A method for replicating and amplifying a target nucleic acid sequence is described. A method of the invention involves the formation of a recombination intermediate without the prior denaturing of a nucleic acid duplex through the use of a recombination factor. The recombination intermediate is treated with a high fidelity polymerase to permit the replication and amplification of the target nucleic acid sequence. In preferred embodiments, the polymerase comprises a polymerase holoenzyme. In further preferred embodiments, the recombination factor is bacteriophage T4 UvsX protein or homologs from other species, and the polymerase holoenzyme comprises a polymerase enzyme, a clamp protein and a clamp loader protein, derived from viral, bacteriophage, prokaryotic, archaebacterial, or eukaryotic systems.

Patent
   6929915
Priority
Apr 20 2001
Filed
Apr 19 2002
Issued
Aug 16 2005
Expiry
Apr 19 2022
Assg.orig
Entity
Large
105
5
all paid
1. A method for replicating and amplifying a target nucleic acid sequence comprising:
a) reacting two primers that are complementary to a target nucleic acid sequence within a nucleic acid duplex in the presence of bacteriophage T4 UvsX protein to form a recombination intermediate, without previously denaturing said nucleic acid duplex;
b) admixing a polymerase with said recombination intermediate to form a polymerase complex, whereby the polymerase replicates the target sequence.
2. The method of claim 1 wherein said polymerase is a polymerase holoenzyme.
3. The method of claim 2 wherein said polymerase holoenzyme comprises a polymerase enzyme, a clamp protein, and a clamp loader protein.
4. The method of claim 3 wherein said polymerase enzyme, said clamp protein and said clamp loader are obtained from bacteriophage T4.
5. The method of claim 4 wherein said polymerase is bacteriophage T4 gene product 43 polymerase, said clamp protein is bacteriophage T4 gene product 45 clamp protein and said clamp loader is bacteriophage T4 gene product 44/gene product 62 clamp loader complex.
6. The method of claim 2 wherein said polymerase holoenzyme complex comprises a viral, bacteriophage, eukaryote archeabacteria, or prokaryote polymerase holoenzyme complex.
7. The method of claim 6 wherein said bacteriophage is T4 bacteriophage T4, and said polymerase holoenzyme complex includes a bacteriophage T4 gene product 43 polymerase.
8. The method of claim 6 wherein said bacteriophage is bacteriophage T4, and said polymerase holoenzyme complex includes a bacteriophage T4 gene product 45 clamp protein.
9. The method of claim 6 wherein said prokaryote is E. coli and said polymerase holoenzyme complex includes DAN polymerase III holoenzyme.
10. The method of claim 6 wherein said eukaryote is yeast and said polymerase holoenzyme complex includes DNA polymerase delta.
11. The method of claim 6 wherein said eukaryote is yeast and said polymerase holoenzyme complex includes DNA polymerase epsilon.
12. The method of claim 1 wherein a single stranded binding protein is used to facilitate downstream strand displacement synthesis by said polymerase.
13. The method of claim 12 wherein said single stranded binding protein is bacteriophage T4 gene product 32.
14. The method of claim 1 wherein a single stranded binding protein is used to destabilize the helix at or near the points of the primer template junctions.

This Application claims priority of U.S. Provisional Application Ser. No. 60/285,127 filed Apr. 20, 2001.

This invention was made with United States Government support in the form of a grant from the National Institute of Health, Grant No. GM13306. The United States Government has certain rights in this invention.

Not applicable

The present invention is directed towards a process for the amplification of a target nucleic acid sequence contained in a larger nucleic acid independent of using a thermocycle or a thermostable polymerase. Unlike current technologies that employ a thermocycle and are therefore dependent upon a thermostable polymerase, the current invention allows for specific primer template association at a low temperature that will remain constant over the duration of the reaction.

A method for the site-specific amplification of a region of nucleic acid is described. Current amplification technology is based upon the Polymerase Chain Reaction (PCR). This PCR system can be thought of as involving three main components. First DNA oligonucleotides complementary to the flanking ends of the target sequence are required. These DNA oligonucleotides serve as primers for the initiation of DNA replication by the second component of the system, a thermostable DNA dependent DNA polymerase, such as the Taq polymerase. The use of a thermostable DNA polymerase is absolutely required in PCR so that the polymerase activity can survive the third component, the thermal cycle. The thermal cycle uses high temperatures, usually 95 degrees Celsius, to melt the target duplex DNA so that a subsequent annealing temperature, usually in the range of 50-60 degrees Celsius, permits the annealing of the primers to the appropriate locations flanking the target DNA. Following the annealing step, the thermal cycle incorporates a polymerization temperature, usually 72 degrees Celsius, which is the optimal temperature of polymerization for the current thermostable polymerases used in PCR.

The requirement of a thermal cycle to facilitate the annealing of the primers flanking the target DNA to be amplified has several drawbacks. Primer annealing temperature is an important parameter in the success of PCR amplification. The annealing temperature is characteristic for each oligonucleotide: it is a function of the length and base composition of the primer as well as the ionic strength of the reaction buffer. The theoretical amplification value is never achieved in practice. Several factors prevent this from occurring, including: competition of complementary daughter strands with primers for reannealing (i.e. two daughter strands reannealing results in no amplification); loss of enzyme activity due to thermal denaturation, especially in the later cycles; even without thermal denaturation, the amount of enzyme becomes limiting due to molar target excess in later cycles (i.e. after 25-30 cycles too many primers need extending); possible second site primer annealing and non-productive priming. Moreover, primers must avoid stretches of polybase sequences (e.g. poly dG) or repeating motifs—these can hybridize with inappropriate register on the template. Inverted repeat sequences should also be avoided so as to prevent formation of secondary structure in the primer, which would prevent hybridization to template.

An additional drawback is the costly need for temperature baths, which are required to shift their temperatures up and down rapidly, and in an automated programmed manner. These are known as thermal cyclers or PCR machines.

A further problem with PCR is the lack of fidelity of the various Polymerases (Table 1) under different conditions. However, with increasing number of cycles the greater the probability of generating various artifacts (e.g. mispriming products). It is unusual to find procedures that have more than 40 cycles. Errors made by DNA polymerase can affect the extension reaction of PCR during five distinct steps: (1) the binding of the correct dNTP by polymerase; (2) the rate of phosphodiester bond formation; (3) the rate of pyrophosphate release; (4) the continuation of extension after a misincorporation; and (5) the ability of the enzyme to adjust to a misincorporated base by providing 3′-to-5′ exonuclease ‘proofreading’ activity. Misincorporation rates for different polymerases are described in terms of errors per nucleotide polymerized, and the rate can be greatly affected by many parameters. Several studies have concluded that different thermostable DNA polymerases have error rates as high as 2.1×10−4 to 1.6×10−6 errors per nucleotide per extension (Table 2).

Another major drawback is that standard PCR protocols can amplify DNA sequences of 3000 base pairs (3 kb) or less. Efficient long PCR requires the use of two polymerases: a non-proofreading polymerase is the main polymerase in the reaction, and a proofreading polymerase (3′ to 5′ exo) is present at a lower concentration. Following the results of Cheng et al. [Cheng, S., Fockler, C., Barnes, W., Higuchi, R. Effective amplification of long targets from cloned inserts and human genomic DNA. Proc. Natl. Acad. Sci. 91, 5695-5699 (1994)] the Tth enzyme (ABI/Perkin-Elmer) enzyme has been used as the main-component polymerase and Vent (New England Biolabs) as the fractional-component polymerase. Other combinations of proofreading and non-proofreading polymerases are difficult to employ because different activities in specific buffer systems limits which combinations of polymerases can be used. Moreover, all of the problems associated with standard PCR reactions become even more critical when attempting to amplify regions of DNA 3 kb or longer.

The current invention eliminates these problems with traditional PCR by eliminating the need for a thermal cycle and a thermostable polymerase in the amplification of a sequence of DNA embedded within a longer target DNA. The current invention replaces the thermal cycle required to anneal the primers to the flanking ends of a target template by utilizing the enzymes active during homologous recombination, more specifically during homologous pairing or D-loop formation.

In bacteriophage T4, DNA replication, as well as being initiated from specific origins of replication, is also very efficiently initiated from recombination intermediates. Therefore, the current invention is directed at a system that primes DNA replication, in a specific manner, via recombination intermediates formed at opposite ends of a target sequence embedded within a much larger sequence. This permits the reaction to be run at room temperature and therefore permits the use of a non-thermal stable polymerase. The primary advantage of employing a non-thermostable polymerase is that several polymerases have been characterized which have far superior fidelity. Moreover, the characterization of accessory factors, such as sliding clamp proteins, are known to increase the length of DNA which can be amplified to entire genomes. In addition, the utilization of enzymes to deliver the primers eliminates all of the problems associated with annealing primers within the context of a thermal cycle mentioned above. Moreover, the homologous pairing reaction catalyzed by the bacteriophage T4 proteins is extremely efficient and would eliminate the problem of mis-priming.

TABLE 1
Thermostable DNA polymerases and their sources
DNA Polymerase Natural or recombinant Source
Taq Natural Thermus aquaticus
Amplitaq ® Recombinant T. aquaticus
Amplitaq (Stoffel Recombinant T. aquaticus
fragment) ®
Hot Tub ™ Natural Thermus flavis
Pyrostase ™ Natural T. flavis
Vent ™ Recombinant Thermococcus litoralis
Deep Vent ™ Recombinant Pyrococcus GB-D
Tth Recombinant Thermus thermophilus
Pfu Natural Pyrococcus furiosus
ULTma ™ Recombinant Thermotoga maritima

TABLE 2
Properties of DNA polymerases used in PCR
Stoffel Deep
Taq/Amplitaq ® fragment Vent ™ Vent ™ Pfu Tth ULTma ™
95° C. half- 40 min 80 min 400 1380 >120 20 >50 min
life min min min min
5′3′ exo + +
3′5′ exo + + + +
Extension 75 >50   >80 ? 60 >33   ?
rate (nt/sec)
RT activity Weak Weak ? ? ? Yes ?
Resulting 3′ A 3′ A >95% >95% blunt 3′ A blunt
ends blunt blunt
Strand + +
displacement
M.W. (kDa) 94 61 ? ? 92 94 70

Error Rates
1. Taq (Thermus aquaticus)

1.1×10−4 base substitutions/bp [Tindall, K. R., and Kunkel, T. A. (1988) Biochemistry 27, p6008-6013, “Fidelity of DNA synthesis by the Thermus aquaticus DNA polymerase.”]

2.4×10−5 frameshift mutations/bp [Tindall and Kunkel, Id.]

2.1×10−4 errors/bp [Keohavong, P., and Thilly, W. G. (1989) Proc Natl Acad Sci USA 86(23), p9253-9257, “Fidelity of DNA polymerases in DNA amplification.”]

7.2×10−5 errors/bp [Ling, L. L., Keohavong, P., Dias, C., and Thilly, W.G. (1991) PCR Methods Appl 1(1) p63-69, “Optimization of the polymerase chain reaction with regard to fidelity: modified T7, Taq, and Vent DNA polymerases.”]

8.9×10−5 errors/bp [Cariello, N. F., Swenberg, J. A., and Skopek, T. R. (1991) Nucleic Acids Res 19(15), p4193-4198, “Fidelity of Thermococcus Litoralis DNA Polymerase (Vent) in PCR determined by denaturing gradient gel electrophoresis.”]

2.0×10−5 errors/bp [Lundberg, K. S., Shoemaker, D. D., Adams, M. W., Short, J. M., Sorge, J. A., and Mathur, E. J. (1991) Gene 108(1), p1-6, “High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus.”]

1.1×10−4 errors/bp [Barnes, W. M. (1992) Gene 112(1), p29-35, “The Fidelity of Taq polymerase catalyzing PCR is improved by an N-terminal deletion.”]

2. KlenTaq (Thermus aquaticus, N-terminal deletion mutant)

5.1×10−5 errors/bp [Barnes, W. M. (1992) Gene 112(1), p29-35, “The Fidelity of Taq polymerase catalyzing PCR is improved by an N-terminal deletion.”]

3. Vent (Thermococcus litoralis)

2.4×10−5 errors/bp [Cariello, N. F., Swenberg, J. A., and Skopek, T. R. (1991) Nucleic Acids Res 19(15), p4193-4198, “Fidelity of Thermococcus Litoralis DNA Polymerase (Vent) in PCR determined by denaturing gradient gel electrophoresis.”]

4.5×10−5 errors/bp [Ling, L. L., Keohavong, P., Dias, C., and Thilly, W. G. (1991) PCR Methods Appl 1(1) p63-69, “Optimization of the polymerase chain reaction with regard to fidelity: modified T7, Taq, and Vent DNA polymerases.”]

5.7×10−5 errors/bp [Matilla, P., Korpela, J., Tenkanen, T., and Pitkanen, K. (1991) Nucleic Acids Res 19(18), p4967-4973, “Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase—an extremely heat stable enzyme with proofreading activity.”]

4. Vent(exo-) (Thermococcus litoralis)

1.9×10−4 errors/bp [Matilla et al., Id.]

5. Deep Vent (Pyrococcus species GB-D)

No published literature. New England Biolabs claims fidelity is equal to or greater than that of Vent.

6. Deep Vent(exo-)

No published literature.

7. Pfu (Pyrococcus furiosus)

1.6×10−6 errors/base [Lundberg, K. S., Shoemaker, D. D., Adams, M. W., Short, J. M., Sorge, J. A., and Mathur, E. J. (1991) Gene 108(1), p1-6, “High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus.”]

8. Replinase (Thermus flavis)

1.03×10−4 errors/base [Matilla, P., Korpela, J., Tenkanen, T., and Pitkanen, K. (1991) Nucleic Acids Res 19(18), p4967-4973, “Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase—an extremely heat stable enzyme with proofreading activity.”]

In one aspect, the present invention contemplates a method for replicating and amplifying a target nucleic acid sequence comprising reacting a primer that is complementary to a target sequence within a nucleic acid duplex with the nucleic acid duplex in the presence of a recombination factor to form a recombination intermediate, without previously denaturing the nucleic acid duplex. The recombination intermediate so formed is then admixed with a polymerase to form a polymerase complex, whereby the polymerase replicates the target sequence. Preferably, the polymerase is a polymerase holoenzyme. More preferably, the polymerase holoenzyme comprises a polymerase enzyme, a clamp protein, and a clamp loader protein. Although other sources and materials can be used, it is preferred that the recombination factor, the polymerase, the clamp protein and clamp loader be obtained from bacteriophage T4. Thus, the recombination factor is preferably bacteriophage T4 UvsX protein, the polymerase is preferably bacteriophage T4 gene product (gp) 43 polymerase, the clamp protein is preferably bacteriophage T4 gp 45 clamp protein and the clamp loader is preferably bacteriophage T4 gp44/gp 62 clamp loader complex.

In one preferred embodiment, the primer is designed to anneal at complimentary sites flanking the target nucleic acid sequence. In a further preferred embodiment, the polymerase holoenzyme complex comprises a viral, bacteriophage, eukaryotic, archaebacterial, or prokaryotic polymerase holoenzyme complex. Preferably, the bacteriophage is T4, and the holoenzyme complex includes the gene product 43 polymerase. Preferably, the bacteriophage is T4, and the holoenzyme complex includes the gene product 45 clamp protein.

In a further aspect, a contemplated method uses a single stranded binding protein to facilitate downstream strand displacement synthesis by the polymerase holoenzyme complex. The single stranded protein is preferably gene product 32 from the T4 bacteriophage system.

In yet another aspect, a contemplated method uses a single stranded binding protein to destabilize the helix at or near the point of the primer template junction.

In a still further aspect, the present invention contemplates a method for reproducing and amplifying a target nucleic acid sequence at a temperature below about 45° Celsius and comprises catalytically inserting a primer into the target nucleic acid sequence without previously denaturing the duplex in whole or in part to form a recombination intermediate. The recombination intermediate so formed is then admixed with a polymerase to form a polymerase complex, whereby the polymerase replicates the target nucleic acid sequence. The primer is preferably pretreated with single stranded nucleic acid binding protein. It is also preferred that the primer be pretreated with a recombination factor. A preferred recombination factor is bacteriophage T4 UvsX. A preferred polymerase is gene product 43 DNA polymerase from the bacteriophage T4.

In a further aspect, an above-contemplated method uses a helicase to facilitate replication by the polymerase. A preferred helicase is bacteriophage T4 gene product 41 DNA helicase. A further preferred helicase is bacteriophage T4 replicative helicase complex, comprising bacteriophage T4 gp 41 and gp 59.

In another aspect, a contemplated method uses an accessory factor to stabilize the recombination factor. A preferred accessory factor is bacteriophage T4 UvsY. In a still further aspect, a contemplated method uses a combination of a helicase and an accessory factor. A preferred helicase is bacteriophage T4 gp41. A preferred accessory factor is bacteriophage T4 UvsY.

In yet another aspect, the present invention contemplates a method of creating a library of nucleic acid sequences. This method comprises incubating a first double-stranded nucleic acid with an enzyme with exonuclease activity to form a plurality of single stranded DNA regions having random sizes. This plurality of single stranded DNA regions is treated with a recombination factor to form a plurality of pretreated single stranded DNA regions. A second double-stranded nucleic acid is then added to the plurality of pretreated single stranded DNA regions to form a plurality of three stranded crossover junctions. The plurality of three stranded crossover junctions is incubated with a helicase to form a plurality of Holliday junctions. The plurality of Holliday junctions so formed is resolved by incubation with an endonuclease. Preferably, the recombination factor is bacteriophage T4 UvsX. Preferably, the helicase is bacteriophage T4 gene products 41 and 59. A further preferred helicase is bacteriophage T4 UvsW. A preferred endonuclease is bacteriophage T4 gp 49.

In the drawings forming a portion of this disclosure:

FIG. 1 depicts polymerase holoenzyme complex formation at a recombination D-loop.

FIG. 2 depicts a gene amplification system using a method of the invention.

FIG. 3 depicts creation of a library of novel recombinant nucleic acid sequences using a method of the invention.

FIG. 4 depicts an ethidium bromide-stained agarose gel after electrophoretic resolution of reaction products of an essay discussed hereinafter. The lanes of the ethidium bromide-stained gel are as indicated in the figure.

A. Basic Replication and Amplification Process

In one aspect, a process of the invention comprises treating a nucleic acid, such as RNA or DNA, with an oligonucleotide primer, which primer is complementary to a predetermined target sequence within that nucleic acid. Preferably, the nucleic acid is double stranded, such as in the form of a DNA heteroduplex. A process of the invention contemplates reacting separate complementary strands of a nucleic acid heteroduplex with a molar excess of two oligonucleotide primers. Significantly, this treatment does not require the prior denaturation of the complementary strands of the nucleic acid heteroduplex. Rather, the hybridization of the primer with its target sequence is mediated by a recombination factor. The recombination factor functions to form a recombination intermediate. An exemplary recombination intermediate is a D-loop structure between the primer and the complementary strands of the nucleic acid heteroduplex. The recombination factor can be used to pre-treat the primer at temperatures below 90° C., more preferably below 45° C., and most preferably at 37° C.

A preferred recombination factor is the bacteriophage T4 UvsX gene product. A recombination factors, such as UvsX, can require additional components, such as ATP, in order to optimally function. The bacteriophage T4 UvsX protein functions to facilitate formation of a presynaptic filament capable of undergoing homologous pairing (See FIG. 1). When mixed with the target nucleic acid, the resultant recombination intermediates, positioned at opposite ends of the target nucleic acid, can serve as sites for attachment of a polymerase. A preferred polymerase is a polymerase holoenzyme. Preferably, the polymerase holoenzyme is the polymerase holoenzyme of bacteriophage T4.

The formation of the bacteriophage T4 polymerase holoenzyme complex is shown in FIG. 2. This polymerase holoenzyme complex includes the gene product (gp) 43 DNA polymerase, the gene product 45 clamp protein, and the gene products 44 and 62, which together facilitate association of the gene 45 clamp with the gene product 43 polymerase explicitly at the recombination intermediate primer/template junction (See FIG. 2).

The gene product 32 single-stranded binding protein is added to facilitate strand displacement synthesis by the polymerase holoenzyme complex (See FIG. 2). The addition of accessory factors to stabilize the recombination factor is also contemplated. For example, the bacteriophage UvsY protein, a UvsX protein accessory factor, serves to stabilize the initial presynaptic filament permitting the introduction of the bacteriophage T4 replicative helicase complex, the products of the genes 41 and 59. An intact replication fork is thus assembled which can extend the range of site specific nucleic acid amplification beyond what can be expected using available thermostable polymerases alone during a thermocycle.

In some embodiments of a method of the invention, a polymerase with high fidelity and high processivity is used, namely bacteriophage T4 gp 43 DNA polymerase. This polymerase has been shown to have an accuracy in replication that is orders of magnitude greater than those polymerases commonly associated with PCR, and with the PCR technique. This polymerase has a built in proofreading/editing function which, when used in connection with a self contained DNA duplication process, significantly increases the accuracy of that duplication process.

Not only does this increase in processivity produce a more accurate duplicate, it enhances the ability of the technique to accurately replicate target nucleic acids with many thousands of base pairs. Homologous polymerase holoenzymes are found in other species, such as the DNA polymerase III found in prokaryotic systems, and DNA polymerase delta and epsilon holoenzymes in eukaryotic systems.

In other embodiments of a method of the invention, use of a holoenzyme complex, a gene clamp, and a helicase complex, enables polymerase to efficiently operate along much longer nucleic acid sequences than can predictably be duplicated with existing PCR technologies. In a further aspect, the present invention contemplates a method for reproducing and amplifying a target nucleic acid sequence at a temperature below about 45° Celsius and comprises catalytically inserting a primer into the target nucleic acid sequence without previously denaturing the duplex in whole or in part to form a recombination intermediate. The entire duplication and amplification process can occur at temperatures below about 90° C., more preferably below about 45° C., and most preferably at about 37° C., due to the catalytic nature of the involved processes. Because no thermostable enzymes are required, the problems associated with magnesium chloride solutions and their concentrations are avoided. Similarly, the use of mineral oil is eliminated.

Because the present invention is based upon the creation of a recombination intermediate, such as a D-loop, without previously denaturing the duplex, and can be conducted at temperatures of about 37° C., it eliminates the extraneous and undesirable/nonspecific annealing that occurs along the length of the denatured duplex, and eliminates issues of having the wrong primer concentrations, programming difficulties with PCR machines, and having excessive or insufficient templates.

Avoiding these problems commonly associated with PCR further augments the capability of a process of the invention to replicate and amplify with greater fidelity and processivity.

The recombination intermediate so formed is then admixed with a polymerase to form a polymerase complex, whereby the polymerase replicates the target nucleic acid sequence. The primer is preferably pretreated with single stranded nucleic acid binding protein. It is also preferred that the primer be pretreated with a recombination factor. A preferred recombination factor is bacteriophage T4 UvsX. A preferred polymerase is gene product 43 DNA polymerase from the bacteriophage T4.

As is understood by one of ordinary skill in the art, the replication and amplification of a target nucleic acid sequence by a polymerase requires the presence of nucleotide triphosphates in concentrations sufficient to permit elongation of the nascent copies. In addition, the concentrations of the other components of a method of the invention can readily be determined by one of ordinary skill in the art, based upon empirical determinations as well as the examples that follow.

Moreover, as is well understood by one of ordinary skill in the art, a method of the present invention permits additional rounds, or cycles, of replication of a target nucleic acid sequence, by virtue of the re-initiation of a method of the invention. As such, not only is a target nucleic acid sequence copied or replicated, it is amplified as a result of the repetition of a method of the invention. While not wishing to be bound by theory, it is believed that the presence of a molar excess of a primer in embodiments of the invention permits the repeated formation of a recombination intermediate and subsequent replication of a nucleic acid target. In this sense, the present invention provides an alternative to the target amplification of PCR.

B. Use of Process to Create Libraries

In addition to specific nucleic acid amplification, a process of the invention contemplates the use of the bacteriophage T4 presynaptic filament (gene products of the UvsX, UvsY, and gp32 genes) to promote the recombination of different nucleic acid sequences to produce a protein with desired novel functional characteristics. This method comprises incubating a first double-stranded nucleic acid with an enzyme having exonuclease activity to form a plurality of single stranded DNA regions having random sizes. The exonuclease treatment is performed under conditions that would randomize the size and distribution of the resultant single stranded DNA region.

This plurality of single stranded DNA regions is treated with a recombination factor to form a plurality of pretreated single stranded DNA regions. For example, in a preferred embodiment, in the presence of the bacteriophage T4 UvsX and UvsY gene products and a second undigested target nucleic acid sequence, an initial three stranded crossover reaction occurs in a random manner as dictated by the distribution of the exonuclease digestion of the first nucleic acid upon which the presynaptic filament is formed.

A second double-stranded nucleic acid is then added to the plurality of pretreated single stranded DNA regions to form a plurality of three stranded crossover junctions. The plurality of three stranded crossover junctions is incubated with a helicase to form a plurality of Holliday junctions. The plurality of Holliday junctions so formed is resolved by incubation with an endonuclease. Preferably, the recombination factor is bacteriophage T4 UvsX. Preferably, the helicase is bacteriophage T4 gene products 41 and 59. A further preferred helicase is bacteriophage T4 UvsW. A preferred endonuclease is bacteriophage T4 gp 49.

Upon addition of helicase activity derived from the products of genes 41 and 59, branch migration extends regions of heteroduplex DNA beyond regions of non- or partial homology. The final products of the reaction can be resolved with the bacteriophage gene product 49 protein, an endonuclease that will specifically recognize and cleave recombination crossover junctions (Holliday junctions) (See FIG. 3).

Enzymes from other species can be used in a contemplated method of the invention, in addition to enzymes from the bacteriophage T4 system. For example, enzymes from E. coli, including RecA, RecF, RecO, RecR, RuvA, RuvB, RecG, and RuvC, can be used. A recombination factor useful in some embodiments of a method of the invention includes the UvsX protein from bacteriophage T4, the RecA protein from E. coli, and the Rad51 protein from yeast, as well as Rad51 homologs from other eukaryotic species. An accessory factor useful in some embodiments of a method of the invention includes the UvsY protein from bacteriophage T4, the Rec F, O and R proteins from E. coli, and the Rad52 protein from yeast, as well as Rad52 homologs from other eukaryotic species.

In addition to the bacteriophage T4 polymerase, clamp and clamp loading complex, the DNA polymerase III holoenzyme, the beta-clamp clamp and the gamma-complex clamp loading complex from prokaryotic species can be used in a method of the invention. Still further, the DNA polymerase delta and epsilon holoenzymes, the PCNA clamp, and the replication factor C complex clamp loading complex from eukaryotic species can be used in a method of the invention.

Homologous recombination directed nucleic acid amplification of closed circular plasmid DNA using the T4 holoenzyme complex and the T4 homologous recombination proteins UvsX and gene product 32 were performed as follows. Oligonucleotide primers were designed to amplify a 3220 base pair fragment from M13mp18 plasmid DNA as follows:

1940- 5′TGATACACCTATTCCGGGCTATACTTATAT-3′ (SEQ ID. NO. 1)
and
5160 5′-CGCTCAATCGTCTGAAATGGATTATTTACATTGGCAGATT-3′. (SEQ ID. NO. 2)

These primers were used for the amplification of a 3220 base pair fragment from closed circular M13mp18 plasmid DNA. Reaction conditions were set up to facilitate the assembly of the polymerase holoenzyme, including bacteriophage T4 gene products 43, 45, and 44/62, on recombination intermediates formed by the action of bacteriophage T4 UvsX protein. The concentration of double stranded closed circular M13mp18 plasmid DNA was set at 10 micrograms per milliliter (2.1 nanomolar as nucleotides). Both oligonucleotides, 1940 (SEQ ID NO. 1) and 5160 (SEQ ID NO. 2), were used at a concentration of 210 nanomolar (as molecules). The concentration of UvsX was present to ensure about 50% coverage of the 40mer oligonucleotide primers (UvsX monomer/4 base site size). The concentration of ATP was set at 2 millimolar during the D-loop reaction, and an ATP regeneration system was employed consisting of phosphocreatine kinase and phosphoenol pyruvate. The gene product (gp) 32 single stranded protein was present at 25 micromolar. The holoenzyme was constructed using 1 micromolar gp43 (polymerase), 1 micromolar gp45 (as trimers, sliding clamp) and 500 nanomolar gp44/62 complex (ATP dependent clamp loader). The deoxyribonucleotides were present at 3 millimolar.

The reaction order was designed to allow for the initial formation of a recombination intermediate, or D-loop, followed by the formation of a polymerase holoenzyme complex. The M13mp18 closed circular double stranded DNA template was first incubated in holoenzyme complex formation buffer (20 millimolar Tris (pH7.5), 150 millimolar KOAc, 10 millimolar Mg(OAc)2) in the presence of the primers, 2 millimolar ATP, phosphoenol pyruvate and pyruvate kinase.

Homologous pairing, or D-loop formation, was then initiated by the addition of the T4 UvsX strand tranferase protein. After 2 minutes at 37° C., an additional 1 millimolar ATP, 3 millimolar deoxyribonucleotide mix, gp 32 single stranded binding protein and the gp43 polymerase and the gp45 and gp44/62 accessory factors were added to initiate polymerase holoenzyme formation at recombination intermediates and initiate strand displacement DNA synthesis. At 10, 20 and 30 minutes aliquots of the reaction mix were removed and quenched with SDS and EDTA followed by heating to 60° C. for 10 minutes. The reactions were then loaded onto a 1.0% TBE agarose gel and visualized using ethidium bromide (FIG. 4).

The gels show that the 3220 base pair fragment from M13mp18 plasmid DNA is replicated and amplified.

Homologous recombination directed nucleic acid amplification of linear plasmid DNA using the T4 holoenzyme complex and the T4 homologous recombination proteins UvsX and gene product 32. M13mp18 double stranded closed circular plasmid DNA was made linear by digestion with the BamH1 restriction endonuclease. 10 micrograms M13mp18 and the BamH1 restriction endonuclease were incubated at 37° C. using standard buffer conditions for 2 hours followed by phenol/chloroform extraction and passage through two G-25 spin columns (FIG. 4). Reaction conditions were as described for Example 1. The results show that the nucleic acid target fragment from M13mp18 plasmid DNA is replicated and amplified.

Each of the patents and articles cited herein is incorporated by reference. The use of the article “a” or “an” is intended to include one or more.

The foregoing description and the examples are intended as illustrative and are not to be taken as limiting. Still other variations within the spirit and scope of this invention are possible and will readily present themselves to those skilled in the art.

Benkovic, Stephen J., Salinas, Frank

Patent Priority Assignee Title
10000781, Apr 20 2001 The Penn State Research Foundation Methods for nucleic acid manipulation
10017803, Apr 20 2001 The Penn State Research Foundation Methods for nucleic acid manipulation
10036057, Jun 01 2004 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification
10093908, May 04 2006 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification
10113195, Dec 17 2010 LIFE TCHNOLOGIES CORPORATION; Life Technologies Corporation Nucleic acid amplification
10195606, Mar 11 2013 SIRO DIAGNOSTICS, INC Systems and methods for detection and quantification of analytes
10233488, Dec 17 2010 Life Technologies Corporation Clonal amplification of nucleic acid on solid surface with template walking
10266891, Jun 08 2012 Illumina, Inc. Polymer coatings
10272434, Jul 17 2015 SIRO DIAGNOSTICS, INC Cartridges, kits, and methods for amplification and detection of analytes
10329544, May 13 2009 Life Technologies Corporation Nucleic acid amplification
10329602, Feb 21 2002 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification
10329603, Feb 21 2002 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification
10385384, Jun 15 2012 Illumina, Inc. Kinetic exclusion amplification of nucleic acid libraries
10538760, Jul 25 2005 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Methods for multiplexing recombinase polymerase amplification
10545161, Mar 11 2013 SIRO DIAGNOSTICS, INC Systems and methods for detection and quantification of analytes
10589267, Mar 11 2013 SIRO DIAGNOSTICS, INC System for portable and easy-to-use detection of analytes with mobile computing device
10603664, Jul 17 2015 SIRO DIAGNOSTICS, INC Cartridges, kits, and methods for amplification and detection of analytes
10668444, Feb 26 2013 Illumina, Inc. Gel patterned surfaces
10851406, Jul 14 2007 IONIAN TECHNOLOGIES, LLC Nicking and extension amplification reaction for the exponential amplification of nucleic acids
10858695, Dec 17 2010 Life Technologies Corporation Nucleic acid amplification
10913976, Dec 17 2010 Life Technologies Corporation Methods, compositions, systems, apparatuses and kits for nucleic acid amplification
10947584, Feb 21 2002 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification
10954561, Jun 08 2012 Illumina, Inc. Polymer coatings
11001815, Dec 17 2010 Life Technologies Corporation Nucleic acid amplification
11059045, Jul 17 2015 SIRO DIAGNOSTICS, INC Cartridges, kits, and methods for enhanced detection and quantification of analytes
11154866, Jul 17 2015 SIRO DIAGNOSTICS, INC Systems and methods for facilitating fluid flow during enhanced detection and quantification of analytes
11173466, Feb 26 2013 Illumina, Inc. Gel patterned surfaces
11237161, Jan 25 2017 SIRO DIAGNOSTICS, INC Systems and methods for enhanced detection and quantification of analytes
11254976, Jun 15 2012 Illumina, Inc. Kinetic exclusion amplification of nucleic acid libraries
11339382, May 04 2006 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification
11566244, Jul 25 2005 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Methods for multiplexing recombinase polymerase amplification
11578360, Dec 17 2010 Life Technologies Corporation Methods, compositions, systems, apparatuses and kits for nucleic acid amplification
11702694, Jun 08 2012 Illumina, Inc. Polymer coatings
11717822, Mar 11 2013 SIRO DIAGNOSTICS, INC System for portable and easy-to-use detection of analytes with mobile computing device
11725195, Dec 17 2010 Life Technologies Corporation Nucleic acid amplification
11845078, Mar 11 2013 SIRO DIAGNOSTICS, INC Systems and methods for detection and quantification of analytes
12053780, Jul 17 2015 SIRO DIAGNOSTICS, INC Systems and methods for facilitating fluid flow during enhanced detection and quantification of analytes
12060609, Jun 08 2012 Illumina, Inc. Polymer coatings
7270981, Feb 21 2002 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification
7399590, Feb 21 2002 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification
7435561, Jul 25 2005 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Methods for multiplexing recombinase polymerase amplification
7485428, Feb 21 2002 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification
7666598, Feb 21 2002 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification
7763427, Feb 21 2002 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Detection of recombinase polymerase amplification products
8017339, Feb 21 2002 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Compositions and kits for recombinase polymerase amplification
8030000, Feb 21 2002 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification
8062850, Jul 25 2005 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Methods for multiplexing recombinase polymerase amplification
8071308, May 04 2006 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification
8426134, Feb 21 2002 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification
8460875, Feb 21 2002 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification
8574846, Feb 21 2002 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification
8580507, Jul 25 2005 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Methods for multiplexing recombinase polymerase amplification
8637243, Apr 20 2001 The Penn State Research Foundation Methods for nucleic acid manipulation
8637250, Feb 22 2008 VELA DIAGNOSTICS HOLDING PTE LTD Systems and methods for point-of-care amplification and detection of polynucleotides
8637253, May 04 2006 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification
8673561, Apr 20 2001 The Penn State Research Foundation Methods for nucleic acid manipulation
8759000, Apr 20 2001 The Penn State Research Foundation Methods for nucleic acid manipulation
8765374, Apr 20 2001 The Penn State Research Foundation Methods for nucleic acid manipulation
8809021, Apr 07 2011 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Monitoring recombinase polymerase amplification mixtures
8895249, Jun 15 2012 ILLUMINA, INC Kinetic exclusion amplification of nucleic acid libraries
8945845, Feb 21 2002 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification
8962255, Feb 21 2002 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification
9012022, Jun 08 2012 ILLUMINA, INC Polymer coatings
9057097, Jun 05 2009 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification reagents and kits
9157127, Apr 07 2011 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Monitoring recombinase polymerase amplification mixtures
9169513, Jun 15 2012 Illumina, Inc. Kinetic exclusion amplification of nucleic acid libraries
9309502, Feb 21 2002 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification
9309557, Dec 17 2010 Life Technologies Corporation Nucleic acid amplification
9309558, Dec 17 2010 Life Technologies Corporation Nucleic acid amplification
9309566, Dec 17 2010 Life Technologies Corporation Methods, compositions, systems, apparatuses and kits for nucleic acid amplification
9322057, Apr 20 2001 The Penn State Research Foundation Methods for nucleic acid manipulation
9322058, Apr 20 2001 The Penn State Research Foundation Methods for nucleic acid manipulation
9322059, Apr 20 2001 The Penn State Research Foundation Methods for nucleic acid manipulation
9334531, Dec 17 2010 Life Technologies Corporation Nucleic acid amplification
9340825, Feb 21 2002 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Compositions for recombinase polymerase amplification
9371557, Dec 17 2010 Life Technologies Corporation Nucleic acid amplification
9469867, May 20 2009 ABBOTT DIAGNOSTICS SCARBOROUGH, INC DNA glycosylase/lyase and AP endonuclease substrates
9476080, Dec 17 2010 Life Technologies Corporation Clonal amplification of nucleic acid on solid surface with template walking
9512422, Feb 26 2013 ILLUMINA, INC Gel patterned surfaces
9562250, Apr 20 2001 The Penn State Research Foundation Methods for nucleic acid manipulation
9562263, Jul 14 2007 HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR ADMINISTRATIVE AGENT Nicking and extension amplification reaction for the exponential amplification of nucleic acids
9562264, Jul 14 2007 HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR ADMINISTRATIVE AGENT Nicking and extension amplification reaction for the exponential amplification of nucleic acids
9617586, Jul 14 2007 HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR ADMINISTRATIVE AGENT Nicking and extension amplification reaction for the exponential amplification of nucleic acids
9623409, Mar 11 2013 SIRO DIAGNOSTICS, INC Cartridges, kits, and methods for enhanced mixing for detection and quantification of analytes
9663820, Feb 21 2002 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Recombinase polymerase amplification
9689031, Jul 14 2007 HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR ADMINISTRATIVE AGENT Nicking and extension amplification reaction for the exponential amplification of nucleic acids
9718058, Jul 17 2015 SIRO DIAGNOSTICS, INC Cartridges, kits, and methods for enhanced detection and quantification of analytes
9719132, Apr 07 2011 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Monitoring recombinase polymerase amplification mixtures
9724691, Jul 17 2015 SIRO DIAGNOSTICS, INC Cartridges, kits, and methods for enhanced detection and quantification of analytes
9752186, Jun 08 2012 Illumina, Inc. Polymer coatings
9758816, Jun 15 2012 Illumina, Inc. Kinetic exclusion amplification of nucleic acid libraries
9808804, Jul 17 2015 SIRO DIAGNOSTICS, INC Cartridges, collectors, kits, and methods for enhanced detection and quantification of analytes in collected fluid samples
9896719, May 20 2009 ABBOTT DIAGNOSTICS SCARBOROUGH, INC DNA glycosylase/lyase and AP endonuclease substrates
9932577, Jul 25 2005 ABBOTT DIAGNOSTICS SCARBOROUGH, INC Methods for multiplexing recombinase polymerase amplification
9962703, Mar 11 2013 SIRO DIAGNOSTICS, INC Cartridges, kits, and methods for amplification and detection of analytes
9999889, Jul 17 2015 SIRO DIAGNOSTICS, INC Cartridges, kits, and methods for enhanced detection and quantification of analytes
D789815, May 12 2014 SIRO DIAGNOSTICS, INC Reader of an analyte detection system
D820130, May 12 2014 SIRO DIAGNOSTICS, INC Analyte detection system
D869311, May 12 2014 SIRO DIAGNOSTICS, INC Analyte detection system
D891959, May 12 2014 SIRO DIAGNOSTICS, INC Analyte detection system
D909600, Jul 16 2016 SIRO DIAGNOSTICS, INC Sample collection device of an analyte detection system
D951789, May 12 2014 SIRO DIAGNOSTICS, INC Reader device for an analyte detection system
ER1307,
ER1428,
ER4878,
Patent Priority Assignee Title
5223414, May 07 1990 SRI INTERNATIONAL, A CORP OF CA Process for nucleic acid hybridization and amplification
5668004, Jan 24 1992 Cornell Research Foundation, Inc DNA polymerase III holoenzyme from Escherichia coli
5945312, Apr 15 1996 University of Southern California; University of Alberta Synthesis of fluorophore-labeled DNA
5945339, Jan 17 1995 Cornell Research Foundation, Inc.; Thomas Jefferson University Methods to promote homologous recombination in eukaryotic cells and organisms
6699693, Feb 04 1999 Sloan-Kettering Institute for Cancer Research Process for DNA replication
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 19 2002The Penn State Research Foundation(assignment on the face of the patent)
Jun 10 2002SALINAS, FRANKPENN STATE RESEARCH FOUNDATION, THEASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0130550347 pdf
Jun 21 2002BENKOVIC, STEPHEN J PENN STATE RESEARCH FOUNDATION, THEASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0130550347 pdf
Mar 15 2012The Pennsylvania State UniversityNATIONAL INSTITUTES OF HEALTH NIH , U S DEPT OF HEALTH AND HUMAN SERVICES DHHS , U S GOVERNMENTCONFIRMATORY LICENSE SEE DOCUMENT FOR DETAILS 0278890994 pdf
Date Maintenance Fee Events
Sep 15 2008M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Jan 25 2013M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jan 28 2013STOL: Pat Hldr no Longer Claims Small Ent Stat
Sep 30 2013M1559: Payment of Maintenance Fee under 1.28(c).
Oct 06 2016M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Aug 16 20084 years fee payment window open
Feb 16 20096 months grace period start (w surcharge)
Aug 16 2009patent expiry (for year 4)
Aug 16 20112 years to revive unintentionally abandoned end. (for year 4)
Aug 16 20128 years fee payment window open
Feb 16 20136 months grace period start (w surcharge)
Aug 16 2013patent expiry (for year 8)
Aug 16 20152 years to revive unintentionally abandoned end. (for year 8)
Aug 16 201612 years fee payment window open
Feb 16 20176 months grace period start (w surcharge)
Aug 16 2017patent expiry (for year 12)
Aug 16 20192 years to revive unintentionally abandoned end. (for year 12)