference.
1. Field of the Invention
The present invention relates to a semiconductor device including a capacitor, more particularly to an MIM (metal-insulator-metal) capacitor, and a method of manufacturing the semiconductor device.
2. Description of the Related Art
In recent years, with advances in communication techniques, an increasing number of personal computers (PCs) and personal digital assistants (PDAs) have been connected to networks and thereby used. Also home-use electrical appliances (such as VCRs, refrigerators, and air conditioners) are predicted to be connected to networks and to thereby be used in the future.
To configure a network with a large number of such devices as described above, a networking method used in, for example, offices in such a manner that LAN (local area network) cables are routed between individual devices is not suitable for use in ordinary homes, and wireless connection using wireless services is considered for employment as the mainstream connection in the future. As such, in the future, it is considered most LSI chips will have RF (radio frequency) communication functions added.
Conventionally, an LSI of the aforementioned type is formed of a plurality of chips, e.g. chips of RF analog devices (such as SiGe-BiCMOSs) and chips of CMOS logic devices. For PDAs and the like, miniaturization is viewed as important, and the LSI is demanded to be miniaturized using an RF-embedded LSI. In the RF-embedded LSI, an RF analog device and a CMOS logic device are integrated into a single chip.
To integrate the RF analog device and the CMOS logic device into a single chip, manufacturing processes for the two devices need to be integrated. The RF analog device is configured from, for example, resistors, inductances, and capacitors. The CMOS logic device is configured from a plurality of MOS transistors. As such, to realize the RF-embedded LSI, for example, a process for the RF analog device needs to be integrated with a CMOS logic process set as a base, a new RF-CMOS process needs to thereby be developed.
In integration of the two processes, problems first arise regarding an MIM capacitor and the structure thereof. The reasons for this are described hereunder.
One feature of the MIM capacitor for the RF analog device in the RF-embedded LSI is that the capacitor area is as large as several hundred square microns. As such, decreasing the capacitor area, i.e., increasing the capacitor capacitance per unit area is very important for decreasing the chip area and for increasing Q values of circuits.
In addition, good pairability is required for MIM capacitors for the RF analog device for the reason described hereunder. The RF analog circuit includes an arithmetic circuit that obtains output differentials by using symmetric circuits. In this configuration, capacitors used in pairs in the arithmetic circuit are required to match one another in capacitance and sensitivity with very high accuracy.
A technique conventionally used for a capacitor of a DRAM in which a three-dimensional electrode is introduced to increase the side area of the electrode is not effective to increase the capacitance density of the MIM capacitor having a large area. The reason is as follows.
An area (S1) of a DRAM capacitor in a top view is very small. As such, in the case where an electrode is three-dimensionally structured to increase a side area (S2), the ratio of S2/S1 increases to be very high. For this reason, for the DRAM capacitor, the capacitance density can easily be increased by three-dimensionally structuring the electrode.
However, compared with the DRAM capacitor, the capacitor used for the RF-embedded LSI has a very large area S1. As such, even when S2 is enlarged to a certain extent, the ratio of S2/S1 is not increased so much. Suppose the ratio of S2/S1 is to be sufficiently increased in the simple way that the electrode is formed columnar. In this case, the electrode needs to be as high as several tens of microns. However, such a high electrode is impractical.
To increase S2 without using such a high electrode, a technique for forming a large number of small concave and convex portions on sidewalls of an electrode. However, when such an electrode having such an intricate shape, it is difficult to realize an MIM capacitor having good pairability.
Another conceivable technique for increasing the capacitance density without forming the three-dimensional electrode structure is that a high-permittivity material, such as tantalum oxide (Ta2O5) or niobium oxide (Nb2O5), is used instead of conventionally used silicon nitride as a material for the dielectric film of the MIM capacitor. (The high-permittivity material is disclosed in, for example, Jpn. Pat. Appln. KOKAI Publication Nos. 2000-183289 and 2000-208720.)
A semiconductor device according to an aspect of the present invention comprises a semiconductor substrate; and a capacitor provided above the semiconductor substrate, the capacitor comprises a lower electrode containing metal; a first dielectric film provided above the lower electrode and containing tantalum oxide or niobium oxide, a top surface of the first dielectric film including a projecting portion; an upper electrode provided above the projecting portion of the first dielectric film and containing metal; a second dielectric film provided between the lower electrode and the first dielectric film and having a lower permittivity than the first dielectric film; and a third dielectric film provided between the projecting portion of the first dielectric film and the upper electrode and having a lower permittivity than the first dielectric film.
A method of manufacturing a semiconductor device according to an aspect of the present invention comprises preparing a semiconductor substrate; forming a capacitor above the semiconductor substrate, the capacitor comprising a lower electrode containing metal, a multilayer dielectric film, and an upper electrode smaller than the lower electrode and containing metal; forming the capacitor comprises forming a first conductive film to be processed into the lower electrode; forming a first dielectric film containing tantalum oxide or niobium oxide, a second dielectric film, and a third dielectric film, the second dielectric film being formed on the first conductive film, the first dielectric film being formed on the second dielectric film, the third dielectric film being formed on the first film, the second dielectric film and the third dielectric film each having a permittivity lower than the first dielectric film; forming a second conductive film to be processed into the upper electrode on the third dielectric film; etching the second conductive film, and forming the upper electrode; etching the third dielectric film, and removing a portion of the third dielectric film, the portion extending outwardly further than a sidewall of the upper electrode; and etching the first dielectric film, and removing a portion of the first dielectric film, the portion extending from an upper surface of the first dielectric film to a midway depth of the first dielectric film and extending outwardly further than a sidewall of the upper electrode.
First, a description will be provided regarding the results of research, investigations, and the like carried out by the present inventor, based on which the present invention has been developed.
As has been described above, the technique can be considered in which the high-permittivity material, such as tantalum oxide or niobium oxide, is used as a material for the MIM capacitor to increase the capacitance density without forming the three-dimensional electrode structure.
Particularly, the tantalum oxide is an optimum material to realize a capacitor with a low leakage current and a high capacitance density. A reason for this is that the tantalum oxide exhibits a high permittivity of about 30 even in an amorphous state. Another reason is that the crystallizing temperature of the tantalum oxide is as high as approximately 700° C. (generally, when a tantalum oxide material crystallizes, it produces an increased leakage current).
In this connection, the present inventor conducted extensively research and investigations, and as a result, found out and learned the following. The capacitor using the tantalum oxide film or the niobium oxide film is inferior in pairability to a conventional capacitor using a silicon nitride film (PECVD-SIN film (PECVD: plasma enhanced chemical vapor deposition)) formed by a PECVD process.
The research and investigations were therefore further continued to clear up the causes of the above. The results were as described hereunder.
When a voltage is applied to the capacitor, electric charges are stored in the capacitor. In this case, as shown in
The electric flux lines 94 overflowed to the outside of the capacitor are influenced by electric charges, electric fields, magnetic fields, and the like generated around the capacitor. Accordingly, the flowed-out electric flux lines 94 influence response characteristics of the capacitor.
An MIM capacitor has an outer circumference of some hundreds of microns. As such, the MIM capacitor is significantly influenced by peripheral disturbances. Unlike a DRAM capacitor, an MIM capacitor used in an analog circuit is required to be sufficient in the response characteristics, such as linearity and pairability.
The MIM capacitor described above is significantly influenced by crosstalk between electric flux lines overflowed to the outside of the capacitor and electric fields as well as magnetic fields. Accordingly, also the characteristics of the analog circuit using the MIM capacitor are significantly influenced by the crosstalk.
Of course, problems associated with such disturbances as described above occur with the conventionally used MIM capacitor including a silicon nitride film as a dielectric film.
However, as shown in
Each of interlayer insulation films (not shown) covering the capacitors of
The density of the electric flux lines 94 continually varies in the direction perpendicular to the direction of the electric flux lines 94. However, the density of the electric flux lines 94 is allowed to vary only with surfaces of the upper electrode 93 and the lower electrode 91 or with interfaces of materials mutually different permittivities (between the upper electrode 93 and the dielectric film 92 and between the dielectric film 92 and the lower electrode 91).
As such, in the configuration using a high dielectric material, such as tantalum oxide, the electric fields, namely, the electric flux lines 94 are easy to overflow to the outside of the capacitor because of electric-field continuity. Accordingly, the densities of nearby electric flux lines 94 that are incident upon the dielectric film 92 of
In an MIM capacitor using a dielectric material such as tantalum oxide or niobium oxide, an extremely low leakage current can be obtained by use of platinum as an electrode material.
Nevertheless, however, it became apparent that an MIM capacitor of this type arises another problem. The problem is that the tantalum oxide, the niobium oxide, or the like is undesirably reduced when titanium nitride or tantalum nitride is used, thereby making it difficult to realize a desired low leakage current.
