The present invention relates to iodine demand disinfectants. It relates in particular to a process for preparing a polyiodide-resin for use as an iodine demand disinfectant wherein a porous strong base anion exchange resin in a salt form, is contacted with a material capable of donating a member absorbable by the resin so as to convert the resin to the polyiodide-resin. The adsorbable member is selected from the group comprising I2 and polyiodide ion having a valence of −1. The process is characterized in that conversion of the anion exchange resin to the polyiodide-resin is effected at elevated temperature and elevated pressure, the elevated temperature being 100 degrees C. or higher, the elevated pressure being greater than atmospheric pressure. The present invention also relates to disinfectant substance comprising an iodine (impregnated) resin as produced by the above process.
10. A method for disinfecting a body fluid containing microorganisms, said method comprising contacting said body fluid with a demand disinfectant resin such that microorganisms therein contact said resin and are deactivated thereby, said disinfectant resin being an iodinated strong base anion exchange resin.
9. A sterilization dressing, for being applied to a lesion, said dressing comprising a disinfectant component and a carrier component, said disinfectant component comprising an iodinated resin, said carrier component being configured so as to bold onto said disinfectant component such that microorganisms are able to be brought into contact with said particles and be devitalised thereby, said carrier component is a polymer.
1. A sterilisation dressing, for being applied to a lesion, said dressing comprising
a demand disinfectant component
and a carrier component,
said demand disinfectant component comprising of an iodinated anion exchange resin, said demand disinfectant component being held to said carrier component such that microorganisms are able to be brought into contact with said particles and be devitalized thereby, said carrier component is a polymer.
2. A dressing as defined in
3. A dressing as defined in
4. A dressing as defined in
5. A dressing as defined in
6. A dressing as defined in
7. A dressing as defined in
8. A dressing as defined in
11. A method for disinfecting a body fluid as defined in
12. A method for disinfecting a body fluid as defined in
|
This is a continuation application of prior application U.S. Ser. No. 09/465,968, filed Dec. 14, 1999, now abandoned, which is a divisional of U.S. application Ser. No. 08/803,869, filed Feb. 24, 1997, now U.S. Pat. No. 6,045,820, which is a divisional application of U.S. application Ser. No. 08/256,425, filed Jul. 12, 1994, now U.S. Pat. No. 5,639,452, which is a Rule 371 of PCT Application Serial No. PCT/CA93/00378, filed Sep. 15, 1993, which is a continuation-in-part application of U.S. application Ser. No. 08/047,535, filed Apr. 19, 1993, now abandoned, which is a continuation-in-part application of U.S. application Ser. No. 07/957,307, filed Sep. 16, 1992, now abandoned.
The present application is a continuation-in-part of U.S. patent application Ser. No. 07/957,307 filed Sep. 16, 1992 and of U.S. patent application Ser. No. 08/047,535 filed on Apr. 19, 1993.
The present invention relates to a disinfectant substance comprising an iodine (impregnated) resin and to a process for the preparation thereof. The iodine/resin disinfectant may be used to sterilize a fluid such as, for example, water, air, as well as fluid exudate secreted at body lesions or traumas such as at cuts, burns , etc.; thus, the disinfectant may be used to devitalize microorganisms (e.g. bacteria, viruses, etc . . . ) which may be present in the fluid (e.g. water, air, pus and the like). The treatment of fluid, such as water or air, with an iodine/resin disinfectant of the present invention may leave behind non-detectable (or acceptable) residual diatomic iodine in the fluid (e.g. water or air). The present invention in particular relates to a demand type broad spectrum resin-polyiodide (e.g. water, air, wound) disinfectant.
Diatomic halogen (such as I2, Cl2, Br2, etc . . . ) has traditionally been used to disinfect water. Diatomic chlorine, for example, is a widely exploited disinfectant for controlling or eliminating micro-organisms which may be present in water. A disadvantage of a sterilization regime which exploits diatomic halogen is that the regime may leave behind unacceptable (residual) levels of halogen in the water once sterilization is complete.
An iodine/resin product has, however, been proposed for use as a demand disinfectant, namely a disinfectant wherein iodine is released almost entirely on a demand-action basis. U.S. Pat. Nos. 3,817,860, 3,923,665, 4,238,477 and 4,420,590 teach such a demand disinfectant wherein iodine is the active disinfectant agent; the entire contents of each of these patents is incorporated herein by reference. In accordance with the teachings of these patents the resin product may be used without fear of introducing unacceptable concentrations of diatomic iodine into the water to be sterilized.
U.S. Pat. Nos. 3,817,860 and 3,923,665 teach an iodine/resin demand disinfectant which is the reaction product obtained by contacting a strong base anion exchange resin with a suitable source of triiodide ions. The reaction product is taught as being very stable in the sense that the amount of iodine (e.g. I2) released into water from the reaction product is sufficiently low that the water disinfected thereby is immediately ready for use, ie. as drinking water.
In accordance with the teachings of U.S. Pat. Nos. 3,817,860 and 3,923,665 the procedure for preparing the iodine/resin comprises forming a triiodide ion (solution or sludge) by dissolving diatomic iodine in a water solution of a suitable alkali metal halide (e.g. KI, NaI, . . . ). The triiodide solution is in particular taught as being made with a minimal (i.e. minor) water content just sufficient to avoid causing the I2 to crystallize out; see example 1 of U.S. Pat. No. 3,923,665. The resulting (solution) containing the triiodide ion is then contacted with the starting resin (under ambient conditions with respect to temperature (i.e. 25 to 30° C.) and pressure), the triiodide ions exchanging with the anion of the resin (e.g. exchange with chlorine, sulfate, etc., . . . ). The starting resin is taught as being a porous granular strong base anion exchange resin having strongly basic groups in a salt form wherein the anion thereof is exchangeable with triiodide ions. In accordance with the teachings of the above prior art references contacting is continued until the desired amount of triiodide has reacted with the strongly basic groups such that bacterially contaminated water is disinfected when passed through a bed of the obtained resin. After a suitable contact time the iodine/resin is (water) washed to remove water-elutable iodine from the resin product.
However, as indicated in U.S. Pat. No. 4,238,477, it is difficult to use the procedures outlined in the two previously mentioned U.S. patents so as to obtain a homogeneous iodine/resin product containing only triiodide anions and wherein all of the active sites of the resin have been converted to triiodide ions.
Accordingly, U.S. Pat. No. 4,238,477 teaches an alternate process whereby the iodine/resin may be produced. In accordance with this alternate impregnation/contact process, a suitable resin in the iodide form (I−) is contacted with water comprising diatomic iodine (I2) in solution, the water being recycled between a source of a predetermined amount of diatomic iodine and the resin. The process as taught by this latter patent, however, is a relatively complicated system of pumps, vessels, heaters, etc.; by exploiting a fluidized bed, it in particular may lead to a significant degree of resin bead attrition, i.e. particle breakup.
The processes as taught in U.S. Pat. Nos. 3,817,860 and 3,923,665 are carried out at ambient temperature and ambient pressure conditions. The U.S. Pat. No. 4,238,477 teaches that the contact may occur at a higher temperature such as 60 to 95° C. but that the temperature must be a non-boiling temperature (with respect to water); see column 3 lines 55 to 66.
The above referred to U.S. patents teach the use of the demand disinfectant iodinated resins for treating water; see also U.S. Pat. Nos. 4,298,475 and 4,995,976 which teach water purification devices or systems which exploit iodinated resins. None of these patents teaches the use of the iodinated resins for the purpose of sterilizing air.
It is also known to use iodine tincture for sterilising wounds. The sterilisation effect of iodine tincture is short lived; this means that the tincture must be reapplied on a regular basis to maintain the sterilisation effect. However, such solutions may also damage or destroy the tissue around the wound if applied too liberally and too often. Additionally, the direct application of such solutions to a lesion or wound is usually accompanied by a painful sensation.
Accordingly it would be advantageous to have a iodine/resin product which has improved characteristics over known or commercially available iodine/resin disinfectant products.
It would also be advantageous to have an alternate process for the preparation of a iodine/resin product (which has improved characteristics over the previously known iodine/resin).
It would be advantageous to have an alternative effective demand disinfectant (e.g. bactericidal) resin and an effective technique for the manufacture thereof. It would, in particular, be advantageous to have an iodine/resin demand disinfectant having a relatively low level of iodine bleed into a fluid (such as water or air) being treated as well as an iodine impregnation process for obtaining such iodinated resin.
It would also be advantageous to have a means whereby lesions, such as for example wounds or burns, may be treated in order to facilitate healing by devitalising microorganisms which may already be in the area of the lesion and further to prevent microorganisms from having access to such lesion (i.e. a dressing), i.e. to inhibit access from any outside biovectors such as for example airborne, waterborne, spital borne, blood borne, particulate borne microorganisms and the like.
It would additionally be advantageous to have a means for inhibiting or preventing microorganisms from contacting predetermined areas of the body such as the skin (e.g. a protective textile for making protective clothing).
In accordance with a general aspect, the present invention provides a process for preparing a demand disinfectant resin, said disinfectant resin being an iodinated strong base anion exchange resin, (i.e. a demand disinfectant-resin comprising polyiodide ions, having a valence of −1, the ions being absorbed or impregnated into the resin as herein described),
In accordance with the present invention the disinfectant-resin may be one in which diatomic iodine is incorporated. The disinfectant polyiodide-resin may in particular be triiodide-resin. Thus, for example, the iodine-substance may comprise triiodide ion of formula I3−, i.e. so as to form a disinfectant-resin which comprises (absorbed) triiodide ions of formula I3−.
The terms “triiodide”, “triiodide ion” and the like, as used in the context herein, refer to or characterize a substance or a complex as containing three iodine atoms and which has a valence of −1. The triiodide ion herein therefore is a complex ion which may be considered as comprising molecular iodine (i.e. iodine as I2) and an iodine ion (i.e. I−). Similarly the terms “polyiodide”. “polyiodide ions” and the like, refer to or characterize a substance or a complex as having three or more iodine atoms and which may be formed if more of the molecular iodine combines with the monovalent triiodide ion. These terms are more particularly described in the above referred to U.S. patents.
In accordance with a further aspect, the present invention provides a process for preparing a demand disinfectant resin, said disinfectant resin being an iodinated strong base anion exchange resin, (i.e. a demand disinfectant-resin comprising polyiodide ions, having a valence of −1, the ions being absorbed or impregnated into the resin as herein described),
The strong base anion exchange resin may be in a salt form such as for example a chloride or hydroxyl form.
The conversion in accordance with the present invention may essentially or at least partially be effected at said elevated temperature and elevated pressure. The conversion, in accordance with the present invention, may, thus for example, be effected in one, two or more stages. For example, the elevated pressure/temperature conditions may be divided between two different pairs of elevated pressure/temperature conditions, e.g. an initial pressure of 15 psig and a temperature of 121° C. and a subsequent pressure of 5 psig and a temperature of 115° C.
If the conversion is to be carried out in two stages, it may for example, comprise a first stage followed by a second stage. The first stage may, for example, be effected at low temperature conditions (e.g. at ambient temperature and ambient pressure conditions) whereas the second stage may be effected at elevated conditions such as described herein.
Thus, the present invention, in accordance with another aspect provides a process for preparing a demand disinfectant resin, said disinfectant resin being an iodinated strong base anion exchange resin, (i.e. a demand disinfectant-resin comprising polyiodide ions, having a valence of −1, the ions being absorbed or impregnated into the resin as herein described),
In accordance with a further particular aspect, the present invention provides a process for preparing a demand disinfectant resin, said disinfectant resin being an iodinated strong base anion exchange resin, (i.e. a demand disinfectant-resin comprising polyiodide ions, having a valence of −1, the ions being absorbed or impregnated into the resin as herein described),
In accordance with the present invention, for the first stage, the low temperature may, for example, be a non-boiling temperature of not more than 95° C.; e.g. 15 to 60° C.; e.g. ambient temperature or room temperature such as a temperature of from about 15° C. to about 40° C., e.g. 20 to 30° C. The pressure associated with the low temperature condition of the first stage may, for example, be a pressure of from 0 (zero) to less than 2 psig; the pressure may in particular be essentially ambient pressure (i.e. a pressure of less than 1 psig to 0 (zero) psig; 0 psig reflecting barometric or atmospheric pressure).
In accordance with the present invention, for the second stage, the elevated temperature may, for example, be: a temperature of 102° C. or higher; e.g. 105° C. or higher; e.g. 110° C. or higher; e.g. 115° C. or higher; e.g. up to 150° C. to 210° C.; e.g. 115° C. to 135° C. The elevated pressure associated with the elevated temperature condition of the second stage may, for example, be: a pressure of 2 psig or greater; e.g. 5 psig or greater; e.g. 15 psig to 35 psig; e.g. up to 100 psig.
The present invention further relates to any demand disinfectant resin, the disinfectant resin being an iodinated strong base anion exchange resin which is the same as an iodinated strong base anion exchange resin prepared in accordance with a process as defined herein; an iodinated resin the same as a resin prepared in accordance with the (particular) process described herein is one which has the same low iodine bleed characteristic, i.e. the iodine is (more) tenaciously associated with the resin than for previously known iodinated resins. It in particular relates to a demand disinfectant resin, the disinfectant resin being an iodinated strong base anion exchange resin whenever prepared in accordance with a process as defined herein.
The present invention also relates to the use of iodinated resins to disinfect fluids containing microorganisms, such fluids including air, water, pus, and the like. The iodinated resin may for example be a known resin such as discussed herein, a resin in accordance with the present invention, nylon based resin beads impregnated with iodine (such as MCV resin from MCV Tech. Intn'l Inc.), and the like.
Thus the present invention also provides a method for disinfecting air containing airborne microorganisms, said method comprising passing said air over a disinfectant resin such that airborne microorganisms contact said resin and are devitalized thereby, said disinfectant resin comprising an iodinated resin. The disinfectant resin may, for example, be a demand disinfectant resin. The disinfectant resin may, for example, comprise an iodinated strong base anion exchange resin.
The present invention further provides a system for disinfecting air containing airborne microorganisms, said system comprising
The present invention additionally provides a combination comprising
The present invention in a more particular aspect provides a sterilisation dressing, for being applied to a lesion, (such as a sore, a wound (e.g. cut), an ulcer, a boil, an abrasion, a burn or other lesion of the skin or internal organ), said dressing comprising
The demand disinfectant for the above mentioned method and system for treating air as well as for the combination and the dressing may be an iodinated resin produced in accordance with the present invention or it may be a known demand disinfectant iodinated resin such as for example as mentioned herein.
The demand disinfectant depending on the intended use may take on any desired form; it may be bulk form; it may be in sheet form; it may be in particulate or granular form (e.g. particles of resin of from 0.2 mm to 1 cm in size), etc. . . .
It is to be understood herein, that if a “range” or “group of substances” is mentioned with respect to a particular characteristic (e.g. temperature, presssure, time and the like) of the present invention, the present invention relates to and explicitly incorporates herein each and every specific member and combination of sub-ranges or sub-groups therein whatsoever. Thus, any specified range or group is to be understood as a shorthand way of referring to each and every member of a range or group individually as well as each and every possible sub-ranges or sub-groups encompassed therein; and similarly with respect to any sub-ranges or sub-groups therein. Thus, for example,
It is also to be understood herein that “g” or “gm” is a reference to the gram weight unit; that “C” is a reference to the celsius temperature unit; and “psig” is a reference to “pounds per square inch guage”.
In drawings which illustrate example embodiments of the present invention:
In accordance with the present invention, the elevated temperature may as mentioned above, for example, be in the range of from 105° C. to 150° C.; the elevated pressure may be 5 psig and up.
In accordance with the process of the present invention the anion exchange resin may, for example, as described below, be a quaternary ammonium anion exchange resin; the anion exchange resin may be in the chloride form Cl−, in the hydroxyl form OH−; etc. . . .
In accordance with the present invention the obtained iodide-resin may be treated prior to use to remove any water-elutable iodine from the iodide-resin. The treatment (e.g. washing) may be continued until no detectable iodine is found in wash water (the wash water initially being ion free water). Any suitable (known) iodine test procedure may be used for iodine detection purposes (see for example the above mentioned U.S. patents.
In accordance with the present invention, the absorbable iodine substance may, for example, be provided by a composition consisting of mixture of KI, I2 and a minor amount of water, the mole ratio of KI to I2 initially being about 1; the expression “minor amount of water” as used herein shall be understood as characterizing the amount of water as being sufficient to avoid I2 crystallization.
The present invention in a further aspect provides an enhanced iodine/resin demand disinfectant product in which more iodine may be distributed throughout and be more tenaciously associated with the resin (e.g. beads) than with the previously known or commercially available techniques, the disinfectant being produced by a process as described herein. The invention more particularly provides an enhanced triiodide-resin disinfectant.
The present invention can be practised with any (known) strong base anion exchange resin (for example, with those such as are described in more detail in the above-mentioned U.S. patents such as U.S. Pat. No. 3,923,665). A quaternary ammonium anion exchange resin is, however, preferred. As used herein, it is to be understood that the expression “strong base anion exchange resin” designates a class of resins which either contain strongly basic “cationic” groups, such as quaternary ammonium groups or which have strongly basic properties which are substantially equivalent to quaternary ammonium exchange resins. U.S. Pat. Nos. 3,923,665 and 3,817,860 identify a number of commercially available quaternary ammonium resins, as well as other strong base resins including tertiary sulphonium resins, quaternary phosphonium resins, alkyl pyridinium resins and the like.
Commercially available quaternary ammonium anion exchange resins which can be used in accordance with the present invention include in particular, Amberlite IRA-401 S, Amberlite IR-400 (Cl−), Amberlite IR-400 (OH−), Amberlite IR-402 (Cl−), etc., (from Rohm & Hass) which may be obtained in granular form. These resins may for example, contain quaternary ammonium exchange groups which are bonded to styrene-divinyl benzene polymer chains.
The resins which may be used herein may be in a hydroxyl form, a chloride form or in another salt (e.g. sulphate) form provided that the anion is exchangeable with the iodine member (e.g. with triiodide ion).
The starting resin may, for example, be granular (i.e. comprise a plurality of particles) such that the final product will likewise have a granular or particulate character; the granular form is advantageous due to the high surface area provided for contact with microorganisms. The starting resin may, for example, comprise granules having a size in the range of from 0.2 mm to 0.8 cm (e.g. of from 0.35 mm to 56 mm).
Commercially available resins such as those mentioned above are available in the salt form (e.g. as the chloride) and in the form of porous granular beads of various mesh sizes; the resin may of course be used in a bulk or massive form such as a plate, sheet, etc. . . .
In accordance with the present invention, for example, a resin may be converted from a non-iodide form (e.g. a chloride form, a sulphate form) to the I3− form. Suitable halide salts include alkali metal halides (such as KI, NaI, . . . ); potassium iodide is preferred. Alternatively, an iodide form of the resin may be used and the resin contacted with a source of diatomic iodine.
In accordance with the present invention any material or substance capable of donating an iodine-member absorbable by the anion exchange resin so as to convert the anion exchange resin to the desired polyiodide-resin may be used, as long as the denotable iodine-member thereof is a polyiodide ion having a valence of −1 and/or diatomic iodine. Examples of such materials in relation to iodine are shown in the above mentioned U.S. patents; e.g. compositions comprising iodine (I2) and alkali metal halide (KI, NaI, etc. . . . , KI being preferred) in association with water. Alternatively, if the resin is in an iodide salt form (I−1) the material may comprise the corresponding iodine in gaseous form.
Thus, for example, if a triiodide-resin is desired the resin may be contacted with an alkali metal iodide/I2 mix wherein the iodide and the diatomic iodine are present in more or less stoichiometric amounts (i.e. a mole ratio of 1); see the previously mentioned U.S. patents. By applying stoichiometric amounts of the iodine ion and iodine molecule (i.e. one mole of I2 per mole of I−1), the iodide sludge will comprise substantially only the triiodide ions. If stoichiometric excess quantities of I2 are used some of the higher polyiodide ions may be formed. Preferably, no more than the stoichiometric proportions of I− and I2 are used in the initial aqueous starting sludge so that substantially only triiodided attaches to the resin.
For example iodine may be combined with sodium, potassium or ammonium iodide and some water. The composition will contain monovalent iodine ion which will combine with diatomic iodine (I2) to form polyiodide ion. The molar ratio of iodine ion to diatomic iodine will dictate the nature of the polyiodide ion present, i.e. triiodide ion, mixtures of triiodide ion and other higher polyiodides ions, pentaiodide ion, etc. . . . Using about 1 mole of iodine ion per mole of diatomic iodine the formation of triiodide ion will be favoured. If stiochiometric excess of diatomic iodine is used this will favour the formation of higher polyiodides.
The determination of the (total) amount of iodine to be contacted with the resin, residence times etc. . . . , will depend upon such factors as the nature of the polyiodide it is desired to introduce into the structure of a resin; the nature of the starting resin (i.e. porosity, grain size, equivalent exchange capacity of the resin, etc.), etc. . . . Thus, for example, to determine the amount of iodine required to prepare a polyiodide resin, the equivalent exchange capacity of the resin needs to be known. If necessary, this can be readily determined for example by the procedure described in U.S. Pat. No. 3,817,860 (column 9, lines 15 to 28). The components of the process may be chosen such that the obtained iodinated strong base anion exchange resin may comprise a strong base anion exchange resin component which represents from 25 to 90 (preferably 45 to 65) percent by weight of the total weight of the obtained iodinated resin.
The conversion at elevated conditions, in accordance with the present invention, may be effected in a reactor which is pressure sealable during conversion but which may be opened for recovery of the resin product after a predetermined reaction time. The process may thus be a batch process wherein conversion at elevated temperature and pressure is effected once the reactor is sealed. In accordance with the present invention the reactor may be sized and the amount of reactants determined so as to provide a void space in the reactor during reaction. In the case, for example, wherein the material having the denotable iodine-member is a sludge of alkali metal/I2 and water, the weight ratio of sludge to resin may be 1:1 or higher, eg. 1:1 to 5:1; a weight ratio of 1:1 (if Amberlite 401-S is used as the resin) is preferred so as to minimize the amount of unabsorbed iodine which must be washed from the iodine/resin product.
The high temperature/pressure contact conditions may as mentioned above be chosen with a view to maximizing the iodine content of the obtained iodine (e.g. iodine) demand resin.
In accordance with the present invention conversion of the resin to a polyhalide (e.g. I3−) form may be effected at elevated temperature greater than 100° C., for example in the range of 105° C. to 150° C. (e.g. 110-115° C. to 150° C.); the upper limit of the temperature used will, for example, depend on the characteristics of the resin being used, i.e. the temperature should not be so high as to degrade the resin.
As mentioned in order to effect the conversion at elevated pressure, the conversion may take place in a closed vessel or reactor. The pressure in such case may be a function of the temperature such that the pressure may vary with the temperature approximately in accordance with the well known gas equation PV=nRT, wherein V=the constant (free) volume of the reactor, n=moles of material in the reactor, R is the universal gas constant, T is the temperature and P is the pressure. In a closed vessel, the temperature of the system may therefore be used as a means of achieving or controlling the (desired) pressure in the vessel depending upon the makeup of the Iodine mix in the reactor. Thus in accordance with the present invention, a reaction mix disposed in a pressure sealed reactor may be, for example, subjected to a temperature of 105° C. and a pressure of 200 mmHg, the pressure being induced by steam.
Alternatively, a relatively inert gas may be used to induce and\or augment the pressure in the reactor. Thus, a pressurized relatively inert gas may be injected into a sealed reactor. The chosen gas must not unduly interfer with the production of a suitable iodinated resin. The high temperature/pressure treatment may be conducted in a closed reactor in the presence of (trapped air), a non-interfering gas such as iodine itself or of some other relatively inert (noble) gas; the pressure as mentioned above may be augmented by the pressuring gas. Air, carbon dioxide, nitrogen or the like may also be used as a pressuring gas, if desired, keeping in mind, however, that the use thereof must not unduly interfer with the production of a suitable iodinated resin. If pressure is to be induced by steam then as mentioned below steps should be taken to isolate the reaction mix from (excess) water.
In accordance with the present invention, the elevated pressure is any pressure above ambient. The pressure may, for example, be 1 psig or higher, e.g in the range from 5 to 50 psig; the upper limit of the pressure used will also, for example, depend on the characteristics of the resin being used, i.e. the pressure should not be so high as to degrade the resin.
The residence or contact time at the elevated conditions is variable depending upon the starting materials, contact conditions and amount of (tenaciously held) iodine it is desired to be absorbed by the anion exchange resin. The contact time may thus take on any value; usually, however, it is to be expected that it will be desired that the contact time (under the conditions used) be sufficient to maximize the amount of (tenaciously held) iodine absorbed from the material containing the absorbable iodine moiety. The residence time may for example be as little as 5 to 15 minutes (in the case where a preimpregnation step is used as shall be described below) or several hours or more (up to 8 or 9 hours or more). The residence time exploited for elevated the conditions, in any event, will as mentioned above depend on the starting material, temperature and pressure conditions, etc. . . . ; it may vary from several minutes to 8 or 9 hours or more; the upper time limit will in any event also, for example, depend on the characteristics of the resin being used, i.e. the residence time should not be so high as to degrade the resin.
Preferably, the contact at high temperature/pressure is preceded by an initial impregnation or absorption step (first stage). Such first stage may be carried out for only a few minutes (e.g. for from 1 to 10 minutes or more) or for up to 24 hours or more (e.g. for from one hour or more i.e. for from three to twenty-four hours). The time period of the initial stage may be relatively short. The time period, for example, may be a few minutes or so and may correpond to the time necessary to just mix the reactants together; in this case the conversion may be considered to be essentially carried out in a single stage at elevated conditions. The residence time of the first stage will also be predetermined with a view to the end product resin desired. For example, a water containing sludge of triiodide ions can be contacted with a salt form of the starting resin at ambient (i.e. room) temperature and pressure conditions to obtain an intermediate iodide-resin reaction product including residual iodine-substance. This step is preferably carried out in a batch reactor; the obtained intermediate composition comprising an intermediate iodide-resin may then be subjected to the higher temperature and pressure in accordance with the present invention in batch fashion as well. Such a first stage may be used to initiate buildup of iodine within the resin matrix.
In accordance with the present invention an iodide-resin demand disinfectant may, for example, be obtained by
More particularly an iodide/resin demand disinfectant may be obtained using the following sequence of steps:
A small hole is necessary when a container such as a glass flask is used in order to avoid a too great pressure difference being built up between the interior of the flask and the interior of the autoclave which might cause the flask to collapse. The hole in any event is just large enough to more or less allow for the equalization of pressure and to maintain a positive pressure in the flask relative to the interior of the autoclave such that any foreign material such as water vapour is inhibited from flowing into the flask. A more sturdy pressure resistant container could of course be used such that, depending on the construction of the container and the temperature/pressure conditions prevailing in the autoclave, the hole may be avoided. Alternatively, instead of using a separate container to hold the reaction mix and placing it in a separate autoclave, a single autoclave/container may be used serving to hold and heat the reaction mix under pressure; such a container must of course be constructed so as to be able to resist the predetermined reaction conditions.
The iodide-resin compound formed as described herein can be used as a demand disinfectant to disinfect water by batch contacting the contaminated water with the resin; continuous processing as mentioned in U.S. Pat. No. 3,923,665 is also possible. Thus water containing viable bacteria (to be killed) may be passed through a fixed bed of porous granular iodine/resin material. The maximum permissible flow rates for total bacterial sterilization may vary with the concentration of the polyiodide (e.g. triiodide) groups in the resin, bed depth, bacterial count, etc. . . . The disinfection process may be monitored by taking samples of water after passage through the bed. Potable innocuous water may thus be readily produced in accordance with the present invention without the incorporation of objectionable amounts of free iodine therein as a result. The resin may be used with any (known) water treating devices such as for example those shown in U.S. Pat. Nos. 4,749,484 and 4,978,449.
In accordance with a further aspect, however, as mentioned above, the present invention also provides a method for disinfecting air containing airborne microorganisms. The method may comprise passing the air over a demand disinfectant resin such that airborne microorganisms contact said resin and are devitalized thereby, the demand disinfectant resin comprising an iodinated strong base anion exchange resin. The method may, for example, include passing the air through a bed of granules of iodinated resin so that the air courses over the granules (in a serpentine manner) as the air makes its way through the bed. The maximum permissible flow rates for total bacterial sterilization may vary with the concentration of the polyiodide groups in the resin, bed depth, bacterial count, etc. . . . The iodinated strong base anion exchange resin may comprise a strong base anion exchange resin component which represents from 25 to 90 (preferably 45 to 65) percent by weight of the total weight of the iodinated resin.
In accordance with an additional aspect, the present invention provides a system for disinfecting air containing airborne microorganisms, said system, for example, comprising
An air path means may define an air inlet and an air outlet. The resin may be disposed between said inlet and outlet or be disposed at the inlet or outlet. The air path means may take any form. It may take the form of ductwork in a forced air ventilation system with the demand disinfectant comprising a bed of resin granules through which the air is made to pass, the bed otherwise blocking off the air path. Alternatively the air path means may be defined by a cartridge used for a gas mask, the cartridge having an inlet and an outlet for air; the iodinated resin for the cartridge may, if desired, be present as a bed of granules, granules incorporated into a (fluid) porous carrier (e.g. tissue, polyurethane foam, etc.) or alternatively take a more massive form such as a plate(s), a tube(s), a block(s), etc. . . . Cartridge type gas masks are known; such gas masks may be obtained for example from Eastern Safety Equipment Co., Mosport, N.Y., USA.
The C-50 cartridge from a gas mask (from Glendale Protecting Technologies Inc. Woodbury, N.Y., USA) may for example be adapted to hold a bed of resin of granules of the present invention. Referring to
The resin disposed in the air path could of course take on any form other than granules such as blocks, plates, tubes etc. . . .
The iodinated demand disinfectant resin for air treatment may be any (known) iodinated resin so long as the iodinated resin is capable of devitalizing airborne microorganisms (i.e. microorganisms transported by air) coming into contact therewith. It may, for example, be a resin as proposed in U.S. Pat. Nos. 3,923,665 and 4,238,477; in this case, however, it may be necessary to use the resin in conjunction with an iodine scavenging material if the resin gives up too much iodine to the air. The iodine scavenging material may be an activated carbon material or an un-iodinated strong base anion exchange resin as described herein.
Alternatively, as mentioned above, iodinated resin may advantageously be a resin made in accordance with the present invention; in this case the resin need not be used in conjunction with an iodine scavenging material such as a (known) exchange resin, activated carbon, catalyst, etc., since an iodinated resin made in accordance with the process of the present invention may liberate iodine into the air in an amount below acceptable threshold limits for breathing by human beings.
If desired the iodinated resin for the treatment of air or water may be some type of mixture of iodinated resins, e.g. a mixture of a known iodinated resin and an iodinated resin prepared in accordance herewith.
As mentioned above, the present invention in a further aspect provides a combination which may act as a sterilization barrier with respect to microorganisms. The sterilization combination may, for example, be incorporated into protective wearing apparel or be configured as a sterilization dressing for lesions such as for example, wounds and burns; the sterilisation barrier combination can be configured to be or not to be air breathable.
A sterilization dressing of the present invention advantageously may take the form of a flexible porous cellular polymeric foam sheet having a spongy aspect and having dispersed within the polymeric matrix thereof particles of a demand disinfectant comprising a (known) iodinated resin or an iodinated resin as described herein. The sterilization sheet may be placed over a burn area to maintain the burn area in a sterilized state during the healing process. The disinfectant particles are distributed throughout the polymeric matrix and have surfaces projecting into the open pores of the spongy matrix; the spongy matrix acts as a sponge so that on the body side thereof it can soak up fluid such as pus which exude from the burn lesion. Once within the body of the matrix any microorganisms in the fluid or pus can contact the disinfectant resin particles and become devitalized as a result. On the other hand, any microorganisms on the opposite side of the sterilization barrier which attempt to pass through the barrier are also subject to being contacted with the disinfectant and are also devitalised.
A (flexible) phamaceutically acceptable hydrophilic foam matrix may be obtained by reacting water with HYPOL foamable hydrophilic polyurethane polymer; the HYPOL polymer starting material may be obtained from W. R. Grace & Co. Lexintington Mass. U.S.A. Water reacts to cross link the HYPOL polymer; if water is added quickly or at relatively high temperature foaming occurs and a foam product is obtained.
The carrier component may, as necessary, also be oil or fat loving, e.g. for dealing with individuals with high cholesterol levels.
If desired the iodinated resin for the sterilisation combination may be some type known iodinated resin, a resin prepared in accordance herewith, or a mixture of iodinated resins, e.g. a mixture of a known iodinated resin and an iodinated resin prepared in accordance herewith.
Turning back to the process of the present invention, if commercially available materials are to be used to make the iodine/resin then, depending on the purity thereof, the starting materials may have to be treated to remove components which may interfer with the absorption of the halide into the resin. Water if present in the initial reaction mix should be free of interfering elements such as interfering ions. Distilled or ion free water is preferably used for washing.
The following materials may be used to prepare a triiodide resin in accordance with the present invention:
Using the above substances a resin cramed with triiodide (i.e. a triiodide jam-backed resin) may be obtained as indicated in the following examples.
For the following examples, the following procedure for the evaluation of iodine (I2) and Iodide (I−), was conducted according to “standard methods for the examination of water and wastewater 17e Ed.”:
i) Resin
A mixture of iodine (I2) and potassium iodide (KI) is prepared by mixing together, in an erlenmyer flask, 60.00 grams of iodine and 40.00 grams of potassium iodide (in both cases on a dry weight basis). Thereafter R/O water is admixed slowly drop by drop with the mixture until a metallic looking sludge is obtained (e.g. with the addition of about 5.00 grams of water). The obtained iodine/potassium iodide sludge is then ready for use in example 2 hereinbelow.
The aqueous iodine sludge, as obtained above, is placed in a 500.00 ml Erlenmyer flask and is slowly heated to, and maintained at 40 degrees celsius for a few minutes. Once the temperature of the sludge reaches 40° C., the washed resin, obtained as above, is slowly admixed with the iodine sludge in 10.00 gram portions every 8 minutes until all of the washed resin is within the erlenmyer flask. The 500 ml Erlenmyer flask, containing the obtained starting mix (comprising the I2/KI mixture and the washed resin—approximately 100 grams of each of the starting materials), is then sealed with a cork and is placed in a shaking water bath (Yamato BT: −25) for a period of 16 hours. The temperature of the water in the shaking bath is maintained at about 20 degrees celsius during this time period. At the end of the time period, the Erlenmyer flask is removed from the shaking bath; at this point the removed flask contains an preimpregnation mix comprising impregnated resin and remaining I2/KI. The Erlenmyer flask is sized such that at the end of this (initial) impregnation step, it is only 50% filled with the in process resin, etc, i.e. there is a void volume above the impregnation mix.
NOTE: If processing of the treated resin is stopped at this point and the obtained resin is suitably washed, a resin is obtained in accordance with the prior art i.e. U.S. Pat. No. 3,923,665.
The cork of the Erlenmyer flask of EXAMPLE 2 removed from the shaking bath and including the obtained impregnation nix comprising impregnated resin and remaining I2/KI, is changed for a cork having a small diameter perforation passing therethrough (i.e. of about 3 mm in diameter). With the perforated cork in place, the Erlenmyer flask is disposed within a (steam pressure) autoclave along with a suitable amount of water. With the autoclave (pressure) sealed about the flask, the autoclave is heated. Heating proceeds until an internal temperature and pressure of 115 degrees Celsius and 5 psig respectively is reached. Once those parameters have been reached, they are maintained for 15 minutes of processing time. Thereafter the autoclave is allowed to slowly cool for 50 minutes of cooling time (until the internal pressure is equal to ambient pressure) before removing the Erlenmyer flask containing a (raw) product resin demand disinfectant in accordance with the present invention.
The (raw) disinfectant of Example 3 is removed from the autoclave Erlenmyer flask and placed in another 2000 ml Erlenmyer flask. 1400 ml of R/O water at 20 degrees Celsius is admixed with the resin in the flask and the slurry is shaken manually for 3 minutes. The wash water is thereafter removed from the flask by decantation. This wash step is repeated 7 more times. The entire wash cycle is repeated twice (i.e. eight water washes per cycle) but using water at 45 degrees Celsius for the next wash cycle and then with water at 20 degrees Celsius for the last wash cycle. The washed iodine-resin is then ready to use.
The following resins were examined with respect to certain physical characteristics:
In the examples which follow the above resins will be referred to using the above designations, i.e. I-D, Resin I-A, etc.
The resins were examined in a drip dried state, i.e. the resins were used after being drip dried using wathman filter paper and a funnel (for a 5 minute dry period). 25 ml and 100 ml flasks were used for the study. The flaskes were weighed empty. The flasks were then filled with resin and were then subjected to a manual vibration sequence (approximately 2 impulses per second for two minutes) in order to settle the resin, the volume of the settled resin was then noted. The density was obtained by weighing a filled flask and subtracting the weight of the empty flask so as to obtain the weight (grams) per unit volume (ml) of the resin. The results are shown in Table 1 below.
TABLE 1
Resin
density
I-A
1.720 gm/ml
I-B
1.480 gm/ml
I-D
1.600 gm/ml
The same procedure as described above for example 5.1 was used except that the initial resin materials were dried simultaneously for 12 hours at 55 degrees Celsius, and placed in desiccant for 2 hours during cooling. The results are shown in Table 2 below.
TABLE 2
Resin
Desity
I-A
1.088 gm/ml
I-B
0.957 gm/ml
I-D
1.016 gm/ml
1.0 gm of each of the different resins was boiled in 20 ml of water with a concentration of 5% by weight of sodium thiosulphate. Boiling was conducted for 20 minutes whereafter the water mixture was set aside to air cool for 12 hours. The resin was then recovered and washed with 50 ml of a boiling water solution of sodium thiosulphate. Thereafter the resin was dried in an oven for 12 hours at 105 degrees. The iodine desorbed resin was weighed in each case and the weight difference was used to calculate the % by weight of the initial resin represented by the active iodine removed. The results are shown in Table 3 below.
TABLE 3
Resin
% by weight iodine
I-A
43.7%
I-B
32.4%
I-C
30.7%
I-D
36.7%
NOTE:
As may be seen from Table 3, the resin in accordance with the present invention (i.e resin I-A) has a substantially higher iodine content than the commercially available resins or the resin prepared in accordance with the prior art (i.e. resin I-B).
100.00 gm of each resin was mixed with 125 ml of water in Erlenmyer flask which was sealed airtight. The water mixture was allowed to stand 20 degrees Celsius for 7 days. A water sample was then taken from each water mixture and subjected to a standard method for testing water for the presence of Iodine using the Leuco Crystal Violet Iodometric Spectrophotometer Technique so as to obtain the “ppm” concentration of iodine in the water. The results are shown in Table 4 below.
TABLE 4
Resin
bleed iodine concentration (ppm)
I-A
1.7 ppm
I-D
2.5 ppm
NOTE:
As may be seen from table 4, the resin of the present invention (resin I-A) has a significantly lower iodine bleed lose into water than the commercial product (resin I-D).
Two grams of dry resin was examined with a microscope having a micrometer scale system and sized by eye. The results are shown in Table 5 below.
TABLE 5
Size (ie. approximate effective
Resin
diameter size) - lowest to highest
AMBERLITE I 401 S
0.35 mm to 0.52 mm
I-A
0.60 mm to 1.20 mm
I-B
0.40 mm to 1.00 mm
Simultaneous tests were conducted to compare the antimicrobial activity of a disinfectant resin in accordance with the present invention (resin I-A, above) and a prior art disinfectant resin (resin I-D, above). A series of batch solutions was prepared; each batch solution contained a different microorganism. A batch solution was divided into test portions so that the comparative tests could be carried out against each of the resins at the same using a respective test portion of the batch solution; the volume of the test portions was 150 liters. The same amount of each of the resins was supported in a respective fixed bed configuration (i.e. the resins were disposed in a cylinder 1 cm high having an internal diameter of 3 cm). The respective test solutions were allowed to pass downwardly through each of the resins in the same fashion and at the same flow rate (i.e. the test conditions were the same for each resin). The tests were carried out at ambient conditions of temperature and pressure. The microorganisms and test results were as follows:
TABLE 6a
Total % of test
Microorganism concentration in test
solution passed
effluent for each resin type (cfu/ml)
through the resin
Resin I-D
Resin I-A
0%
0/0/0
0/0/0
25%
0/0/0
0/0/0
50%
0/0/0
0/0/0
60%
0/0/0
0/0/0
75%
0/0/0
0/0/0
90%
0/0/0
0/0/0
100%
0/0/0
0/0/0
The assay technique consisted of inoculating healthy BGM cells with a small amount of filtered water at regular intervals. If a virus particle were present, a plaque would be observed on the cellular bed thru the gellified maintenance media which contained a vital stain.
A test solution containing Poliovirus 1 (A.T.C.C VR-59) at an initial concentration of 1×107 pfu per liter was passed through the fixed bed of each resin at a flow rate of 125 ml/min to 200 ml/min. The treated volume of solution for each resin was 150 liters in total. Sampling of the effluent or treated solution was effected at intervals corresponding with a predetermined percentage of the test portions having passed through the resins. The results are shown in Table 6b below:
TABLE 6b
Total % of test
Virus concentration in test effluent
solution passed
for each resin type (pfu/l)
through the resin
Resin I-D
Resin I-A
0%
0/0/0
0/0/0
25%
0/0/0
0/0/0
50%
0/0/0
0/0/0
60%
0/0/0
0/0/0
75%
0/0/0
0/0/0
90%
0/0/0
0/0/0
100%
0/0/0
0/0/0
TABLE 6c
Total % of test
Virus concentration in test effluent
solution passed
for each resin type (cfu/ml)
through the resin
Resin I-D
Resin I-A
0%
0/0/0
0/0/0
25%
0/0/0
0/0/0
50%
0/0/0
0/0/0
60%
0/0/0
0/0/0
75%
0/0/0
0/0/0
90%
0/0/0
0/0/0
100%
0/0/0
0/0/0
An iodine bleed test was conducted on the Resin I-A and Resin I-D mentioned above. The tests were conducted as follows:
The results of the tests are given in the graph shown in
The bacteriocidal longevity of the Resin I-A and Resin I-D were determined for purposes of comparison. Two fixed resin bed devices were provided, one device loaded with one of the resins and the other device loaded with the other resin; each device was loaded with 75.00 grams of a respective resin. The tests for each resin bed were conducted simultaneously. For each resin bed, the solution to be treated was passed therethrough at a flow rate of 2.0 liters per minute, with an initial concentration of Klebsiella Terrigena 1×107 cfu/100 ml. The effluent was tested at intervals for the presence of viable bacteria. As may be seen in the graph of
An iodinated resin (Resin I-A′) was prepared following the procedures of examples 1 to 4 except that for the resin, Amberlite IR-400 (OH−) (was used and for the procedure of example 3 the elevated temperature and pressure conditions were set at 121° C. and 15 psig respectively. Resin I-A′ was used in the following examples.
Two cartridges as illustrated in
The cartridges were each disposed in a system as illustrated in
In operation a cartridge 1 was releasably placed in position (e.g. snap fit, etc.) and the vacuum pump activated so as to draw outside air (indicated by the arrow 13) into the housing 8. The air passed through the cartridge 1 as shown by the arrows 14. The air leaving the cartridge 1 was then directed to the collector station 10. The air entering the collector station 10 impinged upon a iodine collector solution 15 (comprising double reverse osmosis water, i.e. R/O water) in the collector station 10. Air leaving the collector station 10 thereafter passed through the pump 11 and was exhausted to the outside air.
Using the above described system, each, cartridge was submitted to an air velocity therethrough of 0.7 Liter/per minute for a period of 50 minutes. The collector station 10 included 50 ml purified R/O water (the water was then subjected to standard optical coloration techniques (i.e. the Leuco violet technique as referred to in example 5.4 above), to determine the total iodine content).
The results of the tests are shown in table 10a:
TABLE 10a
Resin type
total iodine (I2)
Resin I-A′
0.4 ppm
Resin I-D
1.1 ppm
The results of the tests as shown in table 9a means that each gramme of both of the resin types will add a definite amount of iodine to the effluent air, namely as indicated in table 10b.
TABLE 10b
Resin type
iodine (I2) release per gram resin
Resin I-A′
0.014 Mg/m3/gr
Resin I-D
0.031 Mg/m3/gr
Thus, for example, if a gas mask cartridge as discussed above contained 50.0 gm of iodinated resin, the resins would emit the level of iodine set out in table 10c below
TABLE 10c
Resin type
iodine (I2) release
Resin I-A′
0.7 Mg/m3 (= 50 gr × 0.014 mg/m3/gr)
Resin I-D
1.5 Mg/m3 (= 50 gr × 0.031 mg/m3/gr)
The “Committee of the American conference of governmental industrial hygienist.” emits the “threshold limit value” or T.L.V. for common chemicals. The iodine T.L.V. is 1.0 Mg/m3 for air analysis for human breathing during a period of 8 hrs.
Thus, while the Resin I-D releases 50% more iodine than the maximum T.L.V. indicated above, the Resin I-A′ (of the present invention) releases iodine at a level well below the T.L.V. The Resin I-A′ could thus be used without an iodine scavenger; this would, for example, simplify the construction of a gas mask cartridge. The known Resin I-D on the other hand could also be used but it would require some sort of iodine scavenger (e.g. activated carbon) to obtain the necessary iodine T.V.L. level.
Resin I-A′ was evaluated for its biocidal capacity on direct contact with Klebsiella Terrigena in relation to a time reference and a humidity content variation; namely water content variations of 110%, 50% & 0% (relative to the weight of dry resin) and time variations of 2, 5, 10, and 15 seconds.
After preparing the three resins with their respective humidity content 25 glass rods were sterilized. A vial containing 25 ml of the inoculum (Klebsiella Terrigena: 109×ml) was also prepared.
The testing proceeded as follows with respect to the dry resin. A glass rod was immersed in the inoculum and then immersed in the dry resin for 2 seconds. The glass rod was then washed in 100 ml phosphate buffer to wash out the microorganisms. Following the standard method for evaluation of water, the collected sample was then plated and incubated. This procedure was then repeated for 5, 10 and 15 seconds.
The procedure was also repeated for the two other different humidity content batches of Resin I-A′. The results of the test are shown in table 11a.
TABLE 11a
number of viable microorganisms per time period
% humidity
2 sec.
5 sec.
10 sec.
15 sec.
110%
16
0
0
0
50%
23
1
0
0
0%
67
15
0
0
As may be seen from table 11a, the Resin I-A′ whether wet, humid or dry destroys large quantities of resistant bacteria in direct contact, and this destruction occurs on a relatively rapid time base as demonstrated above.
A study was done to evaluate the biocidal effectiveness of dry Resin I-A′ versus Klebsiella Terrigena.
The system used was the system illustrated in FIG. 5. The system included an atomizer 7 (of known construction) disposed in a housing 8 provided with an air opening 9. The system had a vacuum pump 11 for the displacement of air through the system. The system included an air sterilizer 12 comprising a hollow housing 10 inches high by about 2.5 inches in inner diameter and filled with about 1.5 kilograms of Resin I-A′; the sterilizer has an air inlet and outlet. The air path through the cartridge 1 is designated by the arrows 14. The atomizer 7 contained an inoculum 16 (Klebsiella Terrigena: 107×100 ml). For the test, the air flow at arrow 13 was set at 30 liters per minute and the air inflow at arrow 17 for the atomizer was set at 8 liters per minute; the atomizer 7 injected mist or spray 18 of inoculum into the air in the air path and the inoculated air then passed through cartridge 1 as shown by the arrows 14.
A cartridge 1 as illustrated in
A study was carried out using the system shown in FIG. 6. To the extent that members of the system are the same as those used in the system illustrated in
An inoculum 20 of the thermophilic bacteria Bacillus Pumilus was prepared and injected at a concentration of 103/liter of influent air. A cartridge mask containing 65.00 gm of Resin I-A′ was prepared as for the previous example. The test ran for 30 minutes.
All effluent (velocity at arrow 13 being 30 liters per minute) was collected on the microbiological filter paper 19 (from millepore), then lain in a T.S.A. (trypticase Soy Agar) and incubated. the results showed total eradication of Bacillus Pumilus.
This test was performed with Bacillus Subtilis in a mixture of 40% active bacteria/60% spores. The system shown in
Once the 80 minutes ended, the millepore filter paper was collected, lain on T.S.A. (after neutralisation of potential iodine with sodium thiosulfate 5%) and incubated for 48 hours at 37 degree celsius. The results show a total eradication of micro-organisms.
In order to assess the retention factor of micro-organisms on inert materials this test was performed. Also, to evaluate the migration factor of the biological vector, a sequential incubation was performed.
Two gas cartridges were built in accordance with
Simultaneously, the two cartridges were, once inserted in their respective testing chamber, submitted to a velocity of 23 liter per minutes for 40 minutes with a microbiological load of 40 bacteria per liter in the influent.
Once the test period completed, the two cartridges were dissected in sterile conditions and the microbiological filter paper recovered. Each materials composing the masks were individually as well as the filter paper were incubated in T.S.A. for 48 hours at 37 degree celsius. The results are shown in table 11b.
TABLE 11b
Resin I-A′
Glass beads
upstream mesh:
2 cfu
tnc*
cfu
Resin\beads:
0 cfu
tnc*
cfu
downstream mesh:
0 cfu
220
cfu
microbiological
0 cfu
86
cfu
filter paper:
*tnc = microorganisms too numerous to count
As may be seen from table 11b the Resin I-A′ eradicated all bacteria and no living micro-organism can live in the resin bed.
The Glass beads on the other hand have a mechanical filtering capacity in regards to the biological vector but migration occurs rapidly thus obtaining “tnc” results (too numerous to count) on the upstream mesh and the beads themselves. The migration keeps on going through the filter until it reaches the microbiological paper filter in large number. Also, the glass beads filter becomes severely contaminated, causing a disposal problem.
This test was performed to establish the biocidal effectiveness of the Resin I-A′ in regards to the microbiological eradication of Bacillus Subtilis. The system of
Two cartridges as illustrated in
A positive control yielded a concentration of 275 cfu/liter of air at the microbiological sampling site.
The results show total eradication for both cartridges.
A cartridge of
The test was done using the impinger technique (of FIG. 5), with 300 ml of sterile water. Once the 3 hours completed the water from the impinger was filtered on a microbiological membrane as referred in standard method for analysis of water and waste water 17 th edition, pp. 9-97 To 9-99. The growth media was trypticase soy agar. The results after incubation for 48 hours at 37.5 degree celsius was total eradication.
Resin I-A′, Resin I-B′, Resin I-B″ and Resin I-A″ were prepared as follows:
The iodine content of the above iodinated resins was determined in accordance with the procedure outlined in example 5.3. The resins were also subjected to an iodine bleed test as outlined in example 7. The results are shown in table 12 below:
TABLE 12
Resin type
Iodine %
Iodine leach
Resin I-B′
43.5
0.15 ppm
Resin I-A′
41.8
0.05 ppm
Resin I-B″
30.5
0.3 ppm
Resin I-A″
29.0
0.05 ppm
As may be seen from table 12, subjecting the resin to a high temperature/pressure treatment results in the iodine being more tenaciously fixed to the resin at different iodine concentrations.
The procedure of example 11.6 was followed using 30 grams of Resin I-B″ and Bacillus Subtilis at a concentration of 275000 cfu per cubic meter. It was found that the Resin I-B″ eradicated only 7 to 10% of the microorganisms. The results of the test show that the Resin I-B″ is not as effective at eradicating microorganisms from air as is the Resin I-A′; it would be necessary to have substantially more of Resin I-B″ in order to totally sterilize air as compared with the Resin I-A′.
Resin 1A, Resin 2B, Resin 3A and Resin 4B were prepared as follows:
TABLE 14
Resin type
Iodine %
Iodine leach
Density
Resin 1A
46.4
0.5 ppm
1.616 gm\ml
Resin 2B
48.1
1.5 ppm
1.694 gm\ml
Resin 3A
45.0
0.5 ppm
1.661 gm\ml
Resin 4B
45.7
1.0 ppm
1.595 gm\ml
As may be seen from table 14, subjecting the starting iodine\resin mixture to a treatment at essentially atmospheric pressure and a temperature of 100° C. to 105° C. or lower (resin 2B and 4B) does not result in the iodine being as tenaciously fixed to the resin as when using both a temperature above 100° C. and a pressure above atmospheric pressure (resins 1A and 3A).
The following starting materials were used to prepare a sterilisation foam dressing:
The sterilisation foam barrier was prepared as follows:
The following starting materials were used to prepare a band-aid sterilisation dressing:
The sterilisation strip barrier was prepared as follows:
The foam type sterilisation dressing obtained from example 15.1 was tested as follows:
The strip type sterilisation dressing obtained from example 15.2 was tested exactly as above for the foam dressing with exactly the same results.
The same studies as described in example 15.3 were carried out except that the lesion was a burn created with a 1.0 cm red hot rod; the hot rod was firmly held against the skin for about 3 to 4 seconds. The same Inoculum as in example 15.3 was injected beneath the burn area and also dabbed onto the surface of the burned skin. Exactly the same results were obtained for the two types of dressings as were obtained for the tests of example 15.3.
The foam type sterilisation dressing obtained from example 15.1 was tested as follows:
The same procedure as for example 15.5 was used except that instead of being maintained in a bath of inoculum, the inoculum was applied using an atomiser the same as that used for example 11.2 for artificial creation of airborne infection of a wound; the inoculum used also had 109 cfu/ml rather than 107 cfu/100 ml as in example 15.6. 4 ml of the inoculum was sprayed directly on the wound of the control animals and on the dressing covering the wound of the test animals; the inoculum was so applied every hour for 8 hours with 72 hours of incubation. The same results as in example 15.5 were obtained.
Alternatively, the sterilisation barrier may take on a band-aid type aspect as shown in FIG. 8. The combination shown has a flexible carrier component 36. A central portion of one side of the carrier component 36 has fixed thereto a plurality of beads or particles (one of which is designated by the reference numeral 37) of demand disinfectant iodinated resin. The resin beads 37 are fixed to the surface by a suitable adhesive which is pharmacetically acceptable and which will maintain the beads on the carrier component even if exposed to water or body fluids or exudates. The portion of the band surface 38 which surrounds the centrally disposed beads 36 may also be provided with any (known) adhesive which may for example be able to releasably stick the combination to the skin (e.g. a latex based adhesive). The carrier component 36 may, as desired be permeable or impermeable to fluids such as air, water, pus; prefereably, the carrier is permeable to gas such as air, water vapour, etc. at least in the region of the resin beads fixed thereto, i.e. this region is air breathable. The carrier component 36 may be of any suitable pharmaceutically acceptable (plastics) material (e.g. the carrier component may be a porous hydrophobic material permeable to air and water vapour such as described in U.S. Pat. Nos. 3,953,566 and 4,194,041—Gore-Tex). The carrier component complete with an adhesive face may be obtained from Peco Marketing ltd., Montreal, Quebec under the name “Compeed”.
The foam sterilisation barrier or dressing 39 as shown in
The foam matrix for the sterilisation barriers of
As mentioned above a (flexible) phamaceutically acceptable hydrophilic foam matrix may be obtained using water and HYPOL foamable hydrophilic polyurethane polymer starting material from W. R. Grace & Co. Lexintington Mass. U.S.A.
The pore or cell size of the foam barrier may be adjusted in known manner; for example by altering the reaction temperature. For example in the case of HYPOL a temperature of about 50 to 70° C. may be used to obtain small pore sizes and a lower temperature of about 35 to 45° C. may be used to obtainer larger sized pores.
The flexible foam layer 47 can be made in any known manner provided that disinfectant resin particles are dispersed in the reaction mixture during the reaction such that the end product foam also has the resin particles dispersed in the foam matrix and any microorganism able to penetrate into an interior cell of the foam may be able to contact a resin particle exposed into the cell and be devitalised thereby. The foam barrier as in the case of the foam dressings mentioned may be configured to be permeable to fluids such as air, water, etc.
The textile material 46 may be formed by first forming a sheet of the sterilisation foam; by providing sheets of the desired outer layers; and then gluing the elements together such that the foam is sandwiched between the two other outer layers. Alternatively, a mold may be used wherein opposed surfaces of the mold are provided with a respective outer layer; the foam starting materials are introduced between the layers; and foaming activated such that the foam layer is produced in situ.
Although shown with two outer layers the combination of
Additionally although the foam sterilisation barrier has been described in relation to a flexible foam it may be a stiff foam depending upon the application; again the stiff foam matrix may be prepared in known manner.
An alternate embodiement of the sandwich type textile may be made wherein the foam matrix is omitted; in this case the beads may be placed between the outer layers and the beads may be fixed in place for example by an adhesive or by melt fusion depending on the nature of the layers (e.g. melt fusion may be considered if the layers are of thermoplastics material; the textile may of course be so made as to preserve the flexibility of the combination.
Patent | Priority | Assignee | Title |
7261879, | Sep 16 1992 | SAFELIFE TRIOSYN CORP | Iodinated anion exchange resin and process for preparing same |
7955997, | Sep 16 2002 | TRIOMED INNOVATIONS CORP | Electrostatically charged filter media incorporating an active agent |
8091551, | Sep 16 2002 | Prestige Ameritech, Ltd | Facemask with filtering closure |
8535531, | Apr 23 2008 | Water Security Corporation | Halogenated resin beds |
D696745, | Oct 23 2012 | CROSSTEX INTERNATIONAL, INC | Water purification filter |
Patent | Priority | Assignee | Title |
3316173, | |||
3462363, | |||
3715972, | |||
3817860, | |||
3923665, | |||
4076622, | Jun 22 1976 | Rohm and Haas Company | Microbiocidal macroreticular ion exchange resins, their method of preparation and use |
4076722, | May 21 1975 | Warner-Lambert Company | Composition containing alkyl 2-{[({[(5-methyl-3-isoxazolyl)-amino]carbonyl}methyl)amino]sulfonyl}benz oate and an alkali metal alkoxide of a lower alcohol in an inert solvent |
4113851, | Apr 15 1976 | DEVICE DEVELOPMENTS, INC , A CORP OF NV | Microbiocidal composition and articles prepared therefrom |
4187183, | Mar 28 1975 | AQUA-CHEM, INC | Mixed-form polyhalide resins for disinfecting water |
4190529, | Mar 28 1975 | AQUA-CHEM, INC | Mixed-form polyhalide resins for disinfecting water |
4238477, | Apr 20 1979 | AMERICAN STERILIZING COMPANY, A CORP OF PA | Process of preparing homogeneous resin-polyiodide disinfectants |
4298475, | Jul 18 1980 | WATER TECHNOLOGIES CORPORATION A CORP OF DELAWARE | Water purification system |
4343765, | Dec 11 1980 | Georgia Tech Research Institute | Method for deodorizing and disinfecting air |
4381380, | Nov 03 1980 | DEVICE DEVELOPMENTS, INC | Thermoplastic polyurethane article treated with iodine for antibacterial use |
4420590, | Apr 06 1981 | WATER TECHNOLOGIES CORPORATION A CORP OF DELAWARE | Bacteriocidal resins and disinfection of water therewith |
4455187, | Mar 27 1982 | Filter sheet material and method of making same | |
4469826, | Jun 02 1983 | Sun Chemical Corporation | Process for the production of dispersions of polymers in non-aqueous vehicles |
4483771, | Aug 08 1983 | Multi-layer filter | |
4510193, | Feb 09 1983 | Filter sheet material | |
4526751, | Dec 09 1983 | Water Technologies Corporation | Germicidal solutions effective for solid surface disinfection |
4749484, | Oct 07 1986 | Shapiro/Devine | Home water filter |
4891227, | Feb 02 1988 | Richardson-Vicks Inc.; RICHARDSON-VICKS, INC | Medicated cleansing pads |
4925517, | Jun 27 1988 | Minnesota Mining and Manufacturing Company | Method of forming fragrance releasing pull-apart sheets |
4978449, | Feb 12 1990 | Water purifier with air-passing retainer above water inlet | |
4983192, | Jan 14 1982 | Textile sheet filter | |
4988557, | Dec 08 1989 | Minnesota Mining and Manufacturing Company | Fragrance sampling device |
4995976, | May 31 1990 | Water Technologies Corporation | Water purification straw |
4999190, | Jun 13 1989 | Kansas State University Research Foundation; KANSAS STATE UNIVERSITY RESEARCH FOUNDATION, A CORP OF KS | Preparation of I5 - polyiodide disinfectant resins |
5051256, | Aug 15 1978 | Biocidal complex and dressing formed therefrom | |
5076912, | Jun 07 1989 | Brita Wasser-Filter-Systeme GmbH | Ion exchange device with chamber having indicator means |
5110479, | Dec 30 1988 | Water purification systems | |
5156843, | Mar 20 1989 | AMCOL International Corporation | Fabric impregnated with functional substances for controlled release |
5176836, | Mar 18 1991 | The United States of America as represented by the Administrator of the | Regenerable biocide delivery unit |
5277963, | Feb 25 1992 | Blucher GmbH | Filter sheet material |
5350625, | Jul 09 1993 | E I DU PONT DE NEMOURS AND COMPANY | Absorbent acrylic spunlaced fabric |
5370534, | Nov 09 1992 | MRLB INTERNATIONAL, INC | Water purification system for dental instrument |
5431908, | Mar 17 1993 | KATADYN HOLDING AG | Method for preparing polyhalide resin disinfectants |
5433987, | Jul 09 1993 | E I DU PONT DE NEMOURS AND COMPANY | Absorbent spun-laced fabric |
5614301, | Apr 15 1995 | The United States of America as represented by the Secretary of the Army | Chemical protective fabric |
5626820, | Dec 12 1988 | Entegris, Inc | Clean room air filtering |
5639452, | Sep 16 1992 | TRIOSYN CORP ; SAFE LIFE CORP | Iodine/resin disinfectant and a procedure for the preparation thereof |
5662991, | Dec 23 1994 | Gentex Corporation | Laminated biocidal fabric |
5731065, | Jul 07 1992 | Kaercher Futuretech GmbH | Multilayered, textile, gas-permeable filter material against toxic chemical substances |
5769992, | Mar 29 1994 | Helsa-Werke Helmut Sandler GmbH & Co., KG | Process for the production of flexible surface filter material for dealing with noxious substances |
5772738, | Nov 30 1993 | NOMURA MICRO SCIENCE CO , LTD | Multifunctional air filter and air-circulating clean unit with the same incorporated therein |
5790987, | Nov 25 1991 | ALS Enterprises, Inc. | Odor absorbing clothing |
5856245, | Mar 14 1988 | NEXTEC APPLICATIONS, INC | Articles of barrier webs |
5980827, | Feb 24 1997 | TRIOSYN CORP ; SAFE LIFE CORP | Disinfection of air using an iodine/resin disinfectant |
6045820, | Sep 16 1992 | TRIOSYN CORP ; SAFE LIFE CORP | Iodine/resin disinfectant a procedure for the preparation thereof |
6592861, | Sep 16 1992 | TRIOSYN CORP ; SAFE LIFE CORP | Iodinated resin held to a carrier |
BE853566, | |||
CA1125651, | |||
CA942188, | |||
DE19649237, | |||
EP347746, | |||
EP48286, | |||
EP500460, | |||
EP592001, | |||
EP402865, | |||
GB2252047, | |||
GB853566, | |||
JP60243003, | |||
JP606730, | |||
JP6365923, | |||
WO9204921, | |||
WO9401069, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 31 2002 | Triosyn Holding Inc. | (assignment on the face of the patent) | / | |||
Mar 23 2006 | TRIOSYN RESEARCH INC F K A HYDRO-BIO TECH INC | VANTAGEPOINT CDP PARTNERS, L P | NOTICE OF GRANT OF SECURITY INTEREST | 017783 | /0587 | |
Mar 23 2006 | TRIOSYN HOLDING INC | VANTAGEPOINT CDP PARTNERS, L P | NOTICE OF GRANT OF SECURITY INTEREST | 017783 | /0587 | |
Mar 23 2006 | HENO-BIOTECH INC | VANTAGEPOINT CDP PARTNERS, L P | NOTICE OF GRANT OF SECURITY INTEREST | 017783 | /0587 | |
Mar 23 2006 | TRIOSYN CORP | VANTAGEPOINT CDP PARTNERS, L P | NOTICE OF GRANT OF SECURITY INTEREST | 017783 | /0587 | |
Mar 23 2006 | TRIOSYN HOLDING INC | VANTAGE POINT CDP PARTNERS, L P | NOTICE OF GRANT OF SECURITY INTEREST | 017783 | /0778 | |
Apr 07 2006 | MESSIER, PIERRE JEAN | TRIOSYN HOLDING INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017442 | /0125 | |
Apr 07 2006 | MESSIER, PIERRE JEAN | TRIOSYN CORP | CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE S NAME ON ORIGINAL COVER SHEET AND ORIGINAL ASSIGNMENT DOCUMENT PREVIOUSLY RECORDED ON REEL 017442 FRAME 0125 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 025527 | /0132 | |
Aug 31 2006 | BUSINESS DEVELOPMENT BANK OF CANADA | TRIOSYN CORP | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 026362 | /0496 | |
Aug 31 2006 | BERGERON, GILES | TRIOSYN CORP | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 026362 | /0496 | |
Aug 31 2006 | SL VENTURES | TRIOSYN CORP | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 026362 | /0496 | |
Aug 31 2006 | BRB SPORTS UNLIMITED | TRIOSYN CORP | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 026362 | /0496 | |
Aug 31 2006 | MARTIN, JACQUES | TRIOSYN CORP | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 026362 | /0496 | |
Aug 31 2006 | DONLAN, DAVID A | TRIOSYN CORP | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 026362 | /0496 | |
Aug 31 2006 | O BRIEN, JOSEPH W | TRIOSYN CORP | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 026362 | /0496 | |
Aug 31 2006 | O BRIEN, SHIRLEY | TRIOSYN CORP | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 026362 | /0496 | |
Aug 31 2006 | HARNELL, WILLIAM | TRIOSYN CORP | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 026362 | /0496 | |
Aug 31 2006 | HARNELL, TERESA | TRIOSYN CORP | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 026362 | /0496 | |
Aug 31 2006 | CAPOSELLA, CARMINE | TRIOSYN CORP | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 026362 | /0496 | |
Aug 31 2006 | JAGOE, HARVEY | TRIOSYN CORP | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 026362 | /0496 | |
Aug 31 2006 | MACLEOD, RAY | TRIOSYN CORP | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 026362 | /0496 | |
Aug 31 2006 | SOCIETE INNOVATECH DU GRAND MONTREAL | TRIOSYN CORP | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 026362 | /0496 | |
Aug 31 2006 | SOFNOV SOCIETE FINANCIERE D INNOVATION INC | TRIOSYN CORP | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 026362 | /0496 | |
May 29 2007 | VANTAGEPOINT CDP PARTNERS, L P | TRIOSYN HOLDING INC | RELEASE OF SECURITY INTEREST AND COLLATERAL | 019511 | /0619 | |
Nov 21 2008 | TRIOSYN CORP | Silicon Valley Bank | SECURITY AGREEMENT | 022078 | /0275 | |
Feb 27 2009 | SAFE LIFE CORP | VANTAGEPOINT CDP ASSOCIATES, L L C | NOTICE OF GRANT OF SECURITY INTEREST | 022521 | /0423 | |
Feb 27 2009 | TRIOSYN CORP | VANTAGEPOINT CDP ASSOCIATES, L P | NOTICE OF GRANT OF SECURITY INTEREST | 022521 | /0423 | |
Feb 27 2009 | SAFE LIFE CORP | VANTAGEPOINT CDP ASSOCIATES, L P | NOTICE OF GRANT OF SECURITY INTEREST | 022521 | /0423 | |
Feb 27 2009 | TRIOSYN CORP | VANTAGEPOINT CDP ASSOCIATES, L L C | NOTICE OF GRANT OF SECURITY INTEREST | 022521 | /0423 | |
Feb 27 2009 | TRIOSYN HOLDING INC | Silicon Valley Bank | SECURITY AGREEMENT | 022846 | /0719 | |
Dec 23 2009 | VANTAGEPOINT CDP ASSOCIATES, L P | TRIOSYN CORP | CORRECTIVE ASSIGNMENT TO CORRECT THE IDENTIFICATION OF ASSIGNEE AND ASSIGNOR PREVIOUSLY RECORDED ON REEL 023749 FRAME 0127 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST | 023793 | /0389 | |
Dec 23 2009 | VANTAGEPOINT CDP ASSOCIATES, L L C | SAFE LIFE CORP | CORRECTIVE ASSIGNMENT TO CORRECT THE IDENTIFICATION OF ASSIGNEE AND ASSIGNOR PREVIOUSLY RECORDED ON REEL 023749 FRAME 0127 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST | 023793 | /0389 | |
Dec 23 2009 | VANTAGEPOINT CDP ASSOCIATES, L P | SAFE LIFE CORP | CORRECTIVE ASSIGNMENT TO CORRECT THE IDENTIFICATION OF ASSIGNEE AND ASSIGNOR PREVIOUSLY RECORDED ON REEL 023749 FRAME 0127 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST | 023793 | /0389 | |
Dec 23 2009 | SAFE LIFE CORP | VANTAGEPOINT CDP ASSOCIATES, L P | RELEASE OF SECUITY INTEREST | 023749 | /0127 | |
Dec 23 2009 | TRIOSYN CORP | VANTAGEPOINT CDP ASSOCIATES, L L C | RELEASE OF SECUITY INTEREST | 023749 | /0127 | |
Dec 23 2009 | SAFE LIFE CORP | VANTAGEPOINT CDP ASSOCIATES, L L C | RELEASE OF SECUITY INTEREST | 023749 | /0127 | |
Dec 23 2009 | VANTAGEPOINT CDP ASSOCIATES, L L C | TRIOSYN CORP | CORRECTIVE ASSIGNMENT TO CORRECT THE IDENTIFICATION OF ASSIGNEE AND ASSIGNOR PREVIOUSLY RECORDED ON REEL 023749 FRAME 0127 ASSIGNOR S HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST | 023793 | /0389 | |
Dec 23 2009 | TRIOSYN CORP | VANTAGEPOINT CDP ASSOCIATES, L P | RELEASE OF SECUITY INTEREST | 023749 | /0127 | |
Dec 15 2010 | Silicon Valley Bank | TRIOSYN CORP | RELEASE | 025641 | /0727 | |
Dec 15 2010 | Silicon Valley Bank | TRIOSYN HOLDING INC | RELEASE | 025641 | /0732 |
Date | Maintenance Fee Events |
Dec 01 2008 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Jan 14 2013 | REM: Maintenance Fee Reminder Mailed. |
May 31 2013 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
May 31 2008 | 4 years fee payment window open |
Dec 01 2008 | 6 months grace period start (w surcharge) |
May 31 2009 | patent expiry (for year 4) |
May 31 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 31 2012 | 8 years fee payment window open |
Dec 01 2012 | 6 months grace period start (w surcharge) |
May 31 2013 | patent expiry (for year 8) |
May 31 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 31 2016 | 12 years fee payment window open |
Dec 01 2016 | 6 months grace period start (w surcharge) |
May 31 2017 | patent expiry (for year 12) |
May 31 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |