A clutch, which is applicable to the applications where an electromagnetic clutch is conventionally used, is provided in order to realize the reduction of the clutch in size, weight and cost and the power saving of the clutch. A clutch according to the present invention includes: an input gear to which a rotational torque is input; a clutch member attached to an inner circumferential face of the input gear; a tapered roller acting as an engaging element; a retainer for holding the tapered roller; a cap member; a waved spring; an output shaft serving as a driven member; a housing for sheathing the input gear; a working member equipped with an operating lever; and a return spring serving as an elastic return member, for elastically supporting the working member. With a simple operation of pivoting the operating lever of the working member, the clutch can be easily switched between a state where the tapered roller is engaged in a wedgewise manner so as to drive and rotate the output shaft and a state where the wedge engagement of the tapered roller is cancelled to freely rotate the output shaft.
|
1. A clutch comprising: an input member to which a rotational torque is input:
a driven member; and
an engaging element enabling wedge engagement in a circumferential direction between the input member and the driven member, the engaging element being provided in an engaging element housing space formed between the input member and the driven member,
wherein the rotational torque is transmitted from the input member to the driven member when the engaging element is engaged in a wedgewise manner in the circumferential direction between the input member and the driven member, and
an engagement portion where the engaging element enables the wedge engagement is provided on one side of the engaging element housing space in an axial direction, whereas a disengagement portion where the wedge engagement of the engaging element is cancelled is provided on the opposite side, and operation means for moving the engaging element in the axial direction between the engagement portion and the disengagement portion is provided,
wherein the engaging element is a tapered roller, and a retainer for holding the tapered roller is provided between the input member and the driven member so as to be movable in the axial direction, and
the engaging element housing space is formed between the input member and the driven member so as to be narrowed on one side in the axial direction and to be gradually enlarged toward the opposite side, and the engagement portion where the tapered roller is engageable in the circumferential direction is provided on the narrower side of the engaging element housing space whereas the disengagement portion where the wedge engagement of the tapered roller is cancelled is provided on the larger side,
wherein the tapered roller is provided so that a minor diameter end of the tapered roller is oriented toward the narrower side of the engaging element housing space while the operation means moves the tapered roller forward and backward in the axial direction along with the retainer, and
wherein the retainer has a notch for allowing elastic deformation of the retainer in the circumferential direction on its one end.
2. A clutch comprising:
an input member to which a rotational torque is input;
a driven member; and
an engaging element enabling wedge engagement in a circumferential direction between the input member and the driven member, the engaging element being provided in an engaging element housing space formed between the input member and the driven member,
wherein the rotational torque is transmitted from the input member to the driven member when the engaging element is engaged in a wedgewise manner in the circumferential direction between the input member and the driven member, and
an engagement portion where the engaging element enables the wedge engagement is provided on one side of the engaging element housing space in an axial direction, whereas a disengagement portion where the wedge engagement of the engaging element is cancelled is provided on the opposite side, and operation means for moving the engaging element in the axial direction between the engagement portion and the disengagement portion is provided,
wherein the engaging element is a tapered roller, and a retainer for holding the tapered roller is provided between the input member and the driven member so as to be movable in the axial direction, and
the engaging element housing space is formed between the input member and the driven member so as to be narrowed on one side in the axial direction and to be gradually enlarged toward the opposite side, and the engagement portion where the tapered roller is engageable in the circumferential direction is provided on the narrower side of the engaging element housing space whereas the disengagement portion where the wedge engagement of the tapered roller is cancelled is provided on the larger side,
wherein the tapered roller is provided so that a minor diameter end of the tapered roller is oriented toward the narrower side of the engaging element housing space while the operation means moves the tapered roller forward and backward in the axial direction along with the retainer, and
wherein a clutch member engaged with any one of the input member and the driven member in the circumferential direction is provided, and a cam face, with which the tapered roller is engaged in a wedgewise manner in the circumferential direction, is provided for the clutch member.
3. The clutch according to
4. The clutch according to any one of
5. The clutch according to
6. The clutch according to
a working member having a pressing portion provided so as to be opposed to a peripheral edge portion of the retainer on a minor diameter side of the tapered roller in the axial direction;
a stationary member being relatively stationary with respect to the engaging element housing space in the axial direction;
a cam mechanism for moving the working member in the axial direction to push and move the tapered roller by the pressing portion along with the retainer when the working member is relatively pivoted in a predetermined direction with respect to the stationary member; and
an operating portion for pivoting the working member.
7. The clutch according to
8. The clutch according to
9. The clutch according to
|
1. Field of the Invention
The present invention relates to a clutch including an engaging element enabling the wedge engagement in the circumferential direction between an input member to which a rotational torque is input and a driven member. An operation state of the clutch is switchable between a state where the rotational torque is transmitted from the input member to the driven member and a state where the driven member freely rotates with respect to the input member. Such a clutch is applicable to, for example, a mechanism for switching an electrically-operated sliding door between an automatic opening/closing state and a manual opening/closing state.
2. Description of the Related Art
Conventionally, in an electrically-operated sliding door, the input of a rotational torque from a motor (driving device) drives a driving mechanism for a door in a forward/reverse rotation direction to open/close the door. In the case where the sliding door is to be manually opened/closed when a power switch is OFF or during a blackout, the door is too heavy to manually open/close because a rotor of the motor rotates along with the door movement. In order to overcome this inconvenience, there conventionally exists an electrically-operated sliding door including an electromagnetic clutch between a sliding door and a motor. When the electromagnetic clutch is turned OFF with the electromagnetic clutch being interposed between the sliding door and the motor, the door can be manually opened/closed with a small force because the connection between the door and the motor is cancelled. Moreover, such a sliding door is convenient because the sliding door is automatically switched to a manual opening/closing state in the case of emergency such as a blackout.
On the other hand, for a reclining seat, the inventors of the present invention have proposed a clutch for switching a seat back between a locked state and a free state by the operation of a lever, as a mechanism capable of adjusting the angle of the seat back in a stepless manner. In this clutch, an engaging element housing space is formed, which is gradually enlarged from one narrow side toward the opposite side in the axial direction between an inner ring connected to an operating lever and an outer ring connected to the seat back. In this engaging element housing space, the clutch includes an engaging element (tapered roller) that is engaged in the circumferential direction. The clutch operates to move the engaging element to the narrower side or the larger side of the engaging element housing space that is gradually enlarged in the axial direction so as to switch the seat back between the locked state and the free state (see Japanese Patent Laid-Open Publication No. 2001-140926, called as “Patent Reference 1” hereinafter).
Since the above-described electromagnetic clutch utilizes a frictional force obtained by (contact load due to electromagnetic force x friction coefficient), the electromagnetic clutch is increased in its size as well as in its mass in order to transmit a rotational torque without causing any slip. Therefore, in many cases, the electromagnetic clutch cannot meet the requirements of reduction in size and weight as well as in cost. Moreover, since the electromagnetic clutch is required to be always electrically conducted so as to maintain a torque transmission state, the electromagnetic clutch is disadvantage in its increased running cost.
On the other hand, the clutch, which has been proposed by the inventors of the present invention in the Patent Reference 1 regarding the reclining seat, has the function of switching the driven member between the locked state and the free state. However, the clutch disclosed in the Patent Reference 1 has been proposed supposing its application to the use where a large torque acts, such as to a reclining seat. On the contrary, in order to use this clutch for the electrically-operated sliding door, it is required to ensure sufficient rigidity of such a clutch to be used in a site that is subjected to a small rotational torque. At the same time, its fabrication cost is needed to be reduced. In order to solve these problems, various modifications should be further effected.
The present invention has an object of applying a clutch previously proposed by the inventors of the present invention for a reclining seat of a vehicle or the like to the applications where an electromagnetic clutch is conventionally used so as to realize the reduction of the clutch in size and weight as well as in cost and the power saving.
A clutch according to the present invention includes: an input member to which a rotational torque is input; a driven member which is driven to rotate in response to the rotational torque transmitted from the input member; and an engaging element enabling wedge engagement in the circumferential direction between the input member and the driven member, the engaging element being provided in an engaging element housing space formed between the input member and the driven member, wherein the rotational torque is transmitted from the input member to the driven member when the engaging element is engaged in a wedgewise manner in the circumferential direction between the input member and the driven member, and an engagement portion where the engaging element enables the wedge engagement is provided on one side of the engaging element housing space in the axial direction, whereas a disengagement portion where the wedge engagement of the engaging element is cancelled is provided on the opposite side, and operation means for moving the engaging element in the axial direction between the engagement portion and the disengagement portion is provided.
In this clutch, the driven member is driven to rotate when the engaging element is moved to the engagement portion of the engaging element housing space by the operation means, whereas the driven member freely rotates when the engaging element is moved to the disengagement portion of the engaging element housing space. This clutch can be reduced in size and weight as well as in cost as compared with an electromagnetic clutch. Moreover, since the clutch is not required to be always electrically conducted, this clutch is also advantageous in terms of power saving.
In the clutch according to the present invention, the engaging element is a tapered roller, and a retainer for holding the tapered roller is provided between the input member and the driven member so as to be movable in the axial direction. The engaging element housing space is formed between the input member and the driven member so as to be narrowed on one side in the axial direction and to be gradually enlarged toward the opposite side, and the engagement portion where the tapered roller is engageable in the circumferential direction is provided on the narrower side of the engaging element housing space whereas the disengagement portion where the wedge engagement of the tapered roller is cancelled is provided on the larger side. Further, the tapered roller is provided so that a minor diameter end of the tapered roller is oriented to the narrower side of the engaging element housing space while the operation means moves the tapered roller forward and backward in the axial direction along with the retainer.
In this case, a notch for allowing the elastic deformation of the retainer in the circumferential direction may be formed on one end of the retainer. With this structure, when the input rotational torque is to be transmitted or when the retainer is relatively moved in the axial direction, an internal stress generated in the retainer can be alleviated to prevent the retainer from being damaged.
Moreover, a clutch member engaged with any one of the input member and the driven member in the circumferential direction may be provided, and a cam face, with which the tapered roller is engaged in a wedgewise manner in the circumferential direction, may be provided for the clutch member. By thus providing the clutch member having an irregular-shaped cam face with which the tapered roller is engaged in a wedgewise manner as an independent member, the fabrication such as the formation of the cam face can be facilitated so as to reduce the cost.
Moreover, a guiding portion for guiding the retainer in the axial direction may be provided for the clutch member. With this structure, the retainer can be moved straight in the axial direction, thereby inhibiting the skew of the tapered roller and the like. As a result, an unexpected load can be prevented from being applied to the retainer.
Furthermore, the operation means can be constituted by: elastic energizing means for energizing the tapered roller toward the narrower side of the engaging element housing space along with the retainer; and disengaging means for moving the tapered roller toward the larger side of the engaging element housing space along with the retainer against the elastic energizing means so as to cancel the wedge engagement state of the tapered roller.
In this case, the elastic energizing means can be constituted, on the larger side of the engaging element housing space, by a spring member inserted between an inwardly-oriented or outwardly-operated flange provided for any one of the input member and the driven member and one end of the retainer. As the spring member, for example, a waved spring having a waved cross section is inserted so as to obtain the ensured pressing energizing function. In addition, the size can be compact with the use of the waved spring.
The disengaging means of the clutch according to the present invention, can be constituted by: a working member having a pressing portion provided so as to be opposed to a peripheral edge portion of the retainer on a minor diameter side of the tapered roller in the axial direction; a stationary member being relatively stationary with respect to the engaging element housing space in the axial direction; a cam mechanism for moving the working member in the axial direction to push and move the tapered roller by the pressing portion along with the retainer when the working member is relatively pivoted in a predetermined direction with respect to the stationary member; and an operating portion for pivoting the working member.
As the stationary member, a housing for rotatably sheathing the input member and the driven member through a bearing can be used.
Moreover, the clutch may include an elastic return member for storing an elastic force when the working member is relatively pivoted with respect to the stationary member and for separating the pressing portion of the working member from the engaging element when the working member is relatively pivoted in a reverse direction with respect to the stationary member.
The elastic return member can be constituted by a coil spring having one end tied to the working member and the other end tied to the stationary member. Such a coil spring may be attached to, for example, the housing serving as the stationary member so that its one end is tied to a lever portion of the working member and the other end is tied to the housing.
In the accompanying drawings:
FIG. 5(a) is a vertical sectional side view showing a state before the attachment of the cap member, and FIG. 5(b) is vertical sectional side view showing a state after the attachment of the cap member;
Hereinafter, a clutch according to one embodiment of the present invention will be described with reference to the accompanying drawings.
As shown in
As shown in
The clutch member 3 is an approximately cylindrical member having an outer diameter such that allows its attachment to the input gear 2 on its inner circumferential face. A plurality of engaging pieces 24, each extending in the axial direction, are provided at predetermined intervals in the circumferential direction on the peripheral edge portion of the clutch member 3 on its one side in the axial direction (on the peripheral edge portion on the left side in FIG. 2). Moreover, as shown in
The retainer 5 is an approximately cylindrical member having such an outer diameter that allows its attachment to the clutch member 3 on its inner circumferential face. The plurality of pockets 26 for housing the tapered roller 4 therein are formed in the retainer 5 at predetermined intervals in the circumferential direction. As shown in
Furthermore, as shown in
The cap member 6 serves to fix the retainer 5 and the clutch member 3 to the input gear 2. As shown in
As shown in
The clutch member 3, which is fitted into the input gear 2 and is prevented from dropping out with the cap member 6 in the above described manner, has the engaging pieces 24 that are engaged with the concave portions 22 of the input gear 2 in the circumferential direction. Accordingly, the clutch member 3 rotates cooperatively with the input gear 2. Moreover, since the engaging convex portions 27 of the retainer 5 are engaged with the engaging pieces 24 of the clutch member 3 in the circumferential direction, the retainer 5 rotates cooperatively with the clutch member 3 and the input gear 2. At the same time, the retainer 5 is guided by the engaging pieces 24 of the clutch member 3 so as to be slidable in the axial direction. In this manner, the engaging pieces 24 of the clutch member 3 have the function as a guiding section, that is, the function of guiding the retainer 5 in the axial direction.
The retainer 5 is fitted into the input gear 2 while the tapered roller 4 is being attached to the retainer 5 using an attachment tool, although the attachment tool is not shown in FIG. 2. When the input gear 2, the clutch member 3, the retainer 5, and the tapered roller 4 are to be assembled, a waved spring 7 is inserted between the flange portion 21 of the input gear 2 and the engaging convex portions 27 of the retainer 5 as shown in FIGS. 5(a) and 5(b).
The output shaft 8 has a tapered portion 41 that is enlarged in the axial direction, on the outer circumferential face of its middle portion, as shown in
The assembly of the input gear 2, the clutch member 3, the retainer 5, and the tapered roller 4 shown in FIG. 5(b) is attached to the output shaft 8 from the end of the tapered portion 41 on its minor diameter side. In a first step portion of the output shaft 8, the waved spring 7 is inserted. To a second step portion, the inwardly-oriented flange portion 21 of the input gear 2 is attached. The input gear 2 is movably attached to the output shaft 8 and is prevented from dropping out with a spacer 42 attached to the output shaft 8.
In this state, an engaging element housing space 43, which is gradually narrowed toward one side (the right side in
The working member 11 is an approximately disk-like shaped member having a hole 45 in its center. The output shaft 8 can be movably inserted in the hole 45. The working member 11 has the operating lever 10 extending in the outer diameter direction. The working member 11 is attached to the output shaft 8 from the end of the tapered portion 41 on its major diameter side. An end of the inner diameter of the hole 45 in the working member 11 and the vicinity thereof are bent toward the retainer 5 (toward the left side in
The housing 9 is constituted by a cover member 51 and a lid member 52. The cover member 51 sheathes the clutch portion constituted by the input gear 2 and the like. The lid member 52 seals an open end of the cover member 51. An opening 53, through which the tooth of the input gear 2 is externally exposed, is provided on the lower portion of the cover member 51. Through this opening 53, the input gear 2 can be connected to, for example, a worm gear 54 attached to a driving shaft of a driving device (motor) of a sliding door. Moreover, another opening 55 is formed at the top of the cover member 51 of the housing 9 in the circumferential direction. Through this opening 55, the operating lever 10 of the working member 11 extends to the exterior of the housing 9, which allows the pivoting operation of the operating lever 10.
The lid member 52 of the housing 9 is attached from the major diameter side of the tapered portion 41 of the output shaft 8 while its inner face 56 is being opposed to the working member 11. On the inner face 56 of the lid member 52, as shown in
The cover member 51 and the lid member 52 of the housing 9 are, as shown in
The above-described clutch member 3, the working member 11, the cover member 51, and the lid member 52 of the housing 9 can be fabricated at low cost by, for example, cold pressing.
The return spring 12 is constituted by, for example, a coil spring attached around the outer circumference of the cover member 51 of the housing 9 as shown in
The clutch 1 is constituted as described above. As shown in
At this time, the retainer 5 is subjected to a large force in the circumferential direction through the tapered roller 4. However, since the elastic deformation of the retainer 5 in the circumferential direction is allowed owing to the presence of the notches 28 formed in the engaging convex portions 27 of the retainer 5 (see FIG. 2), the retainer 5 can be prevented from being damaged.
The clutch 1 can be switched to a state where the wedge engagement of the tapered roller 4 is cancelled to allow the free rotation of the output shaft 8 by pivoting the operating lever 10 of the working member 11 to the left, as shown in FIG. 8.
More specifically, the operating lever 10 is pivoted to the position where the wedge-shaped projections 47 of the working member 11 and the wedge-shaped projections 57 of the lid member 52 of the housing 9 mate with each other, as shown in FIG. 9. As a result, the wedge-shaped projections 47 of the working member 11 come on the wedge-shaped projections 57 of the lid member 52 of the housing 9 so as to move the working member 11 to the left in the axial direction. The retainer 5 is pushed out toward the larger side of the engaging element housing space 43 against the elastic force of the waved spring 7 by the pressing portion 46 of the working member 11. As a result, the tapered roller 4 moves toward the larger side of the engaging element housing space 43 along with the retainer 5. Since the gap between the output shaft 8 and the clutch member 3 is large when the retainer 5 moves toward the larger side of the engaging element housing space 43, the wedge engagement of the tapered roller 4 with the cam faces 25 provided for the clutch member 3 in the circumferential direction is cancelled. When a rotational torque is input to the input gear 2 at this time, the tapered roller 4 rotates along with the retainer 5, the clutch member 3, and the input gear 2. However, since the gap between the output shaft 8 and the clutch member 3 is large, the tapered roller 4 is not engaged with the cam faces 25 of the clutch member 3 in a wedgewise manner. Thus, the rotational torque is not transmitted to the output shaft 8. As a result, since the rotational torque is not transmitted from the input gear 2 to the output shaft 8, the output shaft 8 is not driven to rotate with respect to the input gear 2. Moreover, if the rotational torque is reversely input to the output shaft 8 in this state, any rotational torque is not transmitted to the input gear 2 because the function as a clutch is lost. As a result, the output shaft 8 can be freely rotated with respect to the input gear 2.
When the operating lever 10 is pivoted to the right as shown in
The clutch 1 can be applied to a mechanism for switching an electrically-operated sliding door between an automatic opening/closing state and a manual opening/closing state by, for example, connecting the input gear 2 to the worm gear 54 attached to a driving shaft of a driving device (motor) of the sliding door and connecting the output shaft 8 to a driving mechanism of the sliding door, not shown.
According to the clutch 1, with a simple operation of pivoting the operating lever 10, the sliding door can be switched between the automatic opening/closing operation and the manual opening/closing operation of the sliding door. Moreover, since the clutch 1 has a mechanical clutch structure using the wedge engagement of the tapered roller 4, the clutch 1 according to the present invention can be reduced in size, weight and cost as compared with an electromagnetic clutch. Furthermore, since the clutch 1 according to the present invention is not required to be always electrically conducted, the clutch is also advantageous in terms of power saving.
Furthermore, the clutch member 3, with which the tapered roller 4 is engaged in a wedgewise manner in the circumferential direction, is independently provided. Therefore, the cam faces 25 can be easily formed, resulting in low-cost fabrication.
In addition, the elastic deformation of the retainer 5 in the circumferential direction is allowed by the presence of the notches 28 formed in the engaging convex portions 27 of the retainer 5 (see FIG. 2). As a result, even if a large force is applied to the retainer 5 in the circumferential direction when a rotational torque is transmitted, the retainer 5 can be prevented from being damaged.
Furthermore, the engaging convex portions 27 of the retainer 5 are engaged with the engaging pieces 24 of the clutch member 3 in the circumferential direction to guide the retainer 5 in the axial direction. Accordingly, the retainer 5 can be moved straight in the axial direction to inhibit the skew of the tapered roller 4. As a result, an unexpected load can be prevented from being applied to the retainer 5. Therefore, even if a large rotational torque is applied, any inconveniences can be prevented from being caused.
Although one embodiment of the clutch according to the present invention has been described above, the clutch according to the present invention is not limited to the above-described embodiment.
The engaging element housing space may be provided so that any one of or both of an inner diameter of an outer ring (clutch member), with which the engaging element is engaged in a wedgewise manner in the circumferential direction, and an outer diameter of an inner ring (output shaft) is/are tapered in the axial direction. For example, in the above-described embodiment, the tapered portion is provided for the output shaft, and the clutch member provided with the cam faces is attached to the input gear so as to provide the engaging element housing space. Alternatively, the clutch member provided with the cam faces is attached to the output shaft so that the inner circumferential face of the input gear is narrowed in the axial direction on one side and enlarged toward the opposite side to provide the engaging element housing space.
As the cam face, with which the tapered roller is engaged in a wedgewise manner in the circumferential direction, the cam face, which is deep in the middle and becomes gradually shallower from the middle toward both ends in the rotation direction so that the tapered roller is engaged in a wedgewise manner in any of forward and reverse directions, has been exemplified above. However, a cam face having such a shape that becomes gradually shallower toward on the side of the forward rotation direction in the rotation direction and is deep on the side in the opposite direction can be used so that the wedge engagement is not achieved in the case of reverse rotation. According to such a cam face, a so-called one-way clutch can be constituted; that is, even if the tapered roller is moved toward the narrower side of the engaging element housing space, a forward rotational torque is transmitted from the input gear to the output shaft although a reverse rotational torque is not transmitted.
Although the tapered roller has been exemplified as an engaging element in the above-described embodiment, the clutch according to the present invention is not limited thereto. Various engaging elements, which can be engaged in a wedgewise manner in the circumferential direction, can be used between an input member and a driven member.
Patent | Priority | Assignee | Title |
7410040, | Dec 21 2005 | Dymos Co., Ltd.; DYMOS CO , LTD , D B A DYMOS OF AMERICA | Conical clutch pack actuator especially for a transfer case |
9523398, | Mar 28 2012 | UNIVANCE CORPORATION | Clutch device |
Patent | Priority | Assignee | Title |
6135255, | Dec 09 1998 | The United States of America as represented by the Administrator of the; National Aeronautics and Space Administration | Resealable roller clutch |
6446776, | Nov 26 1997 | Ker-Train Holdings Ltd | Spiral-type coupling |
6550594, | Nov 01 2000 | GKN Driveline North America, Inc | Active pin slot index system for a bidirectional clutch |
6684992, | Jul 25 2001 | NTN Corporation | Electronically controllable torque transmission device |
EP355306, | |||
EP1101967, | |||
JP2001140926, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 03 2003 | NTN Corporation | (assignment on the face of the patent) | / | |||
Oct 26 2003 | KURITA, MASAHIRO | NTN Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015776 | /0245 |
Date | Maintenance Fee Events |
Oct 27 2005 | ASPN: Payor Number Assigned. |
Jan 23 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 08 2013 | REM: Maintenance Fee Reminder Mailed. |
Aug 23 2013 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 23 2008 | 4 years fee payment window open |
Feb 23 2009 | 6 months grace period start (w surcharge) |
Aug 23 2009 | patent expiry (for year 4) |
Aug 23 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 23 2012 | 8 years fee payment window open |
Feb 23 2013 | 6 months grace period start (w surcharge) |
Aug 23 2013 | patent expiry (for year 8) |
Aug 23 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 23 2016 | 12 years fee payment window open |
Feb 23 2017 | 6 months grace period start (w surcharge) |
Aug 23 2017 | patent expiry (for year 12) |
Aug 23 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |