A device for and method of secure computing that includes a computer system having a processor; an operating-system software program loaded onto the processor; a type-II virtual machine monitor software program loaded onto the operating-system software program; a user-definable number of non-sensitive virtual-machines; a user-definable number of sensitive virtual-machines, where each sensitive virtual-machine has a user-definable sensitivity level; a user-definable number of encryption virtual-machines, where each encryption virtual-machine is connected to one of said user-definable number of sensitive virtual-machines, and where each encryption virtual-machine includes at least one encryption algorithm capable of encrypting information from the corresponding sensitive virtual-machine according to the corresponding sensitivity level; and a router virtual-machine connected to each non-sensitive virtual-machine and each encryption virtual-machine.

Patent
   6922774
Priority
May 14 2001
Filed
May 14 2001
Issued
Jul 26 2005
Expiry
Sep 28 2023
Extension
867 days
Assg.orig
Entity
Large
124
6
all paid
1. A device for secure computing, comprising:
a) a computer system, where the computer system includes a processor;
b) an operating-system software-program loaded onto the processor of the computer system;
c) a type-II virtual-machine monitor software-program loaded onto the operating-system software-program of the computer system;
d) a user-definable number of non-sensitive virtual-machines;
e) a user-definable number of sensitive virtual-machines, where each sensitive virtual-machine has a user-definable sensitivity level;
f) a user-definable number of encryption virtual-machines, where each encryption virtual-machine is connected to one of said user-definable number of sensitive virtual-machines, and where each encryption virtual-machine includes at least one encryption algorithm capable of encrypting information from the corresponding sensitive virtual-machine according to the corresponding sensitivity level; and
g) a router virtual-machine connected to each non-sensitive virtual-machine and each encryption virtual-machine.
9. A method of secure computing, comprising the steps of:
a) acquiring a computer system, where the computer system includes a processor;
b) loading a host operating-system software program onto the processor of the computer system;
c) loading a type-II virtual machine monitor software program onto the operating system of the computer system;
d) creating a user-definable number of non-sensitive virtual-machines;
e) creating a user-definable number of sensitive virtual-machines, where each sensitive virtual-machine has a user-definable sensitivity level;
f) creating a user-definable number of encryption virtual-machines, where each encryption virtual-machine is connected to one of said user-definable number of sensitive virtual-machines, and where each encryption virtual-machine includes at least one encryption algorithm capable of encrypting information from the corresponding sensitive virtual-machine according to the corresponding sensitivity level; and
g) creating a router virtual-machine connected to each non-sensitive virtual-machine and each encryption virtual-machine.
2. The device of claim 1, wherein said operating-system software program is selected from the group of operating-system software programs consisting of Windows 2000, Windows NT, Linux, and any other suitable operating-system software program.
3. The device of claim 1, wherein each of said encryption virtual-machines outputs information according to Internet Protocol Security standards.
4. The device of claim 1, wherein each of said encryption virtual-machine includes at least one encryption algorithm selected from the group of encryption algorithms consisting of an encryption algorithm, a key exchange algorithm, a digital signature algorithm, and any combination thereof.
5. The device of claim 1, further comprising a server connected to each non-sensitive virtual-machine and each sensitive virtual-machine.
6. The device of claim 5, wherein said server is selected from the group of servers consisting of a stand-alone device and a virtual machine.
7. The device of claim 1, further comprising a checker connected to each of said encryption virtual-machines and to the router virtual-machine.
8. The device of claim 7, wherein said checker is selected from the group of checkers consisting of a stand-alone device and a virtual machine.
10. The method of claim 9, wherein said step of loading a host operating-system software-program is comprised of the step of loading an operating-system software program selected from the group of operating-system software programs consisting of Windows 2000, Windows NT, Linux, and any other suitable operating system.
11. The method of claim 9, wherein said step of creating a user-definable number of encryption virtual-machines is comprised of the step of creating a user-definable number of encryption virtual-machines that each outputs information according to an Internet Protocol Security standard.
12. The method of claim 9, wherein said step of creating a user-definable number of encryption virtual-machines is comprised of the step of creating a user-definable number of encryption virtual-machines wherein each encryption virtual-machine includes at least one encryption algorithm selected from the group of encryption algorithms consisting of an encryption algorithm, a key exchange algorithm, a digital signature algorithm, and any combination thereof.
13. The method of claim 9, further comprising the step of transferring information between each of said non-sensitive virtual-machine and sensitive virtual-machine when appropriate.
14. The method of claim 9, further comprising the step of checking to see that each encryption virtual-machine is operating properly and, if not, disconnecting the router virtual-machine from a network.

The present invention relates, in general, to electrical computers and digital processing systems, processing systems for multiple computer or process coordinating and, in particular, to virtual machine task or process management.

There is a need to access remote computer systems in a secure manner. Some previous attempts to solve this problem involved integrating security modules as applications or operating system components. These approaches could not be trusted to work properly if a computer was infected by a virus or other malicious code. Other attempts to solve this problem involved the use of separate hardware devices. One or more of the separate hardware devices were often custom devices. Custom devices typically operate differently from commercial devices and require a user to learn new operating procedures. The user was often reluctant, or unable, to do this. Furthermore, the interface of a custom device was often tailored to a particular version of current commercial devices to which it communicated. If the commercial device changed due to an advance in technology then a design change to the custom device was required. If the design change was not made then the remote-access solution containing the custom device was made obsolete. Moreover, device specific approaches to secure remote access were often not interoperable with other equipment. Therefore, there is a need for secure remote-access to a computer system that does not quickly become obsolete as technology advances. In addition, users desire computers that work like the commercial computers to which they are accustomed.

The typical computer system includes hardware (e.g., processor, keyboard, hard disk, floppy-disk, etc.) and operating-system software that runs on the processor to control the components of the computer system. A virtual machine monitor (VMM) is another software program that runs on the processor of the computer system to create a user-definable number of computing platform environments.

There are two types of virtual machine monitors. A type-I VMM runs directly on the processor of the computer system and controls all of the components of the computer system and the computer processes created therein. A type-II VMM runs on top of the operating-system software (i.e., the host operating-system software) and allows the host operating-system software to control the components of the computer system. The type-II VMM is more relevant to the present invention than the type-I VMM. A commercial product by VMware is an example of a type-II VMM.

Each computing environment created by a VMM runs operating-system software (i.e., guest operating-system software) that is either the same or different from the host operating-system software. Each computing environment is configured in software to emulate a complete computer system. These computing environments are referred to as virtual machines because they appear to the software running in them and to the user as a real computer system. However, these computer environments only exist in the software, or electronic configuration, running on the computer system. Virtual machines are useful for running old operating-system software on computer systems built to run new operating-system software and for testing the operation of experimental operating-system software.

U.S. Pat. No. 5,504,814, entitled “EFFICIENT SECURITY KERNEL FOR THE 80960 EXTENDED ARCHITECTURE,” discloses a device for implementing the standards of “Department of Defense Trusted Computer System Evaluation Criteria,” DOD 5200.28-STD, December 1985. The device is a custom device that uses virtual machines to isolate security subjects and dedicated logical resources. The device uses a single processor computer system running a single operating system. The virtual machines in U.S. Pat. No. 5,504,814 communicate with one another so that total separation does not exist between the virtual machines. The device and method of the present invention is not disclosed in U.S. Pat. No. 5,504,814. U.S. Pat. No. 5,504,814 is hereby incorporated by reference into the specification of the present invention.

U.S. Pat. No. 5,201,049, entitled “SYSTEM FOR EXECUTING APPLICATIONS PROGRAMS CONCURRENTLY/SERIALLY ON DIFFERENT VIRTUAL MACHINES,” discloses a device for and method of executing predefined segments concurrently on different assigned virtual machines at the host processor by having a virtual machine manager create a pool of virtual machines at the host processor that are either run ready or idle, letting the virtual machine pool manager decide whether or not to send a segment to a run ready virtual machine for processing or to an idle virtual machine. The device and method of the present invention is not disclosed in U.S. Pat. No. 5,201,049. U.S. Pat. No. 5,201,049 is hereby incorporated by reference into the specification of the present invention.

U.S. Pat. No. 5,893,084, entitled “METHOD FOR CREATING SPECIFIC PURPOSE RULE-BASED N-BIT VIRTUAL MACHINES,” discloses a device for and a method of implementing a virtual machine to do one specific task such as data typing, encryption, compression, arbitrary precision arithmetic, pattern recognition, data conversion, artificial intelligence, device drivers, data storage, and retrieval and digital communications and using rule sets to receive an n-bit input and produce an n-bit output, where the input and the output do not have to agree in bit length. The device and method of the present invention is not disclosed in U.S. Pat. No. 5,893,084. U.S. Pat. No. 5,893,084 is hereby incorporated by reference into the specification of the present invention.

U.S. Pat. No. 5,850,449, entitled “SECURE NETWORK PROTOCOL SYSTEM AND METHOD,” discloses a device for and a method of securely transmitting objects containing executable programs in place of conventional data packets. U.S. Pat. No. 5,850,449 implements its device and method by encrypting all transmissions, which the present invention does not. U.S. Pat. No. 5,850,449 uses a virtual machine module to execute platform independent programs (e.g., JAVA programs). The device and method of the present invention is not disclosed in U.S. Pat. No. 5,850,449. U.S. Pat. No. 5,850,449 is hereby incorporated by reference into the specification of the present invention.

It is an object of the present invention to compute securely using commercially available computer technology.

It is another object of the present invention to compute securely using commercially available computer technology by moving security functions into separate virtual machines or into the host operating system to protect them from the end-user computing environment.

The present invention is a device for and a method of secure computing that includes a computer system on which a host operating-system software program controls resources of the computer system, and a type II virtual machine monitor that runs on top of the host operating-system software to create a user-definable number of virtual machines.

In the preferred embodiment, the virtual machines created on the present invention include a user-definable number of non-sensitive virtual-machines, a user-definable number of sensitive virtual-machines, a dedicated encryption virtual-machine connected to each sensitive virtual-machine, and a router virtual-machine connected to each non-sensitive virtual-machine and each encryption virtual-machine.

In an alternate embodiment, a server is added to the device and method described above, where the server is connected to each non-sensitive virtual-machine and each sensitive virtual-machine for facilitating the transfer of information from one virtual machine to another if appropriate.

In a second alternate embodiment, a checker implemented as either a computer or a virtual machine is added to check the operation of any virtual-machine and to disconnect the router virtual-machine, in the event of a malfunction of a virtual-machine, from any network to which it is connected.

FIG. 1 is a schematic of the preferred embodiment of the present invention;

FIG. 2 is a schematic of an alternate embodiment of the present invention; and

FIG. 3 is a schematic of a second alternate embodiment of the present invention.

The need for secure remote access continues to grow. Previous attempts to solve this problem were hardware specific, operated differently than commercial products, became obsolete with advances in commercial computer technology, or may not have been inter-operable with other equipment.

Users want the latest technology and want it to operate in a manner that is familiar to them (e.g., commercial computer systems).

The present invention is a device for and method of secure computing that is independent of the specific physical media used for network access and may be implemented in any commercially available computer system.

FIG. 1 is a schematic of the preferred embodiment of the present invention. The present invention is implemented onto a typical computer system having operating-system software 1 (i.e., host operating-system software) which runs on the processor of the computer system. The operating-system software controls all of the devices found in a typical computer system (e.g., processor, keyboard, hard-disk, floppy-disk, , etc.).

Running on the host operating-system software 1 is a type II virtual-machine monitor (VMM) 2. A type II VMM 2 runs on top of the host operating-system software 1 rather than directly on the system hardware and allows a user to create a user-definable number of virtual machines under the control of the host operating-system software 1. A virtual machine is a collection of programs and data that executes under the control of the VMM running on the host operating-system software and gives the user the impression of a real computer system running under the user's sole control.

Any operating-system software (i.e., guest operating-system software) or application may be run on a virtual machine, where the guest operating-system software may be the same as, or different from, the host operating-system software or the guest operating-system software of another virtual machine. This allows older operating system and applications software to be used as newer operating systems are developed. Examples of presently available operating-system software include Windows 95, Windows 98, Windows 2000, Windows ME, Windows NT, and Linux. Any other suitable operating-system software may be used in the present invention. A user-definable number of non-sensitive virtual-machines 3 are created for processing non-sensitive (e.g., unclassified) information, where each of the non-sensitive virtual-machines 3 is isolated from, and operates independently of, any other virtual machine in the present invention. Each non-sensitive virtual-machine 3 provides access to the transport network using the protocols of the Internet. The non-sensitive virtual-machines 3 are under the control of the host operating-system software 1. In the preferred embodiment, there is one non-sensitive virtual-machine 3.

A user-definable number of sensitive virtual-machines 4 are created for processing sensitive (e.g., classified) information, where each of the sensitive virtual-machines 4 is isolated from, and operates independently of, any other virtual machine in the present invention, and where each sensitive virtual-machine 4 may process information at a sensitivity level that is either the same as, or different from, that of another sensitive virtual-machine 4. Each sensitive virtual-machine 4 provides access to a secure area in a computer system (i.e., local or remote). A secure area in a computer system is an area that is accessible only through encrypted and/or authenticated connections.

The sensitive virtual-machines 4 are under the control of the host operating-system software 1. In the preferred embodiment, there is one sensitive virtual-machine 4 for each level of sensitive information to be processed.

An encryption virtual-machine 5 is created for, and is connected to, each sensitive virtual-machine 4 created, where each encryption machine 5 includes an encryption method sufficient to protect the sensitivity of the information of the corresponding sensitive virtual-machine 4 to which it is connected. The encryption virtual-machine 5 implements Internet Protocol Security (IPSec) standard. IPSec is a standard for security at the network or packet processing layer of network communication. The encryption virtual-machines 5 are under the control of the host operating-system software 1. Each encryption virtual-machine 5 may not only provide encryption capability but also digital signature capability and key exchange capability as well. Any suitable encryption method, key exchange method, and digital signature method may be used in the present invention.

The output of each non-sensitive virtual-machine 3 and each encryption virtual-machine 5 is connected to a router virtual-machine 6. The router virtual-machine 6 provides network access and routing for the other virtual machines according to a set of rules or filters.

The router virtual-machine 6 is under control of the host operating-system software 1. The router virtual-machine 6 routes and filters information between the present invention and another remote computer system.

The present invention provides the same level of security as does an architecture that uses separate components. However, the present invention achieves this level of security on a single computer component. This has previously been unattainable. In addition, the present invention saves the expense of having to purchase separate components. The present invention also allows for the use of old operating-system software as technology advances. New capabilities (e.g., virtual machines, operating systems, and applications software) can be installed in virtual machines without affecting the security provided. New network interface hardware can also be easily installed as the user desires.

Each of the virtual machines of the present invention can use non-persistent disk storage which does not retain changes made thereto during a session. This provides security because any successful attack by a hacker or malicious code during one session is only successful for that session. Any changes, including malicious ones, can be discarded so the attack would have to be repeated on each subsequent session, which may either not be successful or may be detected during the attempt.

FIG. 2 is an alternate embodiment of the present invention that allows for the transfer of information from one virtual machine to another, but not directly. The schematic of FIG. 2 is the same as that of FIG. 1 with one addition, a server 7 is connected to each virtual machine. Each virtual machine can send information to the server 7 and the server 7 can send information it has to any virtual machine if appropriate. The server 7 contains user-definable rules for when a transfer is, or is not, appropriate to be transferred from one virtual machine to another. For example, it may be appropriate to send information from the non-sensitive virtual-machine 3 to any other virtual machine or from any sensitive virtual-machine 4 to any sensitive virtual-machine 4 of a higher-sensitivity, but not vice versa. Therefore, the server 7 provides a means of transferring information from one virtual machine to another when appropriate while maintaining isolation between virtual machines. The server 7 may be a virtual machine or a stand-alone device.

FIG. 3 is a second alternate embodiment of the present invention that allows for the checking of the virtual-machines 5 to insure proper operation. The schematic of FIG. 3 is the same as that of FIG. 1 with one addition, checker 8 is connected to the output of each encryption virtual-machine 5 and the output of the router virtual-machine 6. The checker 8 is either a virtual machine or, for added security, a stand-alone device. A stand-alone device provides more security than an integrated function because access to, and tampering of, a standalone device is more difficult than an integrated function. It also provides more security because it's operation is independent of the virtual machines that it is checking. Upon the detection of a malfunction of a virtual-machine 5, the checker 8 disconnects the output of the router virtual-machine 6 from whatever network to which it was connected. The checker 8 may also be added to the schematic of FIG. 2.

Wagner, Grant M., Schneider, Mark S., Meushaw, Robert V., Simard, Donald N.

Patent Priority Assignee Title
10038567, Sep 24 2004 Fortinet, Inc. Scalable IP-services enabled multicast forwarding with efficient resource utilization
10200275, Nov 18 2002 Fortinet, Inc. Hardware-accelerated packet multicasting
10375088, Jun 04 2015 VM-Robot, Inc. Routing systems and methods
10630467, Jan 04 2019 BLUE RIDGE NETWORKS, INC Methods and apparatus for quantum-resistant network communication
10848426, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Virtual dispersive networking systems and methods
11095610, Sep 19 2019 BLUE RIDGE NETWORKS, INC Methods and apparatus for autonomous network segmentation
11689359, Jan 04 2019 Blue Ridge Networks, Inc. Methods and apparatus for quantum-resistant network communication
7272799, Apr 19 2001 Hitachi, LTD Virtual machine system and virtual machine control method
7386885, Jul 03 2007 Kaspersky Lab, ZAO Constraint-based and attribute-based security system for controlling software component interaction
7389358, Sep 13 2000 Fortinet, INC Distributed virtual system to support managed, network-based services
7415512, May 24 2001 Cisco Technology, Inc. Method and apparatus for providing a general purpose computing platform at a router on a network
7428636, Apr 26 2001 VMware, Inc.; VMWARE, INC Selective encryption system and method for I/O operations
7428754, Aug 17 2004 The MITRE Corporation System for secure computing using defense-in-depth architecture
7444398, Sep 13 2000 Fortinet, INC System and method for delivering security services
7499419, Sep 24 2004 COSINE COMMUNICATIONS, INC Scalable IP-services enabled multicast forwarding with efficient resource utilization
7522604, Jun 04 2002 GOOGLE LLC Routing traffic through a virtual router-based network switch
7539744, Sep 13 2000 Cisco Technology, Inc Network operating system for maintaining redundant master control blade management information
7574495, Sep 13 2000 Fortinet, INC System and method for managing interworking communications protocols
7580373, Jun 28 2001 Fortinet, Inc. Identifying nodes in a ring network
7587595, May 13 2005 TAHOE RESEARCH, LTD Method and apparatus for providing software-based security coprocessors
7587633, Aug 29 2002 GOOGLE LLC Fault tolerant routing in a network routing system based on a passive replication approach
7607011, Jul 16 2004 Rockwell Collins, Inc.; Rockwell Collins, Inc System and method for multi-level security on a network
7613921, May 13 2005 TAHOE RESEARCH, LTD Method and apparatus for remotely provisioning software-based security coprocessors
7636442, May 13 2005 TAHOE RESEARCH, LTD Method and apparatus for migrating software-based security coprocessors
7639632, Sep 13 2000 Fortinet, Inc. System and method for managing and provisioning virtual routers
7668087, Jun 04 2002 GOOGLE LLC Hierarchical metering in a virtual router-based network switch
7690033, Sep 28 2004 VIIRII, LLC Electronic computer system secured from unauthorized access to and manipulation of data
7720053, Jun 04 2002 Fortinet, Inc. Service processing switch
7720095, Aug 27 2003 Fortinet, INC Heterogeneous media packet bridging
7721285, Apr 19 2001 Hitachi, Ltd. Virtual machine system and virtual machine control method
7730535, Jul 03 2007 Kaspersky Lab, ZAO Constraint-based and attribute-based security system for controlling software component interaction
7748005, Jan 28 2000 VALTRUS INNOVATIONS LIMITED System and method for allocating a plurality of resources between a plurality of computing domains
7761743, Aug 29 2002 GOOGLE LLC Fault tolerant routing in a non-hot-standby configuration of a network routing system
7788713, Jun 23 2004 Intel Corporation Method, apparatus and system for virtualized peer-to-peer proxy services
7808904, Nov 18 2004 Fortinet, INC Method and apparatus for managing subscriber profiles
7843813, Nov 18 2004 Fortinet, INC Managing hierarchically organized subscriber profiles
7869361, Nov 18 2004 Fortinet, INC Managing hierarchically organized subscriber profiles
7876683, Nov 18 2004 Fortinet, INC Managing hierarchically organized subscriber profiles
7881244, Sep 24 2004 Fortinet, Inc. Scalable IP-services enabled multicast forwarding with efficient resource utilization
7885207, Sep 13 2000 Fortinet, Inc. Managing and provisioning virtual routers
7890663, Jun 28 2001 Fortinet, Inc. Identifying nodes in a ring network
7890754, May 30 2003 VMware, Inc. Selective encryption system and method for I/O operations
7895348, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Virtual dispersive routing
7912936, Sep 13 2000 Managing interworking communications protocols
7933269, Nov 18 2002 Fortinet, Inc. Hardware-accelerated packet multicasting in a virtual routing system
7961615, Nov 18 2004 Fortinet, INC Managing hierarchically organized subscriber profiles
8024727, Jun 15 2006 Microsoft Technology Licensing, LLC Enhancing or replacing host operating system functionality by leveraging guest operating system functionality
8060877, Apr 26 2001 VMware, Inc. Undefeatable transformation for virtual machine I/O operations
8064462, Jun 04 2002 Fortinet, Inc. Service processing switch
8064605, Sep 27 2007 Intel Corporation Methods and apparatus for providing upgradeable key bindings for trusted platform modules
8068613, May 13 2005 TAHOE RESEARCH, LTD Method and apparatus for remotely provisioning software-based security coprocessors
8069233, Sep 13 2000 Cisco Technology, Inc Switch management system and method
8085776, Jun 04 2002 Fortinet, Inc. Methods and systems for a distributed provider edge
8086873, Jun 05 2006 Lenovo PC International Method for controlling file access on computer systems
8111690, Jun 04 2002 GOOGLE LLC Routing traffic through a virtual router-based network switch
8151337, Jun 30 2006 Microsoft Technology Licensing, LLC Applying firewalls to virtualized environments
8176336, Dec 19 2008 EMC IP HOLDING COMPANY LLC Software trusted computing base
8208409, Jun 28 2001 Fortinet, Inc. Identifying nodes in a ring network
8213347, Sep 24 2004 Fortinet, Inc. Scalable IP-services enabled multicast forwarding with efficient resource utilization
8249257, Sep 28 2007 Intel Corporation Virtual TPM keys rooted in a hardware TPM
8250357, Sep 13 2000 Fortinet, INC Tunnel interface for securing traffic over a network
8260918, Sep 13 2000 Fortinet, Inc. Packet routing system and method
8306040, Jun 04 2002 Cisco Technology, Inc Network packet steering via configurable association of processing resources and network interfaces
8320279, Sep 13 2000 Fortinet, Inc. Managing and provisioning virtual routers
8341291, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Network communications of application running on device utilizing virtual network connection and routing protocol based on application connection criteria
8341292, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Network communications of applications running on device utilizing different virtual network connections with different routing protocols
8352636, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Transmitting packets from device in network communications with other device utilizing multiple virtual network connections
8369258, Sep 24 2004 Fortinet, Inc. Scalable IP-services enabled multicast forwarding with efficient resource utilization
8412982, Aug 29 2002 GOOGLE LLC Fault tolerant routing in a non-hot-standby configuration of a network routing system
8423664, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Network communications of application running on device utilizing multiple virtual network connections
8429226, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Facilitating network communications with control server, hosting server, and devices utilizing virtual network connections
8429293, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC IP server facilitating network communications between devices utilizing virtual network connections
8433818, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Network communications of application running on device utilizing virtual network connections with redundancy
8433819, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Facilitating download of requested data from server utilizing virtual network connections between client devices
8437345, Jul 09 2003 Hitachi, LTD Terminal and communication system
8443364, Apr 19 2001 Hitachi, Ltd. Virtual machine system and virtual machine control method
8447882, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Software router facilitating network communications between devices utilizing virtual network connections
8503463, Aug 27 2003 Fortinet, Inc. Heterogeneous media packet bridging
8539098, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Multiplexed client server (MCS) communications and systems
8560634, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Apparatus, systems and methods utilizing dispersive networking
8565437, May 13 2005 TAHOE RESEARCH, LTD Method and apparatus for remotely provisioning software-based security coprocessors
8583800, Sep 13 2000 Fortinet, Inc. Packet routing system and method
8590005, Jun 08 2011 Adventium Enterprises, LLC Multi-domain information sharing
8650390, Sep 13 2000 Fortinet, Inc. Tunnel interface for securing traffic over a network
8677510, Apr 06 2012 GEE, KAROLYN System, method, and device for communicating and storing and delivering data
8819486, Aug 29 2002 GOOGLE LLC Fault tolerant routing in a non-hot-standby configuration of a network routing system
8848704, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Facilitating network routing using virtualization
8848718, Jun 04 2002 GOOGLE LLC Hierarchical metering in a virtual router-based network switch
8925064, Jun 28 2012 The United States of America as represented by the Secretary of the Navy Covert high assurance personal computer with local network (CHAPLN)
8941659, Jan 28 2011 DISPERSIVE HOLDINGS, INC Medical symptoms tracking apparatus, methods and systems
8953806, May 13 2005 TAHOE RESEARCH, LTD Method and apparatus for remotely provisioning software-based security coprocessors
8953807, May 13 2005 TAHOE RESEARCH, LTD Method and apparatus for remotely provisioning software-based security coprocessors
8955110, Jan 14 2011 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC IP jamming systems utilizing virtual dispersive networking
8959627, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Quarantining packets received at device in network communications utilizing virtual network connection
9003539, Jun 27 2003 Disney Enterprises, Inc. Multi virtual machine architecture for media devices
9055042, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Providing network communications satisfying application requirements using virtualization
9059975, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Providing network communications using virtualization based on protocol information in packet
9071607, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Virtual dispersive networking systems and methods
9100405, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Apparatus, systems and methods utilizing dispersive networking
9124555, Sep 13 2000 Fortinet, Inc. Tunnel interface for securing traffic over a network
9143351, Jun 28 2001 Fortinet, Inc. Identifying nodes in a ring network
9160716, Sep 13 2000 Fortinet, Inc. Tunnel interface for securing traffic over a network
9166805, Sep 24 2004 Fortinet, Inc. Scalable IP-services enabled multicast forwarding with efficient resource utilization
9167016, Sep 24 2004 Fortinet, Inc. Scalable IP-services enabled multicast forwarding with efficient resource utilization
9167025, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Network communications of application running on device utilizing routing of data packets using virtual network connection
9230129, Dec 19 2008 EMC IP HOLDING COMPANY LLC Software trusted computing base
9241025, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Network communications of applications running on devices utilizing virtual network connections with asymmetrical network paths
9241026, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Facilitating network communications with control server and devices utilizing virtual network connections
9246980, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Validating packets in network communications
9258280, Sep 13 2000 Fortinet, Inc. Tunnel interface for securing traffic over a network
9298948, May 13 2005 TAHOE RESEARCH, LTD Method and apparatus for remotely provisioning software-based security coprocessors
9311507, May 13 2005 TAHOE RESEARCH, LTD Method and apparatus for remotely provisioning software-based security coprocessors
9319303, Sep 24 2004 Fortinet, Inc. Scalable IP-services enabled multicast forwarding with efficient resource utilization
9350794, Oct 17 2007 DISPERSIVE HOLDINGS, INC ; ASSET RECOVERY ASSOCIATES, LLC Transmitting packet from device after timeout in network communications utilizing virtual network connection
9391964, Sep 13 2000 Fortinet, Inc. Tunnel interface for securing traffic over a network
9397856, Dec 02 2005 CA, INC Virtual tunnel network router
9407449, Nov 18 2002 Fortinet, Inc. Hardware-accelerated packet multicasting
9483662, May 13 2005 TAHOE RESEARCH, LTD Method and apparatus for remotely provisioning software-based security coprocessors
9501665, May 13 2005 TAHOE RESEARCH, LTD Method and apparatus for remotely provisioning software-based security coprocessors
9524400, May 13 2005 TAHOE RESEARCH, LTD Method and apparatus for remotely provisioning software-based security coprocessors
9602303, Jun 28 2001 Fortinet, Inc. Identifying nodes in a ring network
9667604, Sep 13 2000 Fortinet, Inc. Tunnel interface for securing traffic over a network
9853948, Sep 13 2000 Fortinet, Inc. Tunnel interface for securing traffic over a network
9998337, Jun 28 2001 Fortinet, Inc. Identifying nodes in a ring network
Patent Priority Assignee Title
5201049, Sep 29 1988 International Business Machines Corporation System for executing applications program concurrently/serially on different virtual machines
5504814, Jul 10 1991 Hughes Aircraft Company Efficient security kernel for the 80960 extended architecture
5522075, Jun 28 1991 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Protection ring extension for computers having distinct virtual machine monitor and virtual machine address spaces
5850449, May 19 1997 Oracle America, Inc Secure network protocol system and method
5893084, Apr 07 1995 STARGATE, LTD , A TEXAS CORPORATION Method for creating specific purpose rule-based n-bit virtual machines
20030037089,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 11 2001MEUSHAW, ROBERT V UNITED STATES GOVERNMENT AS REPRESENTED BY THE NATIONAL SECURITY AGENCY, THEASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0118150372 pdf
May 11 2001SCHNEIDER, MARK S UNITED STATES GOVERNMENT AS REPRESENTED BY THE NATIONAL SECURITY AGENCY, THEASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0118150372 pdf
May 11 2001SIMARD, DONALD N UNITED STATES GOVERNMENT AS REPRESENTED BY THE NATIONAL SECURITY AGENCY, THEASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0118150372 pdf
May 11 2001WAGNER, GRANT M UNITED STATES GOVERNMENT AS REPRESENTED BY THE NATIONAL SECURITY AGENCY, THEASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0118150372 pdf
May 14 2001The United States of America as represented by The National Security Agency(assignment on the face of the patent)
Date Maintenance Fee Events
Jul 28 2008M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Jul 31 2012M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Dec 21 2016M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jul 26 20084 years fee payment window open
Jan 26 20096 months grace period start (w surcharge)
Jul 26 2009patent expiry (for year 4)
Jul 26 20112 years to revive unintentionally abandoned end. (for year 4)
Jul 26 20128 years fee payment window open
Jan 26 20136 months grace period start (w surcharge)
Jul 26 2013patent expiry (for year 8)
Jul 26 20152 years to revive unintentionally abandoned end. (for year 8)
Jul 26 201612 years fee payment window open
Jan 26 20176 months grace period start (w surcharge)
Jul 26 2017patent expiry (for year 12)
Jul 26 20192 years to revive unintentionally abandoned end. (for year 12)