Hereinbelow, high-capacitance-density MIM capacitors according to embodiments of the present invention that are capable of solving the above-described problems will be described with reference to the accompanying drawings.
(First Embodiment)
The MIM capacitor according to the present embodiment comprises a lower electrode 1, a first dielectric film 2, an upper electrode 3, a second dielectric film 4, and a third dielectric film 5. The first dielectric film 2 is provided above the lower electrode 1, and includes a projecting portion in a central portion of a top surface. The upper electrode 3 is provided above the projecting portion of the first dielectric film 2. The second dielectric film 4 is provided between the lower electrode 1 and the first dielectric film 2, and has a lower permittivity than the first dielectric film 2. The third dielectric film 5 is provided between the upper electrode 3 and the projecting portion of the first dielectric film 2, and has a lower permittivity than the first dielectric film 2.
The material of the lower electrode 1 and the upper electrode 3 is, for example, titanium nitride or tantalum nitride. The material of the first dielectric film 2 is, for example, tantalum oxide or niobium oxide (each of which has a permittivity of approximately 30).
With the titanium nitride or the tantalum nitride being used as the materials of the upper electrode 3, the materials of the first and third dielectric films 2 and 4 are each preferably at least one of alumina (Al2O3), silicon nitride, hafnium oxide, and zirconium oxide. Reasons for the preference are as described hereunder.
The dielectric material, described above, reacts with neither titanium nitride nor tantalum nitride. For this reason, the use the dielectric material enables the formation of good schottky barriers on an interface between the lower electrode 1 and the second dielectric film 4 and an interface between the upper electrode 3 and the third dielectric film 5. Thereby, leakage current can be reduced.
The permittivity of the dielectric material is in a range of from 7.5 to 20. The permittivity is lower than those of the tantalum oxide and the niobium oxide, and is higher than the permittivity (3 to 3.9) of a SiO2 based interlayer dielectric film. Hence, the dielectric material is suitable to implement effects of the present embodiment.
Thus a structured MIM capacitor can be obtained in, for example, a manner described hereunder. The second dielectric film 4, the first dielectric film 2, the third dielectric film 5, and the upper electrode 3 (second conductive film) are deposited in that order over the lower electrode 1 (first conductive film). Thereafter, the upper electrode 3, the third dielectric film 5, and the first dielectric film 2 are sequentially etched.
In this stage, the periphery portions of the upper electrode 3 and third dielectric film 5 are etched and thereby removed completely. However, the peripheral portion of the first dielectric film 2 is etched and thereby removed only to a midway portion in depth.
In addition, the second dielectric film 4 is not etched at all. As such, the structure thus formed enables increase in leakage current to be prevented from occurring due to damage that can be caused by etching of the upper electrode 3, the third dielectric film 5, and the first dielectric film 2, and particularly, by etching of the first dielectric film 2.
An effective way of decreasing the leakage current is to reduce the upper electrode 3 to be as small as possible in comparison with the lower electrode 1 and to lengthen the distance between the sidewall of the upper electrode 3 and the sidewall of the lower electrode 1. When the upper electrode 3 is reduced in size, while the amount of stored charge is reduced, necessary amount of stored charge can be secured by use of the tantalum oxide or niobium oxide as the high dielectric material. Further, according to the present embodiment, even with the tantalum oxide or niobium oxide being used, deterioration in pairability is suppressed.
As shown in
The distribution of the electric flux lines 6 (electric field distribution) shown in
The electric flux lines 6 overflowing to the outside of the MIM capacitor is suppressed for the following reason. The electric fields need to maintain continuity on the sidewall of the MIM capacitor (in the state shown in
In addition, in the present embodiment, the third dielectric film 5, the permittivity of which is lower than an approximately half (<15) of the permittivity of the first dielectric film 2, is provided between the upper electrode 3 and the first dielectric film 2. This works to reduce the permittivity in portions near the upper electrode 3 is reduced.
Consequently, because of continuity of electric field being maintained, exudation of the electric flux lines 6 passing through the first dielectric film 2 is reduced (
However, in terms of the capacitor of the MIM capacitor, it is disadvantageous to provide the third dielectric film 5, which has a permittivity lower than that of the first dielectric film 2, between the upper electrode 3 and the first dielectric film 2. As such, the thickness of the third dielectric film 5 is preferably thin.
In addition, as shown in
As described above, according to the present embodiment, even with the film such as the tantalum oxide film or niobium oxide film being used as the dielectric film, suppression can be implemented for the overflow of the electric flux lines 6 (electric-field exudation) to the outside of the MIM capacitor, which is the cause for degrading the pairability.
Thus, the present embodiment enables an MIM capacitor with high pairability, low leakage current, and high capacitance density to be realized. Thereby, the area of an RF-embedded LSI chip, which is predicted to be mounted in any devices in the future, can be reduced. Consequently, miniaturization of the devices can be implemented.
In the present embodiment, the second dielectric film 4 is provided in direct contact with the lower electrode 1 and the first dielectric film 2. However, the second dielectric film 4 may be provided in indirect contact with each of them via another film. Similarly, the third dielectric film 5 is provided in direct contact with the upper electrode 3 and the second dielectric film 4. However, the third dielectric film 5 may be provided in indirect contact each of them via another film.
(Second Embodiment)
The upper electrode and the lower electrode of the MIM capacitor are individually titanium nitride films formed by a sputtering process. The dielectric film of the MIM capacitor is a multilayer dielectric film. This film includes a lower aluminum film (second dielectric film) formed by a reactive sputtering process, a tantalum oxide film (first dielectric film) formed by a reactive sputtering process on the lower aluminum film, an upper aluminum film (third dielectric film) formed by a reactive sputtering process on the tantalum oxide film.
Hereinbelow, a manufacturing method for the MIM capacitor according to the present embodiment will be described in detail.
The MIM capacitor of the present embodiment is, for example, a capacitor for an analog circuit, particularly, an analog circuit including an RF circuit (such as a noise filter of an RF receiving section). The RF circuit is provided in an RF-embedded LSI.
The well-known structure shown in
First, a isolation region (STI) 12, a gate electrode section 13 (a gate insulation film, a gate electrode, a gate-upper-portion insulation film, and a gate-sidewall insulation film), and a source/drain region 14 are formed on a silicon substrate 11. Thereafter, an interlayer dielectric film 15 is deposited on the entire surface of the substrate, and the surface of the device face is then planarized. The source/drain region 14 has an LDD (lightly doped drain) structure (although the LDD structure is not shown).
Subsequently, the interlayer dielectric film 15 is etched, and contact holes are thereby formed. Then, plugs 16 are individually formed in the contact holes.
Subsequently, a silicon nitride film 17 and an interlayer dielectric film 18 are sequentially formed over the entire surface of substrate. Then, the interlayer dielectric film 18 and the silicon nitride film 17 are etched, and via-holes are thereby opened. Thereafter, using a dual damascene process, barrier metal films 19 are individually formed in the via-holes, and plugs 20 (DD (dual damascene) wirings) are formed therein. In this manner, a first metal wiring layer can be obtained. The barrier metal film 19 is, for example, a titanium nitride film; and the DD wiring 20 is, for example, a Cu-DD wiring. In the processing for the individual DD wirings, an embedding step with metals in wiring recesses and contact-holes is performed by, for example, electroplating processing.
After the above, in a manner similar to that for the first metal wiring layer, a silicon nitride film 21, an interlayer dielectric film 22, barrier metal films 23, DD wirings 24, a silicon nitride film 25, an interlayer dielectric film 26, barrier metal films 27, DD wirings 28, and a silicon nitride film 29 are formed. Thereby, second and third metal wiring layers can be obtained.
Subsequently, as shown in
Subsequently, as shown in
Subsequently, as shown in
Subsequently, as shown in
Subsequently, as shown in
Subsequently, as shown in
Subsequently, as shown in
The steps described above complete a basic structure of the MIM capacitor. Thereafter, as shown in
The lead-out electrodes 401 and 402 are formed by processes described hereunder in detail. First, the interlayer dielectric film 39, the silicon nitride film 36, the tantalum oxide film 33, and the lower alumina film 32 are processed using a photolithography process and an RIE process. Thereby, a first contact hole, a second contact hole, and a third contact hole reaching respectively with the upper electrode 35, the lower electrode 31, and the multilayered wiring layer are formed. The RIE process uses a fluorine-based etching gas.
Subsequently, an aluminum film is formed by a sputtering process over the entire surface of the substrate so as to fill the insides of the first, second, and third contact holes. The aluminum film is then processed by a photolithography process and an RIE process. Thus, the lead-out electrodes 401 and 402 made of the aluminum film can be obtained.
The permittivity of the interlayer dielectric film 39 is preferably lower than the permittivity of the tantalum oxide film 33. This requirement can be satisfied since, generally, a dielectric film having a low permittivity, which is a so-called “low-k film”, is used for the interlayer dielectric film 39.
The interlayer dielectric film 39 is thus formed over the entire surface of the substrate. As a result, the interlayer dielectric film 39 is formed on the peripheral portions of the projecting portion of the tantalum oxide film 33. That is, the peripheral portions of the projecting portion of the tantalum oxide film 33 are surrounded by the interlayer dielectric film 39 of which the permittivity is lower than the permittivity of the tantalum oxide film 33. This results in reducing the permittivities of portions near the silicon nitride film 36, thereby suppressing the overflow of electric flux lines (electric-field exudation) to the outside of the capacitor.
The capacitance of the MIM capacitor according to the present embodiment was 3.5 fF/μm2. As in the first embodiment, the MIM capacitor with high pairability, a low leakage current, and a high capacitance density can be realized. Thereby, the area of an RF-embedded LSI chip, which is predicted to be mounted in any devices in the future, can be reduced. Consequently, miniaturization of the devices can be implemented.
As comparative examples 1 to 7 (references), the present inventor prepared seven MIM capacitors shown in
The comparative example 1 (
The comparative example 2 (
The comparative example 3 (
The comparative example 4 (
The comparative example 5 (
The comparative example 6 (
The comparative example 7 (
The thicknesses of the tantalum oxide films 33 of the individual comparative examples 1 to 6 were chosen so that the capacitor capacitances thereof are the same as the capacitor capacitance of the tantalum oxide film 33 according to the present embodiment. The thickness of tantalum oxide film 33 of the comparative example 7 is the same as the capacitor capacitance of the tantalum oxide film 33 according to the present embodiment.
Table 1 shows capacitor pairability (3σ matching) values and leakage current values evaluated under the conditions where a voltage of ±3.6V is applied at 100° C. regarding the comparative examples 1 to 7.
TABLE 1
Projecting
Leakage Current
Leakage Current
Portion
3 σ matching
[+3.6 V]
[−3.6 V]
Comparative Example 1
Provided
3.1% μm2
2.7E−6A/mm2
3.2E−6A/mm2
(Ta2O5)
Comparative Example 2
Not provided
6.6% μm2
8.2E−7A/mm2
9.5E−7A/mm2
(Ta2O5)
Comparative Example 3
Provided
2.9% μm2
2.8E−11A/mm2
1.5E−9A/mm2
(Ta2O5/Al2O3)
Comparative Example 4
Not provided
6.5% μm2
2.9E−11A/mm2
2.1E−10A/mm2
(Ta2O5/Al2O3)
Comparative Example 5
Provided
1.8% μm2
1.5E−9A/mm2
2.3E−9A/mm2
(Al2O3/Ta2O5)
Comparative Example 6
Not provided
3.8% μm2
2.1E−10A/mm2
2.8E−11A/mm2
(Al2O3/Ta2O5)
Embodiment
Provided
1.4% μm2
8.2E−12A/mm2
8.8E−12A/mm2
(Al2O3/Ta2O5/Al2O3)
Comparative Example 1
Not provided
4.4% μm2
8.1E−12A/mm2
8.5E−12A/mm2
(Al2O3/Ta2O5/Al2O3)
As seen from Table 1, the MIM capacitor (comparative example 1) using the flat-surface tantalum oxide film 33 is inferior in the pairability to the MIM capacitors (comparative examples 3 and 5 and the MIM capacitor according to the present embodiment) individually using the tantalum oxide film 33 having the projecting portion below the upper electrode 35.
In addition, as can be seen from the table that good pairabilities can be obtained in the configurations not using the triple-layer structure (embodiment) formed of the lower aluminum film 32, the tantalum oxide film 33, and the upper aluminum film 34, but using either the single-layer structure formed of the tantalum oxide film 33 having the projecting portion below the upper electrode 35 or the double-layer structure formed of the tantalum oxide film 33 having the projecting portion below the upper electrode 35 and the aluminum film 32 (or the upper aluminum film 34) However, the comparative examples described above are inferior in the leakage currents to the present embodiment because of the influence of the reaction between the tantalum oxide film 33 and the titanium nitride film 31 (or the upper electrode 35).
Further, as can be seen from the table that the leakage current indicates the somewhat low value in the configuration (comparative example 3) using the capacitor dielectric film having the double-layer structure in which the aluminum film is provided only on the side of lower electrode. At the same time, however, it can be seen from the table that, in the configuration (comparative example 5) using the capacitor dielectric film having the double-layer structure in which the aluminum film is provided only on the side of the upper electrode, the leakage current thereof is higher that that of the comparative example 3.
Causes for the above are considered to be as described hereunder. A manufacturing process for the capacitor using the tantalum oxide film 33 including the projecting portion below the upper electrode 35 includes a step of etching the tantalum oxide film 33 according to an RIE process (FIG. 4D). During this step, deficiency is formed in the tantalum oxide film 33. This deficiency causes a significant reduction in the insulating property of the tantalum oxide film 33, and the reduction in the insulating property is considered to cause the increase in the leakage current. From this, the present inventor came to know that it is indispensable to insert the dielectric film, such as then aluminum film, at least on the side of the lower electrode of the capacitor.
Further, it was proved that even in configurations using the tantalum oxide film 33 that has the projecting portion below the upper electrode 35, a higher pairability can be obtained in the configurations (comparative example 5 and the present embodiment) using the upper aluminum film 34 as the dielectric film contacting the upper electrode 35 than in the configurations (comparative examples 1 and 3) using the tantalum oxide film 33 as the dielectric film contacting the upper electrode 35.
Accordingly, it was proved that the provision of the dielectric film having a permittivity lower than that of the tantalum oxide between the upper electrode 35 and the tantalum oxide film 33 is effective not only to suppress the leakage current but also to implement good pairability.
(Third Embodiment)
An MIM capacitor according to the third embodiment is different from the MIM capacitor according to the second embodiment in that zirconium oxide (ZrO2) films are used for the second and third dielectric films, and a niobium oxide film is used for the first dielectric film.
With respect to the structure, the MIM capacitor according to the present embodiment is the same as the MIM capacitor according to the second embodiment. Hence, a manufacturing method for a semiconductor device including the MIM capacitor according to the present embodiment will be described hereinbelow with reference to
Firstly, as shown in
Subsequently, as shown in
Subsequently, as shown in
Subsequently, as shown in
Subsequently, as shown in
Subsequently, as shown in
Subsequently, as shown in
Subsequently, as shown in
The steps described above complete a basic structure of the MIM capacitor. Thereafter, as shown in
The lead-out electrodes 401 and 402 are formed by processes described hereunder in detail. First, the interlayer dielectric film 39, the silicon nitride film 36, the niobium oxide film 33, and the lower zirconium oxide film 32 are processed using a photolithography process and an RIE process. Thereby, first, second, and third contact holes communicating respectively with the upper electrode 35, the lower electrode 31, and the multilayered wiring layer are formed. The RIE process uses a fluorine-based etching gas.
Subsequently, an aluminum film is formed by a sputtering process over the entire surface of the substrate so as to fill the insides of the first, second, and third contact holes. The aluminum film is then processed by a photolithography processing and an RIE process. Thus, the lead-out electrodes 401 and 402 made of the aluminum film can be obtained.
The capacitance of the MIM capacitor according to the present embodiment was 3.5 fF/μm2. In addition, the pairability of the MIM capacitor according to the present embodiment was evaluated. The evaluation proved that, as in the second embodiment, good results were obtained; specifically, the resultant values were 2.1% μm2 with 3σ matching. Thus, as in the first embodiment, the MIM capacitor with a high pairability, a low leakage current, and a high capacitance density can be realized. Thereby, the area of an RF-embedded LSI chip, which is predicted to be mounted in any devices in the future, can be reduced. Consequently, miniaturization of the devices can be implemented.
(Fourth Embodiment)
An MIM capacitor according to the fourth embodiment is different from the MIM capacitor according to the second embodiment in that silicon nitride films are used for the second and third dielectric films, and a tantalum oxide film is used for the first dielectric film.
With respect to the structure, the MIM capacitor according to the present embodiment is substantially approximately the same as the MIM capacitor according to the second embodiment. As such, a manufacturing method for a semiconductor device including the MIM capacitor according to the present embodiment will be described with reference to the same
Firstly, as shown in
Subsequently, as shown in
Subsequently, as shown in
Subsequently, as shown in
Subsequently, as shown in
Subsequently, as shown in
Subsequently, as shown in
Subsequently, as shown in
Subsequently, as shown in
The steps described above complete a basic structure of the MIM capacitor. Thereafter, as shown in
The lead-out electrodes 401 and 402 are formed by processes described hereunder in detail. First, the interlayer dielectric film 39, the silicon nitride film 36, the tantalum oxide film 33, and the lower silicon nitride film 32 are processed using a photolithography process and an RIE process. Thereby, first, second, and third contact holes reaching respectively with the upper electrode 35, the lower electrode 31, and the multilayered wiring layer are formed. The RIE process uses a fluorine-based etching gas.
Subsequently, an aluminum film is formed by a sputtering process over the entire surface of the substrate so as to fill the insides of the first, second, and third contact holes. The aluminum film is then processed by a photolithography process and an RIE process. Thus, the lead-out electrodes 401 and 402 made of the aluminum film can be obtained.
The capacitance of the MIM capacitor according to the present embodiment was 3.5 fF/μm2. In addition, the pairability of the MIM capacitor according to the present embodiment was evaluated. The evaluation proved that, as in the second and third embodiments, good results were obtained; specifically, the resultant values were 1.8% μm2 with 3σ matching. Thus, as in the first embodiment, the MIM capacitor with high pairability, a low leakage current, and a high capacitance density can be realized. Thereby, the area of an RF-embedded LSI chip, which is predicted to be mounted in any devices in the future, can be reduced. Consequently, miniaturization of the devices can be implemented.
In the individual embodiments, the multilayer film formed of the titanium film 30 and the titanium nitride film is used as each of the upper electrode 35 and the lower electrode 31. However, the multilayer film may be replaced with a single-layered conductive film that contains metals such as the titanium film 30, a tungsten nitride film or a tantalum nitride film. Alternatively, the multilayer film may be replaced with a multilayered conductive film that contains metals such as, titanium nitride film/AlCu film/titanium nitride film.
Further, while the titanium nitride film is used for the upper electrode 35 in the individual embodiments, any one selected from various conductive films may instead be used, as in the case of the lower electrode 31.
Furthermore, in the individual embodiments, while the silicon substrate is used, a SOI substrate, a SiGe substrate, or a strained silicon substrate may instead be used.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
Patent | Priority | Assignee | Title |
7180120, | Feb 04 2004 | Samsung Electronics Co., Ltd. | Semiconductor device having dual stacked MIM capacitor and method of fabricating the same |
7247572, | Dec 24 2002 | DONGBU ELECTRONICS CO , LTD | Method for fabricating a capacitor using a metal insulator metal structure |
7338879, | Feb 04 2004 | Samsung Electronics Co., Ltd. | Method of fabricating a semiconductor device having dual stacked MIM capacitor |
8217489, | Mar 29 2007 | PANASONIC SEMICONDUCTOR SOLUTIONS CO , LTD | Nonvolatile memory element having a tantalum oxide variable resistance layer |
8492875, | Mar 29 2007 | PANASONIC SEMICONDUCTOR SOLUTIONS CO , LTD | Nonvolatile memory element having a tantalum oxide variable resistance layer |
Patent | Priority | Assignee | Title |
6821839, | Jun 28 2002 | KEY FOUNDRY CO , LTD | Method for fabricating MIM capacitor |
20040104420, | |||
JP2000183289, | |||
JP2000208720, | |||
JP2001274340, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 03 2003 | Kabushiki Kaisha Toshiba | (assignment on the face of the patent) | / | |||
Dec 05 2003 | KIYOTOSHI, MASAHIRO | Kabushiki Kaisha Toshiba | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014948 | /0923 |
Date | Maintenance Fee Events |
Sep 17 2008 | ASPN: Payor Number Assigned. |
Oct 09 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 24 2012 | REM: Maintenance Fee Reminder Mailed. |
May 10 2013 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
May 10 2008 | 4 years fee payment window open |
Nov 10 2008 | 6 months grace period start (w surcharge) |
May 10 2009 | patent expiry (for year 4) |
May 10 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 10 2012 | 8 years fee payment window open |
Nov 10 2012 | 6 months grace period start (w surcharge) |
May 10 2013 | patent expiry (for year 8) |
May 10 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 10 2016 | 12 years fee payment window open |
Nov 10 2016 | 6 months grace period start (w surcharge) |
May 10 2017 | patent expiry (for year 12) |
May 10 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |