A method of forming a biosensor is provided. The method includes providing a substrate and a cover including first and second surfaces, positioning a reagent on the substrate, carving a channel by laser ablation in the first surface, and coupling the first surface of the cover to the second surface. The channel includes a first portion having a first height and a second portion having a second height that is less than the first height.
|
1. A method of forming a biosensor, the method comprising the steps of:
providing a substrate and a cover including first and second surfaces,
positioning a reagent on the substrate,
carving a flow channel and at least one secondary channel by laser ablation in the first surface, and
coupling the first surface of the cover to the second surface so that the flow channel is aligned with at least a portion of the reagent.
11. A method of forming a biosensor, the method comprising the steps of:
providing a substrate and a cover including first and second surfaces,
positioning a reagent on the substrate,
carving a channel by laser ablation in the first surface, the channel including a first portion having a first height and a second portion having a second height that is less than the first height, and
coupling the first surface of the cover to the second surface.
17. A method of forming a biosensor, the method comprises the steps of:
providing a substrate and a cover having first and second surfaces,
applying a reagent onto the substrate to define a reaction zone,
carving a channel by laser ablation in the first surface of the cover so that the channel includes at least one floor portion and walls extending from the at least one floor portion, and
coupling the cover on the substrate so that the floor portion faces the substrate and the channel extends over at least a portion of the reagent.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
10. The method of
14. The method of
16. The method of
18. The method of
20. The method of
|
This application is a continuation of U.S. Pat. No. 6,540,890 issued on Apr. 1, 2003.
The present invention relates to a biosensor and particularly to biosensor that includes a channeled cover.
Electrochemical biosensors are known. They have been used to determine the concentration of various analytes from biological samples, particularly from blood. Biosensors are described in U.S. Pat. Nos. 5,413,690; 5,762,770; 5,798,031; and 5,997,817, the disclosure of each of which are expressly incorporated herein by reference.
Laser ablation is a known technique that uses a laser to remove a material. See, for example, U.S. Pat. Nos. 5,576,073 and 5,593,739 and International WO98/35225, the disclosure of each of which is expressly incorporated herein by reference. Such known laser ablation systems use a high power excimer laser, such as a krypton fluoride excimer laser with an illumination wavelength of 248 nanometers, to remove surface material.
According to the present invention a biosensor is provided. The biosensor comprises a substrate, a reagent positioned on the substrate, and a cover. The cover includes a first surface coupled to the substrate and a second surface. The first surface has a flow channel carved therein that extends over at least a portion of the reagent.
According to another aspect of the present invention, a biosensor is provided. The biosensor comprises a substrate, a reagent positioned on the substrate, and a cover coupled to the substrate. The cover includes opposite ends, a first surface coupled to the substrate, and a second surface. The first surface has a flow channel carved therein. The flow channel extends between the opposite ends.
In still another aspect of the present invention, a method of forming a biosensor is provided. The method comprises the steps of providing a substrate and a cover that has first and second surfaces, applying a reagent onto the substrate to define a reaction zone, carving a channel in the first surface of the cover, and coupling the cover on the substrate so that the channel extends over at least a portion of the reagent.
Additional features of the invention will become apparent to those skilled in the art upon consideration of the following detailed description of the preferred embodiment exemplifying the best mode of carrying out the invention
The detailed description particularly refers to the accompanying figures in which:
A biosensor 10 in accordance with the present invention provides a cover with at least one channel carved therein. The channel may be used in a variety of diagnostic biosensors including, for example, electrochemical and photometric sensors. The purpose of the channel is to provide precise fluidic channels for disposable diagnostic tests with high dimensional precision. Various aspects of the invention are presented in
Cover 12 of biosensor 10 includes a first surface 48 facing substrate 14 and an opposite second surface 50. See
Additionally, as shown in
The height of walls 46 in first channel portion 36 is dependent upon the choice of the overall thickness of cover 12, but generally ranges from about 1 μm to about 150 μm. Preferably, the height of walls 46 is from about 75 μm to about 120 μm, and most preferably about 84 μm. The height of walls 40 in second channel portion 38 is also dependent upon the choice of the overall thickness of cover 12, but generally ranges from about 1 μm to about 75 μm. Preferably the height of walls 40 is from about 5 μm to about 50 μm, most preferably about 25 μm. The channel portion 38 is approximately 1000 μm to about 4000 μm wide, preferably about 2000 μm to about 3000 μm wide, and most preferably about 2500 μm wide. It is appreciated that channel 62 may be formed with a single height or width, or that it may have a variety of heights and widths in accordance with this disclosure so long as the channel meets the design goals for capillarity, meaning that the movement of the liquid sample is facilitated from portion 60 toward reagent 20.
Cover 12 of biosensor 10 also includes secondary channels 64 carved on either side of flow channel 62. Each secondary channel 64 extends between ends 52, 54 and is defined by a floor 66 and walls 68 extending from floor 66. Walls 68 have a height that is less than the second height 44. In addition, an adhesive-dispense aperture 70 extends between floor 66 and surface 50. The height of walls 68 may also vary depending upon the overall thickness of cover 12, but generally ranges from about 8 μm to about 125 μm. Preferably, the height of walls 68 is from about 8 μm to about 75 μm, most preferably about 16 μm. It is appreciated that the shape and height of walls 68 may vary in accordance with this disclosure. Moreover, it is appreciated that cover 12 may be formed with greater or fewer than two secondary channels in accordance with this disclosure.
Bottom substrate 14 of biosensor 10 includes a first surface 22 that supports conductive tracks 16, 18 and an opposite second surface 24. See
Biosensors 10 in accordance with the present invention are each formed to include a pre-defined reaction area 78 where the sensing takes place. When the biosensor is electrochemical, the pre-defined area is an electrochemical area that is located on a portion of the electrodes 16, 18. Referring now to
As shown in
Tracks 16, 18 are constructed from electrically conductive materials. Non-limiting examples of electrically-conductive materials include aluminum, carbon (such as graphite), cobalt, copper, gallium, gold, indium, iridium, iron, lead, magnesium, mercury (as an amalgam), nickel, niobium, osmium, palladium, platinum, rhenium, rhodium, selenium, silicon (such as highly doped polycrystalline silicon), silver, tantalum, tin, titanium, tungsten, uranium, vanadium, zinc, zirconium, mixtures thereof, and alloys, oxides, or metallic compounds of these elements. Preferably, tracks include gold, platinum, palladium, iridium, or alloys of these metals, since such noble metals and their alloys are unreactive in biological systems. Most preferably, track 16 is a working electrode made of gold, and track 18 is an auxiliary electrode that is also made of gold and is substantially the same size as the working electrode.
Tracks 16, 18 are isolated from the rest of the electrically conductive surface by laser ablation. Techniques for forming electrodes on a surface using laser ablation are known. See, for example, U.S. patent application Ser. No. 09/411,940, filed Oct. 4, 1999, and entitled “LASER DEFINED FEATURES FOR PATTERNED LAMINATES AND ELECTRODE”, the disclosure of which is expressly incorporated herein by reference. Tracks 16, 18 are preferably created by removing the electrically conductive material from an area extending around the electrodes. Therefore, tracks 16, 18 are isolated from the rest of the electrically-conductive material on substrate 14 by a gap having a width of about 25 μm to about 500 μm, preferably the gap has a width of about 100 μm to about 200 μm. Alternatively, it is appreciated that tracks 16, 18 may be created by laser ablation alone on bottom substrate 14. Further, tracks 16, 18 may be laminated, screen-printed, or formed by photolithography in accordance with this disclosure.
Multi-electrode arrangements are also possible in accordance with this disclosure. For example, it is contemplated that a biosensor may be formed that that includes an additional electrically conductive track (not shown). In a three-electrode arrangement, the first track is a working electrode, the second is a counter electrode, and the third electrode is a reference electrode. It is also appreciated that an alternative three-electrode arrangement is possible where tracks are working electrodes and a third electrode is provided as an auxiliary or reference electrode in accordance with this disclosure. It is appreciated that the number of tracks, as well as the spacing between tracks in array 80 may vary in accordance with this disclosure and that a number of arrays may be formed as will be appreciated by one of skill in the art.
Reagent 20 provides electrochemical probes for specific analytes and is applied onto bottom substrate 14 such that reagent 20 covers array 80. The choice of specific reagent 20 depends on the specific analyte or analytes to be measured, and are well known to those of ordinary skill in the art. An example of a reagent that may be used in biosensor 10 of the present invention is a reagent for measuring glucose from a whole blood sample. A non-limiting example of a reagent for measurement of glucose in a human blood sample contains 62.2 mg polyethylene oxide (mean molecular weight of 100-900 kilo Daltons), 3.3 mg NATROSOL 244M, 41.5 mg AVICEL RC-591 F, 89.4 mg monobasic potassium phosphate, 157.9 mg dibasic potassium phosphate, 437.3 mg potassium ferricyanide, 46.0 mg sodium succinate, 148.0 mg trehalose, 2.6 mg TRITON X-100 surfactant, and 2,000 to 9,000 units of enzyme activity per gram of reagent. The enzyme is prepared as an enzyme solution from 12.5 mg coenzyme PQQ and 1.21 million units of the apoenzyme of quinoprotein glucose dehydrogenase. This reagent is further described in U.S. Pat. No. 5,997,817, the disclosure of which is expressly incorporated herein by reference.
When hematocrit is to be determined, the reagent includes oxidized and reduced forms of a reversible electroactive compound (potassium hexacyanoferrate (III) (“ferricyanide”) and potassium hexacyanoferrate (II) (“ferrocyanide”), respectively), an electrolyte (potassium phosphate buffer), and a microcrystalline material (Avicel RC-591F—a blend of 88% microcrystalline cellulose and 12% sodium carboxymethyl-cellulose, available from FMC Corp.). Concentrations of the components within the reagent before drying are as follows: 400 millimolar (mM) ferricyanide, 55 mM ferrocyanide, 400 mM potassium phosphate, and 2.0% (weight: volume) Avicel. A further description of the reagent for a hematocrit assay is found in U.S. Pat. No. 5,385,846, the disclosure of which is expressly incorporated herein by reference.
Non-limiting examples of enzymes and mediators that may be used in measuring particular analytes in sensor 10 of the present invention are listed below in Table 1.
TABLE I
Mediator
Additional
Analyte
Enzymes
(Oxidized Form)
Mediator
Glucose
Glucose
Ferricyanide
Dehydrogenase
and Diaphorase
Glucose
Glucose-
Ferricyanide
Dehydrogenase
(Quinoprotein)
Cholesterol
Cholesterol
Ferricyanide
2,6-Dimethyl-1,4-
Esterase and
Benzoquinone
Cholesterol
2,5-Dichloro-1,4-
Oxidase
Benzoquinone or
Phenazine
Ethosulfate
HDL
Cholesterol
Ferricyanide
2,6-Dimethyl-1,4-
Cholesterol
Esterase and
Benzoquinone
Cholesterol
2,5-Dichloro-1,4-
Oxidase
Benzoquinone or
Phenazine
Ethosulfate
Triglycerides
Lipoprotein
Ferricyanide or
Phenazine
Lipase, Glycerol
Phenazine
Methosulfate
Kinase, and
Ethosulfate
Glycerol-3-
Phosphate
Oxidase
Lactate
Lactate Oxidase
Ferricyanide
2,6-Dichloro-1,4-
Benzoquinone
Lactate
Lactate
Ferricyanide
Dehydrogenase
Phenazine
and Diaphorase
Ethosulfate, or
Phenazine
Methosulfate
Lactate
Diaphorase
Ferricyanide
Phenazine
Dehydrogenase
Ethosulfate, or
Phenazine
Methosulfate
Pyruvate
Pyruvate Oxidase
Ferricyanide
Alcohol
Alcohol Oxidase
Phenylenediamine
Bilirubin
Bilirubin Oxidase
1-Methoxy-
Phenazine
Methosulfate
Uric Acid
Uricase
Ferricyanide
In some of the examples shown in Table 1, at least one additional enzyme is used as a reaction catalyst. Also, some of the examples shown in Table 1 may utilize an additional mediator, which facilitates electron transfer to the oxidized form of the mediator. The additional mediator may be provided to the reagent in lesser amount than the oxidized form of the mediator. While the above assays are described, it is contemplated that current, charge, impedance, conductance, potential, or other electrochemically indicated property of the sample might be accurately correlated to the concentration of the analyte in the sample with biosensor 10 in accordance with this disclosure.
A plurality of biosensors 10 are typically packaged in a vial, usually with a stopper formed to seal the vial. It is appreciated, however, that biosensors 10 may be packaged individually, or biosensors can be folded upon one another, rolled in a coil, stacked in cassette magazine, or packed in a blister packaging.
Biosensor 10 is used in conjunction with the following:
1. a power source in electrical connection with tracks 16, 18 and capable of supplying an electrical potential difference between the electrodes sufficient to cause diffusion limited electro-oxidation of the reduced form of the mediator at the surface of the working electrode; and
2. a meter in electrical connection with tracks 16, 18 and capable of measuring the diffusion limited current produced by oxidation of the reduced form of the mediator with the above-stated electrical potential difference is applied.
The meter will normally be adapted to apply an algorithm to the current measurement, whereby an analyte concentration is provided and visually displayed. Improvements in such power source, meter, and biosensor system are the subject of commonly assigned U.S. Pat. No. 4,963,814, issued Oct. 16, 1990; U.S. Pat. No. 4,999,632, issued Mar. 12, 1991; U.S. Pat. No. 4,999,582, issued Mar. 12, 1991; U.S. Pat. No. 5,243,516, issued Sep. 7, 1993; U.S. Pat. No. 5,352,351, issued Oct. 4, 1994; U.S. Pat. No. 5,366,609, issued Nov. 22, 1994; White et al., U.S. Pat. No. 5,405,511, issued Apr. 11, 1995; and White et al., U.S. Pat. No. 5,438,271, issued Aug. 1, 1995, the disclosures of which are expressly incorporated herein by reference.
Many fluid samples may be analyzed. For example, human body fluids such as whole blood, plasma, sera, lymph, bile, urine, semen, cerebrospinal fluid, spinal fluid, lacrimal fluid and stool specimens as well as other biological fluids readily apparent to one skilled in the art may be measured. Fluid preparations of tissues can also be assayed, along with foods, fermentation products and environmental substances, which potentially contain environmental contaminants. Preferably, whole blood is assayed with this invention.
After reaction is complete, a power source (e.g., a battery) applies a potential difference between electrodes. When the potential difference is applied, the amount of oxidized form of the mediator at the auxiliary electrode and the potential difference must be sufficient to cause diffusion-limited electro-oxidation of the reduced form of the mediator at the surface of the working electrode. A current measuring meter (not shown) measures the diffusion-limited current generated by the oxidation of the reduced form of the mediator at the surface of the working electrode. The measured current may be accurately correlated to the concentration of the analyte in sample when the following requirements are satisfied:
1. The rate of oxidation of the reduced form of the mediator is governed by the rate of diffusion of the reduced form of the mediator to the surface of the working electrode.
2. The current produced is limited by the oxidation of reduced form of the mediator at the surface of the working electrode.
To manufacture biosensor 10 a roll of metallized film is fed through guide rolls into an ablation/washing and drying station. A laser system capable of ablating substrate 14 is known to those of ordinary skill in the art. Non-limiting examples of which include excimer lasers, with the pattern of ablation controlled by mirrors, lenses, and masks. A non-limiting example of such a system is the LPX-300 or LPX-200 both commercially available from LPKF Laser Electronic GmbH, of Garbsen, Germany.
In the laser ablator, the metallic layer of the metallized film is ablated in pre-determined patterns, to form a ribbon of isolated electrode sets. The metallized film is further ablated, after the isolated electrode sets are formed to create recesses 34 positioned adjacent to each electrochemical area. The ribbon is then passed through more guide rolls, with a tension loop and through an optional optical or electrical inspection system. This inspection system is used for quality control in order to check for defects.
Reagent 20 is compounded and applied in a liquid form to the center of the electrochemical area at a dispensing and drying station. Reagent application techniques are well known to one of ordinary skill in the art as described in U.S. Pat. No. 5,762,770, the disclosure of which is expressly incorporated herein by reference. It is appreciated that reagent may be applied to the electrochemical area in a liquid or other form and dried or semi-dried onto the center of the electrochemical the electrochemical area in accordance with this disclosure.
In addition, a roll of cover material is fed into a laser ablator system as described above. In the laser ablator, the cover material is ablated in pre-determined channel patterns to form a ribbon of channel sets. Each channel set includes a flow channel 62 that is ablated to a depth of about 84 μm at first floor portion 36 and 16 μm at second floor portion 38. In addition, each channel set includes secondary channels 64 that are each ablated to a depth of about 16 μm. The cover material is then fed into a punching station where adhesive-dispense aperture 70 is punched through each secondary channel 64.
The ribbon of channel sets is unwound and fed into a sensor assembly station along with the reagent-coated bottom substrate. Cover 12 is placed on substrate 14 to cover reagent 20. Next, adhesive is dispensed through each aperture 70 into the secondary channels 64 while the cover 12 and substrate 14 are being compressed. It is appreciated that a number of commercially available dispense units may be used to apply the adhesive into apertures 70 in accordance with this disclosure. The assembled and time-cured material is then cut to form individual biosensors 10, which are sorted and packed into vials, each closed with a stopper, to give packaged sensor strips.
Although ablating channels 62, 64 is described herein, it is appreciated that the method of carving channels 62, 64 in cover 12 is also not limited. For example, the channels may be carved by etching (e.g., using photolithographic methods) or otherwise removing a portion of the surface of cover 12. In addition, the dimensions of the channels can vary based on the amount of sample to be analyzed and the surface area of the testing area.
The processes and products described above include disposable biosensor, especially for use in diagnostic devices. Also included, however, are electrochemical sensors for non-diagnostic uses, such as measuring an analyte in any biological, environmental, or other sample. As discussed above, biosensor 10 can be manufactured in a variety of shapes and sizes.
In use, a user of biosensor 10 places a finger on concave ends 60, 76. Capillary forces pull a liquid sample from ends 60, 76 through first portion 72 of channel 62. Walls 46 in first portion 72 of channel 62 converge as they approach second portion 74, increasing the capillary forces applied to the liquid sample. Thus, the liquid sample passes through the converging first portion 72 and encounters second portion 74 of channel 62 and reagent 20. Liquid sample dissolves reagent 20 and engages electrode array 78, where the electrochemical reaction takes place.
Referring now to
Cover 112 of biosensor 110 includes a first surface 148 facing substrate 114 and an opposite second surface 150. See
Substrate 114 is similar to substrate 14, except that, upon assembly of biosensor 110, surface 22 is not completely coated with an electric conductor. Instead, surface 22 is exposed between about electrodes 16, 18. See, FIG. 6.
Cover 112 is coupled to substrate 114 by an adhesive 116 that is coated on either substrate 114 or cover 112. Adhesive is preferably an adhesive as described above with reference to biosensor 10 or a thermoset adhesive. A non-limiting example of a suitable thermoset adhesive is a mixture of 95% wt./wt. of Item #38-868 polyurethane and 5% wt./wt. Item #38-8569 isocyanate both commercially available from National Starch& Chemical, a Member of ICI Group, Bridgewater, N.J. It is appreciated that cover 112 may be coupled to bottom substrate 114 using a wide variety of commercially available adhesives as well as heat sealing, or ultrasonic methods of joining cover 112 and substrate may be used to couple cover 112 and substrate 114 together in accordance with this disclosure.
Additionally, as shown in
Walls 140 that extend from first floor portion 136 have a first height as shown by arrows 142 and walls 140 extending from second floor portion 138 have a second height as shown by arrows 144. First height 142 is greater than the second height 144, so that a liquid sample traveling in channel 162 encounters a greater capillary force as it enters second portion 174 of channel 162. Therefore, channel 162 acts to draw the liquid sample away from concave portion 160 and toward reagent 20 positioned spaced-apart from end 152. The height and width of first and second channel portions 136, 138 is similar to that of respective first and second portions 36, 38 of channel 38. It is appreciated that channel 162 may be formed with a single height, or that it may have a variety of heights in accordance with this disclosure.
To manufacture biosensor 110 a roll of metallized film is fed through guide rolls into an ablation/washing and drying station as described above with reference to biosensor 10. In the laser ablator, the metallic layer of the metallized film is ablated in pre-determined electrode patterns, to form a ribbon of electrode sets. The metallized film is further ablated to create recesses 34 positioned adjacent to each electrochemical area. The ribbon may be optically or electrically inspected as described above with reference to biosensor 10. Reagent 20 is dispensed on substrate 114 as described above with reference to biosensor 10. Additionally, the thermoset adhesive is coated substrate 114 on either side of area 78. It is appreciated that a number of commercially available dispense units may be used to apply the adhesive onto substrate 114 in accordance with this disclosure.
Further, a roll of cover material is fed into a laser system as described above with reference to biosensor 10. In the laser ablator, the cover material is ablated to form a row of spaced-apart channels 162. Each channel 162 is ablated to a depth of about 84 μm at a first floor portion 36 and 16 μm at a second floor portion 38. The cover material with spaced-apart rows of channels 162 is unwound and fed into a sensor assembly station along with the ribbon of reagent-coated bottom substrates.
The cover material is aligned with the ribbon of reagent-coated bottom substrates so that each cover 112 extends across each reagent 20. Next, a hot iron (not shown) of appropriate desirable shape and size is placed upon surface 150 of each cover 112 on either side of channel 162 to couple cover 112 and substrate 114 together. The assembled material is then cut to form individual biosensors 110, which are sorted and packed into vials, each closed with a stopper, to give packaged sensor strips.
The method of carving channel 162 in cover 112 is also not limited. For example, the channels may be carved by etching (e.g., using photolithographic methods) or otherwise removing a portion of the surface of cover 12. In addition, the dimensions of the channels can vary based on the amount of sample to be analyzed and the surface area of the testing area.
The processes and products described above include disposable biosensor, especially for use in diagnostic devices. Also included, however, are electrochemical sensors for non-diagnostic uses, such as measuring an analyte in any biological, environmental, or other sample. As discussed above, biosensor 110 can be manufactured in a variety of shapes and sizes.
In use, a user of biosensor 110 places a finger on concave ends 160, 76. Capillary forces pull a liquid sample from ends 160, 76 through first portion 172 of channel 162. Walls 146 in first portion 172 of channel 162 converge as they approach second portion 174, increasing the capillary forces applied to the liquid sample. Thus, the liquid sample passes through the converging first portion 172 and encounters second portion 174 of channel 162 and reagent 20. Liquid sample dissolves reagent 20 and engages electrode array 178, where the electrochemical reaction takes place.
As shown in
Cover 212 of biosensor 210 includes a flow channel 262 that is carved in first surface 48. Flow channel 262 extends between an opening 264 and an air vent 266. Substrate 214 supports tracks 16, 18 and reagent 20. Electrode array 78 and the reagent that covers array 78, is positioned to lie within channel 262 between opening 264 and air vent 266. Channel 262 is formed to have two floor portions having heights that are similar to channel 10. It is appreciated that channel 262 may be formed with a single height, or that it may have a variety of heights in accordance with this disclosure.
To manufacture biosensor 210 electrodes 16, 18 are formed on substrate 214, reagent 20 is applied to electrodes 16, 18 and thermoset adhesive is coated on substrate 214 in a manner similar to that described above with reference to biosensor 110.
Further, a roll of cover material is fed into a laser system as described above with reference to biosensor 10. In the laser ablator, the cover material is ablated to form a row of spaced-apart channels 262. Each channel 262 is ablated to a depth of about 84 μm at a first floor portion 36 and 16 μm at a second floor portion 38. The cover material with spaced-apart rows of channels 262 is unwound and fed into a sensor assembly station along with the ribbon of reagent-coated bottom substrates.
The cover material is aligned with the ribbon of reagent-coated bottom substrates so that each cover 212 extends across each reagent 20. Next, a hot iron (not shown) of appropriate desirable shape and size is placed upon surface 50 of each cover 212 on either side of channel 262 to couple cover 212 and substrate 214 together. The assembled material is then cut to form individual biosensors 210, which are sorted and packed into vials, each closed with a stopper, to give packaged sensor strips.
The method of carving channel 262 in cover 212 is also not limited. For example, the channels may be carved by etching (e.g., using photolithographic methods) or otherwise removing a portion of the surface of cover 212. In addition, the dimensions of the channels can vary based on the amount of sample to be analyzed and the surface area of the testing area.
The processes and products described above include disposable biosensor, especially for use in diagnostic devices. Also included, however, are electrochemical sensors for non-diagnostic uses, such as measuring an analyte in any biological, environmental, or other sample. As discussed above, biosensor 210 can be manufactured in a variety of shapes and sizes.
Although the invention has been described in detail with reference to a preferred embodiment, variations and modifications exist within the scope and spirit of the invention as described and defined in the following claims.
Bhullar, Raghbir S., Walling, Douglas P., Hill, Brian S.
Patent | Priority | Assignee | Title |
10034628, | Dec 12 2005 | Sanofi-Aventis Deutschland GmbH | Low pain penetrating member |
10070822, | Nov 04 2008 | PHC HOLDINGS CORPORATION | Measurement Device |
10687762, | Nov 04 2008 | PHC HOLDINGS CORPORATION | Measurement device |
11751815, | Nov 04 2008 | PHC HOLDINGS CORPORATION | Measurement device |
7297151, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for body fluid sampling with improved sensing |
7305896, | Sep 01 2003 | ABBOTT RAPID DIAGNOSTICS INTERNATIONAL UNLIMITED COMPANY | Capillary fill test device |
7316700, | Jun 12 2002 | Sanofi-Aventis Deutschland GmbH | Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties |
7344507, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for lancet actuation |
7344894, | Oct 16 2001 | Sanofi-Aventis Deutschland GmbH | Thermal regulation of fluidic samples within a diagnostic cartridge |
7374544, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7410468, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7481776, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7491178, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7510985, | Oct 26 2005 | LPKF LASER & ELECTRONICS AG | Method to manufacture high-precision RFID straps and RFID antennas using a laser |
7524293, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7537571, | Jun 12 2002 | Sanofi-Aventis Deutschland GmbH | Integrated blood sampling analysis system with multi-use sampling module |
7547287, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7563232, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7582063, | Nov 21 2000 | Sanofi-Aventis Deutschland GmbH | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
7582099, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7604592, | Jun 14 2004 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for a point of care device |
7608042, | Sep 09 2004 | INTELLECTUAL DISCOVERY CO , LTD | Blood monitoring system |
7648468, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7666149, | Dec 04 1997 | Sanofi-Aventis Deutschland GmbH | Cassette of lancet cartridges for sampling blood |
7674232, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7682318, | Jun 12 2002 | Sanofi-Aventis Deutschland GmbH | Blood sampling apparatus and method |
7699791, | Jun 12 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for improving success rate of blood yield from a fingerstick |
7713214, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for a multi-use body fluid sampling device with optical analyte sensing |
7717863, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7731729, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7822454, | Jan 03 2005 | AUTO INJECTION TECHNOLOGIES LLC | Fluid sampling device with improved analyte detecting member configuration |
7833171, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7841992, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Tissue penetration device |
7850621, | Jun 07 2004 | AUTO INJECTION TECHNOLOGIES LLC | Method and apparatus for body fluid sampling and analyte sensing |
7850622, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Tissue penetration device |
7862520, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Body fluid sampling module with a continuous compression tissue interface surface |
7874994, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7892183, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for body fluid sampling and analyte sensing |
7901362, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7909774, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7909775, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
7909777, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7909778, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7914465, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7938787, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7959582, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
7976476, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Device and method for variable speed lancet |
7981055, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Tissue penetration device |
7981056, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Methods and apparatus for lancet actuation |
7988644, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for a multi-use body fluid sampling device with sterility barrier release |
7988645, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties |
8007446, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
8016774, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Tissue penetration device |
8062231, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
8079960, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Methods and apparatus for lancet actuation |
8092385, | May 23 2006 | INTELLECTUAL DISCOVERY CO , LTD | Fluid access interface |
8123700, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
8162853, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Tissue penetration device |
8197421, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
8197423, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
8202231, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
8206317, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Tissue penetration device |
8206319, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Tissue penetration device |
8211037, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Tissue penetration device |
8216154, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Tissue penetration device |
8221334, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
8251921, | Jun 06 2003 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for body fluid sampling and analyte sensing |
8267870, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for body fluid sampling with hybrid actuation |
8282576, | Sep 29 2004 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for an improved sample capture device |
8282577, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge |
8296918, | Dec 31 2003 | AUTO INJECTION TECHNOLOGIES LLC | Method of manufacturing a fluid sampling device with improved analyte detecting member configuration |
8333710, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Tissue penetration device |
8337419, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Tissue penetration device |
8337420, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Tissue penetration device |
8343075, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Tissue penetration device |
8360991, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Tissue penetration device |
8382682, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
8382683, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Tissue penetration device |
8388551, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for multi-use body fluid sampling device with sterility barrier release |
8403864, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
8414503, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Methods and apparatus for lancet actuation |
8430828, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for a multi-use body fluid sampling device with sterility barrier release |
8435190, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
8439872, | Mar 30 1998 | Sanofi-Aventis Deutschland GmbH | Apparatus and method for penetration with shaft having a sensor for sensing penetration depth |
8579831, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
8597570, | Nov 04 2008 | PHC HOLDINGS CORPORATION | Measurement device, insulin infusion device, measurement method, method for controlling insulin infusion device, and program |
8622930, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Tissue penetration device |
8641643, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Sampling module device and method |
8652831, | Dec 30 2004 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for analyte measurement test time |
8668656, | Dec 31 2003 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for improving fluidic flow and sample capture |
8679033, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Tissue penetration device |
8690796, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
8702624, | Sep 29 2006 | AUTO INJECTION TECHNOLOGIES LLC | Analyte measurement device with a single shot actuator |
8721671, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Electric lancet actuator |
8753290, | Mar 27 2009 | INTELLECTUAL DISCOVERY CO , LTD | Fluid transfer system and method |
8828203, | May 20 2005 | SANOFI S A | Printable hydrogels for biosensors |
8845550, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Tissue penetration device |
8905945, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
8945910, | Sep 29 2003 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for an improved sample capture device |
8965476, | Apr 16 2010 | Pelikan Technologies, Inc | Tissue penetration device |
9034639, | Dec 30 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus using optical techniques to measure analyte levels |
9046479, | Jun 24 2008 | PHC HOLDINGS CORPORATION | Biosensor, method of producing the same and detection system comprising the same |
9072842, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
9089294, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Analyte measurement device with a single shot actuator |
9089678, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
9144401, | Dec 12 2005 | Sanofi-Aventis Deutschland GmbH | Low pain penetrating member |
9186468, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
9226699, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Body fluid sampling module with a continuous compression tissue interface surface |
9248267, | Oct 04 2005 | Sanofi-Aventis Deustchland Gmbh | Tissue penetration device |
9261476, | May 20 2004 | Sanofi SA | Printable hydrogel for biosensors |
9314194, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Tissue penetration device |
9351680, | Oct 14 2003 | AUTO INJECTION TECHNOLOGIES LLC | Method and apparatus for a variable user interface |
9375169, | Jan 30 2009 | Sanofi-Aventis Deutschland GmbH | Cam drive for managing disposable penetrating member actions with a single motor and motor and control system |
9386944, | Apr 11 2008 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for analyte detecting device |
9427532, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Tissue penetration device |
9498160, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method for penetrating tissue |
9560993, | Nov 21 2001 | Sanofi-Aventis Deutschland GmbH | Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means |
9561000, | Dec 31 2003 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for improving fluidic flow and sample capture |
9622690, | Nov 04 2008 | PHC HOLDINGS CORPORATION | Measurement device |
9694144, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Sampling module device and method |
9724021, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
9795334, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for penetrating tissue |
9795747, | Jun 02 2010 | Pelikan Technologies, Inc | Methods and apparatus for lancet actuation |
9802007, | Jun 12 2001 | Sanofi-Aventis Deutschland GmbH | Methods and apparatus for lancet actuation |
9820684, | Jun 03 2004 | Sanofi-Aventis Deutschland GmbH | Method and apparatus for a fluid sampling device |
9839386, | Apr 19 2002 | Sanofi-Aventis Deutschland GmbH | Body fluid sampling device with capacitive sensor |
9855011, | Nov 04 2008 | PHC HOLDINGS CORPORATION | Measurement device |
Patent | Priority | Assignee | Title |
4081653, | Dec 27 1976 | AT & T TECHNOLOGIES, INC , | Removal of thin films from substrates by laser induced explosion |
4131484, | Feb 13 1978 | AT & T TECHNOLOGIES, INC , | Frequency adjusting a piezoelectric device by lasering |
4294679, | Jul 14 1979 | Robert Bosch GmbH | Flat electrochemical sensor, and method of its manufacture |
4414059, | Dec 09 1982 | International Business Machines Corporation | Far UV patterning of resist materials |
4684437, | Oct 31 1985 | International Business Machines Corporation | Selective metal etching in metal/polymer structures |
4865873, | Sep 15 1986 | General Electric Company | Electroless deposition employing laser-patterned masking layer |
4874500, | Jul 15 1987 | MICROBIONICS, INC | Microelectrochemical sensor and sensor array |
4897173, | Jun 21 1985 | Matsushita Electric Industrial Co., Ltd. | Biosensor and method for making the same |
4902138, | Apr 04 1987 | HARTMAN & BRAUN AG | Measuring component concentration in a gas blend |
4957582, | Mar 16 1989 | CLINICAL DIAGNOSTIC SYSTEMS INC | Capillary transport zone coated with adhesive |
4963814, | Dec 15 1989 | Roche Diabetes Care, Inc | Regulated bifurcated power supply |
4999582, | Dec 15 1989 | Roche Diabetes Care, Inc | Biosensor electrode excitation circuit |
4999632, | Dec 15 1989 | Roche Diabetes Care, Inc | Analog to digital conversion with noise reduction |
5018164, | Sep 12 1989 | Hughes Electronics Corporation | Excimer laser ablation method and apparatus for microcircuit fabrication |
5089103, | Dec 01 1989 | Agilent Technologies Inc | Electrophoresis capillary with agarose |
5104480, | Oct 12 1990 | Lockheed Martin Corporation | Direct patterning of metals over a thermally inefficient surface using a laser |
5120420, | Mar 31 1988 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Biosensor and a process for preparation thereof |
5165407, | Apr 19 1990 | UNIVERSITY OF KANSAS, THE, | Implantable glucose sensor |
5243516, | Dec 15 1989 | Roche Diabetes Care, Inc | Biosensing instrument and method |
5264103, | Oct 18 1991 | Panasonic Corporation | Biosensor and a method for measuring a concentration of a substrate in a sample |
5266179, | Jul 20 1990 | Matsushita Electric Industrial Co., Ltd.; Kyoto Daiichi Kagaku Co., Ltd. | Quantitative analysis method and its system using a disposable sensor |
5288636, | Dec 15 1989 | Roche Diagnostics Corporation | Enzyme electrode system |
5334279, | Apr 08 1993 | Method and apparatus for making printed circuit boards | |
5336388, | Dec 26 1991 | RADIOMETER CALIFORNIA, INC | Analyte and pH measuring sensor assembly and method |
5352351, | Jun 08 1993 | Roche Diabetes Care, Inc | Biosensing meter with fail/safe procedures to prevent erroneous indications |
5366609, | Jun 08 1993 | Roche Diabetes Care, Inc | Biosensing meter with pluggable memory key |
5382346, | May 17 1991 | Kyoto Daiichi Kagaku Co., Ltd. | Biosensor and method of quantitative analysis using the same |
5384028, | Aug 28 1992 | NEC Corporation | Biosensor with a data memory |
5390412, | Apr 08 1993 | Method for making printed circuit boards | |
5391250, | Mar 15 1994 | MEDTRONIC MINIMED, INC | Method of fabricating thin film sensors |
5395504, | Feb 04 1993 | Asulab S.A. | Electrochemical measuring system with multizone sensors |
5405511, | Jun 08 1993 | Roche Diabetes Care, Inc | Biosensing meter with ambient temperature estimation method and system |
5413690, | Jul 23 1993 | Roche Diabetes Care, Inc | Potentiometric biosensor and the method of its use |
5414224, | Apr 01 1991 | AKTSIONERNOE OBSCHESTVO OTKRYTOGO TIPA VNIIETO | Multilayer printed circuit board and method of manufacturing same |
5426850, | Nov 29 1991 | HITACHI CHEMICAL COMPANY, LTD LIMITED PARTNERSHIP OF JAPAN | Fabrication process of wiring board |
5437999, | Feb 22 1994 | Roche Diabetes Care, Inc | Electrochemical sensor |
5451722, | Apr 08 1993 | Printed circuit board with metallized grooves | |
5465480, | Mar 27 1993 | Bruker Saxonia Analytik GmbH | Method of manufacturing a gating grid |
5496453, | May 17 1991 | Kyoto Daiichi Kagaku Co., Ltd. | Biosensor and method of quantitative analysis using the same |
5508171, | Dec 15 1989 | Roche Diabetes Care, Inc | Assay method with enzyme electrode system |
5509410, | Jun 06 1983 | MediSense, Inc. | Strip electrode including screen printing of a single layer |
5512489, | Dec 04 1989 | PALINTEST LTD | Microelectrodes and amperometric assays |
5575930, | Oct 07 1992 | Ecossensors Limited | Method of making gas permeable membranes for amperometric gas electrodes |
5576073, | Apr 23 1994 | LPKF LASER & ELECTRONICS AKTIENGESELLSCHAFT | Method for patterned metallization of a substrate surface |
5589326, | Dec 30 1993 | Roche Diabetes Care, Inc | Osmium-containing redox mediator |
5593739, | Feb 14 1995 | LPKF LASER & ELECTRONICS AKTIENGESELLSCHAFT | Method of patterned metallization of substrate surfaces |
5628890, | Sep 27 1995 | MEDISENSE, INC | Electrochemical sensor |
5635054, | Dec 04 1989 | ARROWHEAD CENTER, INC | Microelectrodes and amperometric assays |
5682884, | May 05 1983 | MediSense, Inc. | Strip electrode with screen printing |
5708247, | Feb 14 1996 | Lifescan Scotland Limited | Disposable glucose test strips, and methods and compositions for making same |
5739039, | Dec 04 1989 | PALINTEST LTD | Microelectrodes and amperometric assays |
5755953, | Dec 18 1995 | Abbott Laboratories | Interference free biosensor |
5758398, | Jun 27 1995 | PHYCOMP HOLDING B V | Method of manufacturing multilayer electronic components |
5759364, | May 02 1997 | Bayer HealthCare LLC | Electrochemical biosensor |
5762770, | Feb 22 1994 | Roche Diabetes Care, Inc | Electrochemical biosensor test strip |
5773319, | Dec 05 1996 | Electronics and Telecommunications Research Institute | Method for producing a hydrogenated vertical-cavity surface-emitting laser |
5798031, | May 12 1997 | Bayer Corporation | Electrochemical biosensor |
5948289, | Nov 29 1995 | Matsushita Electric Industrial Co., Ltd. | Laser beam machining method |
5948695, | Jun 17 1997 | Roche Diabetes Care, Inc | Device for determination of an analyte in a body fluid |
5955179, | Sep 21 1995 | LPKF LASER & ELECTRONICS AG | Coating for the structured production of conductors on the surface of electrically insulating substrates |
5956572, | Aug 26 1996 | Sharp Kabushiki Kaisha | Method of fabricating integrated thin film solar cells |
5965001, | Jul 03 1996 | Caliper Technologies Corporation | Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces |
6004441, | Jul 10 1997 | PHC HOLDINGS CO , LTD ; PANASONIC HEALTHCARE HOLDINGS CO , LTD | Biosensor |
6068748, | Apr 09 1993 | Siemens Healthcare Diagnostics Inc | Extended use planar sensors |
6103033, | Mar 04 1998 | THERASENSE, INC | Process for producing an electrochemical biosensor |
6134461, | Mar 04 1998 | Abbott Diabetes Care Inc | Electrochemical analyte |
6165594, | Jan 15 1998 | 3M INNOAVATIVE PROPERTIES COMPANY | Multilayer, temperature resistant, composite label |
6175752, | Apr 30 1998 | Abbott Diabetes Care Inc | Analyte monitoring device and methods of use |
6203952, | Jan 14 1999 | 3M Innovative Properties Company | Imaged article on polymeric substrate |
6258229, | Jun 02 1999 | Nova Biomedical Corporation | Disposable sub-microliter volume sensor and method of making |
6287451, | Jun 02 1999 | Nova Biomedical Corporation | Disposable sensor and method of making |
6299757, | Oct 08 1998 | Abbott Diabetes Care Inc | Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
6309526, | Jul 10 1997 | PHC HOLDINGS CO , LTD ; PANASONIC HEALTHCARE HOLDINGS CO , LTD | Biosensor |
6338790, | Oct 08 1998 | ABBOTT DIABETES CARE, INC | Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
6399258, | Jan 14 1999 | 3M Innovative Properties Company | Method for patterning thin films |
6662439, | Oct 04 1999 | Roche Diabetes Care, Inc | Laser defined features for patterned laminates and electrodes |
6696008, | May 25 2000 | Westar Photonics Inc. | Maskless laser beam patterning ablation of multilayered structures with continuous monitoring of ablation |
20010006766, | |||
20030088166, | |||
DE4233178, | |||
EP376721, | |||
EP480703, | |||
EP875754, | |||
EP964059, | |||
EP1098000, | |||
EP1152239, | |||
EP1195441, | |||
EP1202060, | |||
EP1203956, | |||
EP1288654, | |||
JP10241992, | |||
JP10275959, | |||
JP10303444, | |||
JP1052780, | |||
JP11088784, | |||
JP11297890, | |||
JP2000121594, | |||
JP5315703, | |||
JP56100451, | |||
JP7290751, | |||
JP766499, | |||
JP9260697, | |||
WO42472, | |||
WO73778, | |||
WO73785, | |||
WO125775, | |||
WO136953, | |||
WO175438, | |||
WO192884, | |||
WO2086483, | |||
WO227074, | |||
WO9102391, | |||
WO9108474, | |||
WO9522881, | |||
WO9835225, | |||
WO9849773, | |||
WO9855856, | |||
WO9913101, | |||
WO9930152, | |||
WO9945387, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 08 2003 | Roche Diagnostics Corporation | (assignment on the face of the patent) | / | |||
Jan 01 2004 | Roche Diagnostics Corporation | Roche Diagnostics Operations, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015215 | /0061 | |
Mar 02 2015 | Roche Diagnostics Operations, Inc | Roche Diabetes Care, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036008 | /0670 |
Date | Maintenance Fee Events |
Sep 18 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 04 2012 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 03 2017 | REM: Maintenance Fee Reminder Mailed. |
Jun 28 2017 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 28 2008 | 4 years fee payment window open |
Dec 28 2008 | 6 months grace period start (w surcharge) |
Jun 28 2009 | patent expiry (for year 4) |
Jun 28 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 28 2012 | 8 years fee payment window open |
Dec 28 2012 | 6 months grace period start (w surcharge) |
Jun 28 2013 | patent expiry (for year 8) |
Jun 28 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 28 2016 | 12 years fee payment window open |
Dec 28 2016 | 6 months grace period start (w surcharge) |
Jun 28 2017 | patent expiry (for year 12) |
Jun 28 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |