An integral trap magnetic flowmeter having an inlet in fluid communication with a sensing passage, the sensing passage intersecting a magnetic field, having electrodes for detecting a flow-dependent voltage induced by the passage of conductive liquid through the magnetic field, and having an outlet at an elevation such that the sensing passage volume normally remains filled with conductive liquid. By maintaining standing liquid in the sensing passage at a height sufficient to fill the sensing passage volume, the flowmeter's response may be made more rapid and more accurate, particularly during the early stages of a short duration liquid discharge. By providing an integral trap, installation errors may be reduced.
|
1. An integral trap magnetic flowmeter comprising an inlet in fluid communication with a sensing passage, the sensing passage intersecting a magnetic field, having electrodes for detecting a flow-dependent voltage induced by the passage of conductive liquid through the magnetic field, and having an outlet at an elevation such that the sensing passage volume normally remains filled with conductive liquid.
22. A method for measuring liquid flow comprising (a) passing a stream of conductive liquid through an integral trap magnetic flowmeter comprising an inlet in fluid communication with a sensing passage, the sensing passage intersecting a magnetic field, having electrodes for detecting a flow-dependent voltage induced by the passage of conductive liquid through the magnetic field, and having an outlet at an elevation such that the sensing passage volume normally remains filled with conductive liquid, and (b) monitoring a flow-dependent voltage induced at the electrodes by the passage of conductive liquid through the magnetic field.
2. A flowmeter according to
3. A flowmeter according to
4. A flowmeter according to
5. A flowmeter according to
10. A flowmeter according to
11. A flowmeter according to
12. A flowmeter according to
14. A flowmeter according to
15. A flowmeter according to
16. A flowmeter according to
17. A flowmeter according to
18. A flowmeter according to
20. A flowmeter according to
23. A method according to
24. A method according to
25. A method according to
26. A method according to
31. A method according to
32. A method according to
33. A method according to
35. A method according to
36. A method according to
37. A method according to
38. A method according to
39. A method according to
41. A method according to
|
This invention relates to liquid flow rate measurement.
Flowmeters are used to measure liquid flow rates or volumes. A variety of devices have been employed, including weight cells, rotameters, spinning disk or spinning rotor sensors, capacitive sensors, pressure sensors and Faraday effect sensors. References describing such devices include U.S. Pat. Nos. 4,008,609, 4,099,412, 4,118,981, 4,145,924, 4,434,667, 4,683,748, 4,732,160, 4,881,413, 4,899,592, 5,046,510, 5,062,304, 5,078,012, 5,176,148, 5,207,105, 5,325,728, 5,327,787, 5,495,854, 5,708,212, 6,237,424 B1 and 6,463,807 B1.
Magnetic flowmeters are sometimes installed in horizontal pipe runs using a “wet leg” plumbing technique that keeps the flowmeter full of liquid. One such recommended installation is shown in Cadillac® Magnetic Flowmeter General Information, Central Station Steam Co., revision 1001, page 5.
The invention provides, in one aspect, an integral trap magnetic flowmeter comprising an inlet in fluid communication with a sensing passage, the sensing passage intersecting a magnetic field, having electrodes for detecting a flow-dependent voltage induced by the passage of conductive liquid through the magnetic field, and having an outlet at an elevation such that the sensing passage volume normally remains filled with conductive liquid.
The invention provides, in another aspect, a method for measuring liquid flow comprising (a) passing a stream of conductive liquid through an integral trap magnetic flowmeter comprising an inlet in fluid communication with a sensing passage, the sensing passage intersecting a magnetic field, having electrodes for detecting a flow-dependent voltage induced by the passage of conductive liquid through the magnetic field, and having an outlet at an elevation such that the sensing passage volume normally remains filled with conductive liquid, and (b) monitoring a flow-dependent voltage induced at the electrodes by the passage of conductive liquid through the magnetic field.
These and other aspects of the invention will be apparent from the detailed description below. In no event, however, should the above summaries be construed as limitations on the claimed subject matter, which subject matter is defined solely by the attached claims, as may be amended during prosecution.
When used to describe the elevation, location, orientation or motion of elements or liquids in the disclosed devices, words such as “upward”, “downward”, “higher”, “lower”, “above”, “below” and the like refer to the relative position of an element or liquid portion with respect to another element or liquid portion when the disclosed device is being used in its normal orientation for measurement of liquid flow, and are not intended to require that the disclosed devices should have any particular orientation in space during manufacture or storage.
When used with respect to a liquid flow measurement device, the phrase “gravity-assisted” refers a generally downward liquid flow path from an initial higher elevation upon entry into the device to an eventual lower elevation upon exit from (or settling within) the device.
The phrase “in fluid communication” refers to an available liquid flow path from a first region or location in a device to a second region or location in the device.
The phrase “in enclosed fluid communication” refers to an available enclosed liquid flow path from a first region or location in a device to a second region or location in the device.
When used with respect to a liquid flow measurement device, the phrase “open circuit” refers to a device having an open inlet collector (e.g., a funnel) into which a liquid to be measured is directed.
When used with respect to a liquid flow measurement device, the phrase “closed circuit” refers to a device that is in enclosed fluid communication with a source of liquid to be measured.
The phrase “sensing passage” refers to a conduit or other liquid passageway in which a liquid flow rate is to be determined.
When used with respect to a sensing passage, the phrase “intersecting a magnetic field” refers to an orientation of the sensing passage and a nearby magnetic field such that a voltage will be induced in a conductive liquid as the liquid passes through the sensing passage.
When used with respect to a sensing passage that intersects a magnetic field, the phrase “sensing passage volume” refers to the region between opposing magnet poles that generate the magnetic field.
When used with respect to a sensing passage in a liquid flow measurement device, the phrase “integral trap” refers to a device that as supplied to the user (and without the installation of a wet leg plumbing run or other external trap) has a liquid flow path whose outlet elevation is such that the sensing passage will normally remain filled with liquid after a first use or first rinsing, and will normally only require top-up or replacement of such liquid to accommodate evaporation or cleaning.
When used with respect to a liquid flow measurement device, the word “passive” refers to a device that does not require an external or onboard power supply to measure liquid flow rates. By way of example, liquid flow measurement devices having spinning disks, spinning rotor sensors, or electromagnets but no permanent magnets would not ordinarily be regarded as passive devices. By way of further example, liquid flow measurement devices having electrodes supplied with a biasing voltage and not requiring other external or onboard power may ordinarily be regarded as passive devices.
Referring to
The liquid can be collected in a suitable receptacle or discarded. For example, flowmeter 10 may be used to measure urine flow, and may be mounted or suspended over or in a toilet bowl (not shown in
When liquid passes through the magnetic field between magnets 20, a flow-dependent voltage is induced between electrodes 22. The liquid flow rate may be calculated based on Faraday's law of magnetic induction (which states that the voltage induced across a conductor as it moves at right angles through a magnetic field is proportional to the conductor's velocity), using the equation:
V=B×D×c
where
The sensing passage can have a variety of shapes and sizes. For example,
The disclosed flowmeters may be manufactured in a variety of shapes and sizes. For example, for use as a uroflowmeter, the flowmeter shown in
The disclosed flowmeters may be open circuit devices such as the device shown in
The disclosed flowmeters may be used to measure a variety of flow rates, e.g. from about 0.5 ml/sec to about 0.5 liters/sec or more, depending on the distance between the magnet poles and the available electromagnetic or permanent magnetic strength. The flowmeter body may be manufactured from a variety of transparent or opaque materials, including plastics (e.g., polyethylene, polypropylene, polyvinyl chloride, polycarbonate or ABS), nonmagnetic metals (e.g., aluminum, brass or nonmagnetic stainless steel), glasses or ceramics (e.g., porcelain). The magnets may be made from a variety of materials, e.g, NdFeB (neodymium-iron-boron), ferrite, AlNiCo (aluminum-nickel-cobalt) and SmCo (samarium cobalt). The magnets may also be electromagnets or a combination of both permanent magnets and electromagnets. The permanent magnets may have magnetic strengths ranging for example from about 0.5 Tesla to about 1.5 Tesla (e.g., 1.3 Tesla) as measured at a pole surface. Passive transducers having a sufficiently strong permanent magnetic field to carry out flow rate measurements are especially preferred, as they do not require excitation power and may employ only direct current sensing connections, thus reducing isolation requirements. If equipped with an electromagnet, the disclosed flowmeters may employ an internal or external power source.
The electrodes may be made from a variety of materials. Suitable materials include corrosion-resistant materials such as gold or silver; gold- or silver-plated metals (e.g., silver-plated brass or copper, with the silver plating preferably being oxidized); or less corrosion-resistant (but also less expensive) materials such as copper or brass.
The disclosed flowmeters may be disposable or reusable. Owing to the simplicity of the design and the relatively compact dimensions that may be employed, the disclosed flowmeters are particularly well-suited for disposable use. The disclosed flowmeters may include a separate or detachable (and optionally disposable) inlet funnel. The disclosed flowmeters may also include a receptacle or other large reservoir to collect all of the discharged liquid. Preferably the disclosed flowmeters do not include such a reservoir and do not require emptying or other maintenance beyond a simple rinsing step. Preferably the disclosed flowmeters do not have moving parts or resilient seals. The disclosed flowmeters may however include fixing devices, stands or other components that facilitate the flowmeter's mounting or use, e.g., by mounting or supporting the flowmeter on or over a drain. If used for uroflowmetry and mounted or supported on, in or over a toilet, the flowmeter may be mounted or supported in such a way that it automatically will be rinsed when the toilet is flushed.
Various modifications and alterations of this invention will be apparent to those skilled in the art without departing from the scope and spirit of this invention. It should be understood that this invention is not limited to the illustrative embodiments set forth above.
Patent | Priority | Assignee | Title |
11534093, | Jun 01 2018 | TENSENTRIC, INC | Testing device for a uroflowmeter |
11793436, | Jun 01 2018 | CLEARTRAC TECHNOLOGIES, LLC | Urinary event detection, tracking, and analysis |
11925465, | Jun 01 2018 | CLEARTRAC TECHNOLOGIES, LLC | Uroflowmeter |
12082934, | Jun 01 2018 | CLEARTRAC TECHNOLOGIES, LLC | Urinary event detection, tracking, and analysis |
7416542, | Apr 30 2004 | Medtronic, Inc | Open circuit gravity-assisted uroflowmeter |
7758519, | Sep 08 2006 | University of Vermont and State Agriculture College; The University of Vermont and State Agricultural College | Systems for and methods of assessing lower urinary tract function via sound analysis |
7811237, | Sep 08 2006 | University of Vermont and State Agricultural College | Systems for and methods of assessing urinary flow rate via sound analysis |
8276465, | Jun 10 2010 | Urine flow monitoring device and method | |
8496604, | Sep 08 2006 | University of Vermont and State Agricultural College | Systems for and methods of assessing urinary flow rate via sound analysis |
9791305, | Apr 10 2013 | Fresenius Medical Care Deutschland GmbH | Apparatus for measuring a liquid flow |
D873995, | Jun 01 2018 | CLEARTRAC TECHNOLOGIES, LLC | Uroflowmeter |
D919798, | Jun 01 2018 | CLEARTRAC TECHNOLOGIES, LLC | Uroflowmeter |
D920502, | Jun 01 2018 | CLEARTRAC TECHNOLOGIES, LLC | Uroflowmeter |
D932632, | Jul 13 2018 | CLEARTRAC TECHNOLOGIES, LLC | Uroflowmeter |
D932633, | Mar 08 2019 | CLEARTRAC TECHNOLOGIES, LLC | Uroflowmeter |
D932648, | Mar 08 2019 | CLEARTRAC TECHNOLOGIES, LLC | Uroflowmeter |
D933238, | Mar 08 2019 | CLEARTRAC TECHNOLOGIES, LLC | Uroflowmeter |
D933239, | Mar 08 2019 | CLEARTRAC TECHNOLOGIES, LLC | Uroflowmeter |
D933240, | Mar 08 2019 | CLEARTRAC TECHNOLOGIES, LLC | Uroflowmeter |
D933241, | Mar 08 2019 | CLEARTRAC TECHNOLOGIES, LLC | Uroflowmeter |
D978358, | Jul 13 2018 | CLEARTRAC TECHNOLOGIES, LLC | Uroflowmeter |
D979076, | Jul 13 2018 | CLEARTRAC TECHNOLOGIES, LLC | Uroflowmeter |
Patent | Priority | Assignee | Title |
4008609, | Oct 15 1974 | Interatom, Internationale Atomreaktorbau GmbH | Inductive flowmeter |
4099412, | Jun 17 1977 | Method of measuring the instantaneous flow rate of urine discharge | |
4118981, | Jun 24 1977 | Arcadia Refining Company | Flowmeter |
4145924, | Jul 16 1976 | Gesellschaft fur Kernforschung mbH | Method and apparatus for measuring the flow speed and the gas volume proportion of a liquid metal stream |
4434667, | Oct 26 1981 | The United States of America as represented by the United States | Permanent magnet flowmeter having improved output terminal means |
4683748, | Dec 08 1982 | Cabot Technology Corporation | Method and apparatus for measuring dynamic fluid flow rate |
4732160, | Mar 30 1983 | Method of flow measurement and flow meter | |
4881413, | Oct 31 1988 | Bio-Medicus, Inc. | Blood flow detection device |
4899592, | Jun 06 1985 | The Dow Chemical Company | Flat linear flowmeter |
5046510, | Aug 11 1989 | Richard Wolf GmbH | Apparatus for measuring the throughflow of a body liquid |
5062304, | May 12 1989 | MINVASURG, INC | Urine collection monitor with temperature sensing |
5078012, | May 15 1989 | 501 Tsinghua University | Momentum method for measuring uroflow parameters and the uroflow flowmeter |
5176148, | Sep 30 1989 | WIEST, FRIEDHELM M | Device for measuring the urine flow (Uroflow) of patient |
5207105, | Jun 16 1989 | Hitachi, LTD | Electromagnetic flow meter |
5325728, | Jun 22 1993 | Medtronic, Inc. | Electromagnetic flow meter |
5327787, | Aug 21 1991 | Fischer & Porter Company | Electromagnetic flow meter with weir |
5495854, | Aug 05 1994 | Self-testing device for measuring urinary flow rates | |
5708212, | May 01 1996 | AFTCO, LLC | Apparatus for sensing liquid flow rate and conditioning velocity profile and associated methods |
6237424, | Apr 25 1997 | ELSTER WATER METERING LIMITED | Electromagnetic flowmeter having low power consumption |
6463807, | Nov 02 2000 | Onicon Incorporated | Magnetic flow sensor and method |
6507598, | Apr 23 1997 | Shinko Electric Co., Ltd. | Induction heating furnace and bottom tapping mechanism thereof |
6507599, | Apr 23 1997 | Shinko Electric Co., Ltd. | Induction heating furnace and bottom tapping mechanism thereof |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 30 2004 | Medtronic, Inc. | (assignment on the face of the patent) | / | |||
Sep 02 2004 | AUNDAL, KNUD TORP | Medtronic, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015141 | /0251 |
Date | Maintenance Fee Events |
Sep 18 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 02 2012 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 19 2017 | REM: Maintenance Fee Reminder Mailed. |
Jun 14 2017 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 14 2008 | 4 years fee payment window open |
Dec 14 2008 | 6 months grace period start (w surcharge) |
Jun 14 2009 | patent expiry (for year 4) |
Jun 14 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 14 2012 | 8 years fee payment window open |
Dec 14 2012 | 6 months grace period start (w surcharge) |
Jun 14 2013 | patent expiry (for year 8) |
Jun 14 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 14 2016 | 12 years fee payment window open |
Dec 14 2016 | 6 months grace period start (w surcharge) |
Jun 14 2017 | patent expiry (for year 12) |
Jun 14 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |