A process for applying a metallization interconnect as to a semiconductor workpiece having a barrier layer deposited on a surface thereof is set forth. The process includes the forming of an ultra-thin metal seed layer on the barrier layer. The ultra-thin seed layer having a thickness of less than or equal to about 500 Angstroms. The ultra-thin seed layer is then enhanced by depositing additional metal thereon to provide an enhanced sed layer. The enhanced seed layer has a thickness at all points on sidewalls of substantially all recessed features distributed within the workpiece that is equal to or greater than about 10% of the nominal seed layer thickness over an exteriorly disposed surface of the workpiece.
|
1. A tool for electrochemically depositing copper into submicron miro-recesses on a workpiece having a nonuniform copper seed layer less than 500 Å thick, the apparatus comprising:
an automated robotic transfer mechanism;
a plurality of electrochemical processing stations arranged about the robot so that the robot can automatically transfer workpieces to/from the processing stations, the processing stations having baths containing a plating solution including copper and workpiece holders, and the processing stations being configured to operate in a seed layer enhancement mode in which additional copper is electrochemically deposited onto the workpiece to enhance the seed layer for filling the recesses and a bulk plating mode in which copper is electroplated onto the workpiece until the recesses are filled.
2. The apparatus of
3. The apparatus of
4. The apparatus of
5. The apparatus of
|
This application is a continuation of U.S. application Ser. No. 10/302,711, filed Nov. 22, 2002 now U.S. Pat. No. 6,638,410 which is a continuation of U.S. patent application Ser. No. 09/694,413 filed Oct. 23, 2000, now U.S. Pat. No. 6,632,345, which is a continuation of U.S. patent application Ser. No. 09/045,245, filed Mar. 20, 1998, now U.S. Pat. No. 6,197,181.
An integrated circuit is an interconnected ensemble of devices formed within a semiconductor material and within a dielectric material that overlies a surface of the semiconductor. Devices which may be formed within the semiconductor include MOS transistors, bipolar transistors, diodes and diffused resistors. Devices which may be formed within the dielectric include thin-film resistors and capacitors. Typically, more than 100 integrated circuit die (IC chips) are constructed on a single 8 inch diameter silicon wafer. The devices utilized in each dice are interconnected by conductor paths formed within the dielectric. Typically, two or more levels of conductor paths, with successive levels separated by a dielectric layer, are employed as interconnections. In current practice, an aluminum alloy and silicon oxide are typically used for, respectively, the conductor and dielectric.
Delays in propagation of electrical signals between devices on a single die limit the performance of integrated circuits. More particularly, these delays limit the speed at which an integrated circuit may process these electrical signals. Larger propagation delays reduce the speed at which the integrated circuit may process the electrical signals, while smaller propagation delays increase this speed. Accordingly, integrated circuit manufacturers seek ways in which to reduce the propagation delays.
For each interconnect path, signal propagation delay may be characterized by a time delay a. See E. H. Stevens, Interconnect Technology, QMC, Inc., July 1993. An approximate expression for the time delay, τ, as it relates to the transmission of a signal between transistors on an integrated circuit is given below.
τ=RC[1+(VSAT/RISAT)]
In this equation, R and C are, respectively, an equivalent resistance and capacitance for the interconnect path and ISAT and VSAT are, respectively, the saturation (maximum) current and the drain-to-source potential at the onset of current saturation for the transistor that applies a signal to the interconnect path. The path resistance is proportional to the resistivity, ρ, of the conductor material. The path capacitance is proportional to the relative dielectric permittivity, Ke of the dielectric material. A small value of τ requires that the interconnect line carry a current density sufficiently large to make the ratio VSAT/RISAT small. It follows therefore, that a low-ρ conductor which can carry a high current density and a low-Ke dielectric must be utilized in the manufacture of high-performance integrated circuits.
To meet the foregoing criterion, copper interconnect lines within a low-Ke dielectric will likely replace aluminum-alloy lines within a silicon oxide dielectric as the most preferred interconnect structure. See “Copper Goes Mainstream: Low-k to Follow”, Semiconductor International, November 1997, pp. 67-70. Resistivities of copper films are in the range of 1.7 to 2.0 μΩcm; resistivities of aluminum-alloy films are in the range of 3.0 to 3.5 μΩcm.
Despite the advantageous properties of copper, it has not been as widely used as an interconnect material as one would expect. This is due, at least in part, to the difficulty of depositing copper metallization and, further, due to the need for the presence of barrier layer materials. The need for a barrier layer arises from the tendency of copper to diffuse into silicon junctions and alter the electrical characteristics of the semiconductor devices formed in the substrate. Barrier layers made of, for example, titanium nitride, tantalum nitride, etc., must be laid over the silicon junctions and any intervening layers prior to depositing a layer of copper to prevent such diffusion.
A number of processes for applying copper metallization to semiconductor workpieces have been developed in recent years. One such process is chemical vapor deposition (CVD), in which a thin copper film is formed on the surface of the barrier layer by thermal decomposition and/or reaction of gas phase copper compositions. A CVD process can result in conformal copper coverage over a variety of topological profiles, but such processes are expensive when used to implement an entire metallization layer.
Another known technique, physical vapor deposition (PVD), can readily deposit copper on the barrier layer with relatively good adhesion when compared to CVD processes. One disadvantage of PVD processes, however, is that they result in poor (non-conformal) step coverage when used to fill microstructures, such as vias and trenches, disposed in the surface of the semiconductor workpiece. For example, such non-conformal coverage results in less copper deposition at the bottom and especially on the sidewalls of trenches in the semiconductor devices.
Inadequate deposition of a PVD copper layer into a trench to form an interconnect line in the plane of a metallization layer is illustrated in FIG. 1. As illustrated, the upper portion of the trench is effectively “pinched off” before an adequate amount of copper has been deposited within the lower portions of the trench. This result in an open void region that seriously impacts the ability of the metallization line to carry the electrical signals for which it was designed.
Electrochemical deposition of copper has been found to provide the most cost-effective manner in which to deposit a copper metallization layer. In addition to being economically viable, such deposition techniques provide substantially conformal copper films that are mechanically and electrically suitable for interconnect structures. These techniques, however, are generally only suitable for applying copper to an electrically conductive layer. As such, an underlying conductive seed layer is generally applied to the workpiece before it is subject to an electrochemical deposition process. Techniques for electrodeposition of copper on a barrier layer material have not heretofore been commercially viable.
The present inventors have recognized that there exists a need to provide copper metallization processing techniques that 1) provide conformal copper coverage with adequate adhesion to the barrier layer, 2) provide adequate deposition speeds, and 3) are commercially viable. These needs are met by the apparatus and processes of the present invention as described below.
A process for applying a metallization interconnect structure to a semiconductor workpiece having a barrier layer deposited on a surface thereof is set forth. The process includes the forming of an ultra-thin metal seed layer on the barrier layer. The ultra-thin seed layer has a thickness of less than or equal to abut 500 Angstroms. The ultra-thin seed layer is then enhanced by depositing additional metal thereon to provide an enhanced seed layer. The enhanced seed layer has a thickness at all points on sidewalls of substantially all recessed features distributed within the workpiece that is equal to or greater than about 10% of the nominal seed layer thickness over an exteriorly disposed surface of the workpiece.
In accordance with a specific embodiment of the process, a copper metallization interconnects structure is formed. To this end, the ultra-thin seed layer is enhanced by subjecting the semiconductor work piece to an electrochemical copper deposition process in which an alkaline bath having a complexing agent is employed. The copper agent may be at least one complexing agent selected from a group consisting of EDTA, ED, and a polycarboxylic acid such as citric acid or salts thereof.
This invention employs a novel approach to copper metallization of a semiconductor resulting in a copper layer that is uniformly deposited in a conformal coating on a barrier layer with good adhesion to the barrier layer. In accordance with various embodiments of the invention, an alkaline electrolytic copper bath is used to enhance an ultra-thin copper seed layer which has been deposited on a barrier layer using a deposition process such as PVD. The enhanced copper seed layer provides an excellent conformal copper coating that allows trenches and vias to be subsequently filled with a copper layer having good uniformity using electrochemical deposition techniques.
A cross-sectional view of a micro-structure, such as trench 5, that is to be filled with copper metallization is illustrated in FIG. 2A. As shown, a thin barrier layer 10 of, for example, titanium nitride or tantalum nitride is deposited over the surface of a semiconductor device or, as illustrated in
After the deposition of the barrier layer, an ultra-thin copper seed layer 15 is deposited on the barrier layer 10. The resulting structure is illustrated in FIG. 2B. Preferably, the copper seed layer 15 is formed using a vapor deposition technique, such as CVD or PVD. In order to have adequate adhesion and copper coverage, a relatively thick (1000 Angstroms) copper seed layer is usually required. Such a thick seed layer leads to problems with close-off of small geometry trenches, however, when a PVD deposition process is employed for applying the seed layer.
Contrary to traditional thoughts regarding seed layer application, the copper seed layer 15 of the illustrated embodiment is ultra-thin, having a thickness of about 50 to about 500 Angstroms, preferably about 100 to about 250 Angstroms, and most preferably about 200 Angstroms. The ultra-thin copper seed layer can be deposited using a CVD or a PVD process, or a combination of both. PVD is the preferred application process, however, because it can readily deposit copper on the barrier layer 10 with relatively good adhesion. By depositing an ultra-thin seed layer of copper, rather than the relatively thick seed layer used in the prior art, pinching off of the trenches can be avoided.
The use of an ultra-thin seed layer 15 generally introduces its own set of problems. One of the most significant of these problems is the fact that such ultra-thin layers do not generally coat the barrier layer 10 in a uniform manner. Rather, voids or non-continuous seed layer regions on the sidewalls, such as at 20, are often present in an ultra-thin seed layer 15 thereby resulting in the inability to properly apply a subsequent electrochemically deposited copper layer in the regions 20. Further, ultra-thin seed layers tend to include spikes, such as at 21, that impact the uniformity of the subsequent electrolytically deposited metal layer. Such spikes 21 result in high potential regions at which the copper deposits at a higher rate than at other, more level regions. As such, the seed layer 15 is not fully suitable for the traditional electroplating techniques typically used after application of a seed layer.
The present inventors have found that an ultra-thin seed layer can be employed if it is combined with a subsequent electrochemical seed layer enhancement technique. To this end, the semiconductor workpiece is subject to a subsequent process step in which a further amount of copper 18 is applied to the ultra-thin seed layer to thereby enhance the seed layer. A seed layer enhanced by the additional deposition of copper is illustrated in FIG. 2C. As shown in
Preferably, the seed layer enhancement process continues until a sidewall step coverage, i.e., the ratio of the seed layer thickness at the bottom sidewall regions 22 to the nominal thickness of the seed layer at the exteriorly disposed side 23 of the workpiece, achieves a value of at least 10%. More preferably, the sidewall step coverage is at least about 20%. Such sidewall step coverage values are present in substantially all of the recessed structures of the semiconductor workpiece. It will be recognized, however, that certain recessed structures distributed within the semiconductor workpiece may not reach these sidewall step coverage values. For example, such structures disposed at the peripheral edges of a semiconductor wafer may not reach these step coverage values. Similarly, defects or contaminants at the situs of certain recessed structures may prevent them from reaching the desired coverage values. The nominal thickness of the enhanced seed layer at the exteriorly disposed side of the workpiece is preferably in the range of 500 Angstroms to 1600 Angstroms.
Although the embodiment of the process disclosed herein is described in connection with copper metallization, it is understood that the basic principle of the enhancement of an ultra-thin seed layer prior to the bulk deposition thereof can be applied to other metals or alloys that are capable of being electroplated. Such metals include iron, nickel, cobalt, zinc, copper-zinc, nickel-iron, cobalt-iron, etc.
A schematic representation of an apparatus 25 suitable for enhancing the ultra-thin copper seed layer is illustrated in FIG. 3. It will be recognized that this apparatus is also suitable for applying a blanket plating layer and/or full-fill plating of recessed micro-structures. As shown, a semiconductor workpiece, such as a semiconductor wafer 30, is positioned facedown in a bath 35 of electroplating solution. One or more contacts 40 are provided to connect the wafer 30 to a plating power supply 45 as a cathode of an electroplating cell. An anode 50 is disposed in the bath 35 and is connected to the plating power supply 45. Preferably, a diffuser 55 is disposed between the anode 50 and the wafer/cathode 30. The wafer 30 may be rotated about axis 60 during the enhancement process. Anode 50 may be provided with a dielectric shield 65 at a backside thereof that faces an incoming stream of plating bath fluid. The electrolytic bath solution for enhancing the seed layer is an alkaline copper bath in which copper ions are complexed with a complexing agent. A preferred source of copper ions is copper sulfate (CuSO4). The concentration of copper sulfate in the bath is preferably within the range of 0.03 to 0.25 M, and is more preferably about 0.1 M.
Complexing agents that are suitable for use in the present invention form a stable complex with copper ions and prevent the precipitation of copper hydroxide. Ethylene diamine tetracetic acid (EDTA), ethylene diamine (ED), citric acid, and their salts have been found to be particularly suitable copper complexing agents. The molar ratio of complexing agent to copper sulfate in the bath is preferably within the range of 1 to 4, and is preferably about 2. Such complexing agents can be used alone, in combination with one another, or in combination with one or more further complexing agents. The electrolytic bath is preferably maintained at a pH of at least 9.0. Potassium hydroxide, ammonium hydroxide, tetramethylammonium hydroxide, or sodium hydroxide is utilized to adjust and maintain the pH at the desired level of 9.0 or above. A preferred pH for a citric acid or ED bath is about 9.5, while a preferred pH for an EDTA bath is about 12.5. As noted above, the complexing agent assists in preventing the copper from precipitating at the high pH level.
Additional components can be added to the alkaline copper bath. For example, boric acid (H3BO3) aids in maintaining the pH at 9.5 when citric acid or ED is used as the complexing agent, and provides brighter copper deposits when added to an electrolytic bath containing EDTA as the complexing agent. If boric acid is added, its concentration in the bath is preferably within the range of 0.01 to 0.5 M.
In general, the temperature of the bath can be within the range of 20 to 35° C., with 25° C. being a preferred temperature. The current density for electrolytically depositing copper to enhance the copper seed layer can be 1 to 5 milliamps/cm2, while a plating time of about 1 to about 5 minutes is sufficient to enhance the copper seed layer. The plating waveform may be, for example, a forward periodic pulse having a period of 2 msec at a 50% duty cycle.
An amine free acid complexing agent, for example, a polycarboxylic acid, such as citric acid, and salts thereof, is preferable to the use of EDTA or ED. EDTA and ED include amine groups. These amine groups often remain on the surface of the semiconductor workpiece after rinsing and drying of the wafer. Subsequent processes, particularly such processes as photolithographic processes, may be corrupted by the reactions resulting from the presence of these amine groups. The amine groups may, for example, interfere with the chemical reactions associated with the eexposing and/or curing of photoresist materials. As such, amine free complexing agents are particularly suitable in processes in which a photolithographic process follows an electrodeposition process.
A further advantage of using a polycarboxylic acid, such as citric acid, stems from the fact that the magnitude of the voltage potential at which the copper is plated is greater than the magnitude of the voltage potential at which the copper is plated in a bath containing EDTA. This is illustrated in
It is believed that a copper layer plated at a higher plating potential in an alkaline bath provides greater adhesion to the underlying barrier layer than a copper layer plated at a lower plating potential in an acid bath. For copper to adhere to the barrier material, it is thought that copper ions must impinge on the barrier surface with sufficient energy to penetrate a thin oxidized or contaminated layer at the barrier surface. It is therefore believed that a copper layer deposited at a higher magnitude plating potential adheres better to the exposed barrier layer during the plating process when compared to a layer plated using a smaller magnitude plating potential. This factor, combined with the inter-copper chemical bond between the PVD copper and the electrochemically deposited copper provides for an enhanced seed layer having excellent electrical as well as barrier adhesion properties. Such characteristics are also desirable for films used in blanket plating, full-fill plating, pattern plating, etc.
With the seed layer enhanced in the foregoing manner, it is suitable for subsequent electrochemical cooper deposition. This subsequent copper deposition may take place in an alkaline bath with the apparatus employed to enhance the seed layer. Preferably, however, subsequent copper deposition takes place in an acidic environment where plating rates are substantially higher than corresponding rates associated with alkaline plating baths. To this end, the semiconductor workpiece is preferably transferred to an apparatus wherein the workpiece is thoroughly rinsed with deionized water and then transferred to an apparatus similar to that of
Use of an alkaline electrolytic bath to enhance the copper seed layer has particular advantages over utilizing acid copper baths without seed layer enhancement. After deposition of the PVD copper seed layer, the copper seed layer is typically exposed to an oxygen-containing environment. Oxygen readily converts metallic copper to copper oxide. If an acid copper bath is used to plate copper onto the seed layer after exposure of the seed layer to an oxygen containing environment, the acid copper bath would dissolve copper oxide that had formed, resulting in voids in the seed layer and poor uniformity of the copper layer deposited on the seed layer. Use of an alkaline copper bath in accordance with the disclosed embodiment avoids the problem by advantageously reducing any copper oxide at the surface of the seed layer to metallic copper. Another advantage of the alkaline copper bath is that the plated copper has much better adhesion to the barrier layer than that plated from an acid copper bath. Additional advantages of the seed layer enhancement aspects of the present invention can be seen from the following Example.
Semiconductor wafers 1, 2 and 3 were each coated with a 200 Angstrom PVD copper seed layer. In accordance with the present invention, wafers 1 and 2 had seed layer enhancement from citric acid and EDTA baths, respectively, the compositions of which are set forth below:
The three wafers were then plated with a 1.5 micron copper layer from an acid copper bath under identical conditions. The following Table compares the uniformities, as deduced from sheet resistance measurements, of the three wafers after the deposition of a copper layer having a nominal thickness of 1.5 microns.
TABLE 1
Non-Uniformity
Standard
Enhancement
Deviation
Wafer
Bath
Current Density
(%, 1σ)
1
Citrate
3 min. at
7.321
2 mA/cm2
2
EDTA
3 min. at
6.233
2 mA/cm2
3
None
0
46.10
As can be seen from the results in Table 1 above, seed layer enhancement in accordance with the disclosed process provides excellent uniformity (6 to 7%) compared to that without seed layer enhancement (46%). This is consistent with observations during visual examination of the wafer after 1.5 micron electroplated copper had been deposited. Such visual examination of the wafer revealed the presence of defects at wafer electrode contact points on the wafer without seed layer enhancement.
In operation, vapor deposition tool/tool set 95 is utilized to apply an ultra-thin copper seed layer over at least portions of semiconductor workpieces that are processed on line 90. Preferably, this is done using a PVD application process. Workpieces with the ultra-thin seed layer are then transferred to tool/tool set 100, either individually or in batches, where they are subject to electrochemical seed layer enhancement at, for example, processing station 110. Processing station 110 may be constructed in the manner set forth in FIG. 3. After enhancement is completed, the workpieces are subject to a full electrochemical deposition process in which copper metallization is applied to the workpiece to a desired interconnect metallization thickness. This latter process may take place at station 110, but preferably occurs at further processing station 115 that deposits the copper metallization in the presence of an acidic plating bath. Before transfer to station 115, the workpiece is preferably rinsed in DI water at station 112. Transfer of the wafers between stations 110, 112, and 115 may be automated by a wafer conveying system. The electrochemical deposition tool set 100 may be implemented using, for example, an LT-210™ model or an Equinox™ model plating tool available from Semitool, Inc., of Kalispell, Mont.
Numerous modifications may be made to the foregoing system without departing from the basic teachings thereof. Although the present invention has been described in substantial detail with reference to one or more specific embodiments, those of skill in the art with recognize that changes may be made thereto without departing from the scope and spirit of the invention as set forth in the appended claims.
Patent | Priority | Assignee | Title |
10022499, | Feb 15 2007 | Abbott Diabetes Care Inc. | Device and method for automatic data acquisition and/or detection |
10028680, | Apr 28 2006 | Abbott Diabetes Care Inc. | Introducer assembly and methods of use |
10070810, | Oct 23 2006 | Abbott Diabetes Care Inc. | Sensor insertion devices and methods of use |
10076285, | Mar 15 2013 | Abbott Diabetes Care Inc | Sensor fault detection using analyte sensor data pattern comparison |
10078380, | Mar 10 2010 | Abbott Diabetes Care Inc. | Systems, devices and methods for managing glucose levels |
10089446, | Jan 29 2009 | Abbott Diabetes Care Inc. | Method and device for providing offset model based calibration for analyte sensor |
10092229, | Jun 29 2010 | Abbott Diabetes Care Inc | Calibration of analyte measurement system |
10117606, | Oct 30 2009 | Abbott Diabetes Care Inc. | Method and apparatus for detecting false hypoglycemic conditions |
10117614, | Feb 08 2006 | Abbott Diabetes Care Inc. | Method and system for providing continuous calibration of implantable analyte sensors |
10136816, | Aug 31 2009 | Abbott Diabetes Care Inc | Medical devices and methods |
10136845, | Feb 28 2011 | Abbott Diabetes Care Inc | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
10188334, | Oct 30 2012 | Abbott Diabetes Care Inc. | Sensitivity calibration of in vivo sensors used to measure analyte concentration |
10188794, | Aug 31 2008 | Abbott Diabetes Care Inc. | Closed loop control and signal attenuation detection |
10194850, | Aug 31 2005 | Abbott Diabetes Care Inc. | Accuracy of continuous glucose sensors |
10194863, | Sep 30 2005 | Abbott Diabetes Care Inc. | Integrated transmitter unit and sensor introducer mechanism and methods of use |
10194868, | Oct 25 2006 | Abbott Diabetes Care Inc. | Method and system for providing analyte monitoring |
10213141, | Apr 30 2013 | Abbott Diabetes Care Inc. | Systems, devices, and methods for energy efficient electrical device activation |
10226207, | Dec 29 2004 | Abbott Diabetes Care Inc | Sensor inserter having introducer |
10255055, | May 24 2010 | Abbott Diabetes Care Inc. | Systems and methods for updating a medical device |
10285632, | Apr 16 2010 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods |
10307091, | Dec 28 2005 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
10327682, | May 30 2008 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
10328201, | Jul 14 2008 | Abbott Diabetes Care Inc. | Closed loop control system interface and methods |
10342489, | Sep 30 2005 | Abbott Diabetes Care Inc. | Integrated introducer and transmitter assembly and methods of use |
10362972, | Sep 10 2006 | Abbott Diabetes Care Inc. | Method and system for providing an integrated analyte sensor insertion device and data processing unit |
10363363, | Oct 23 2006 | Abbott Diabetes Care Inc. | Flexible patch for fluid delivery and monitoring body analytes |
10433773, | Mar 15 2013 | Abbott Diabetes Care Inc | Noise rejection methods and apparatus for sparsely sampled analyte sensor data |
10492685, | Aug 31 2009 | Abbott Diabetes Care Inc | Medical devices and methods |
10529622, | Jul 10 2018 | International Business Machines Corporation | Void-free metallic interconnect structures with self-formed diffusion barrier layers |
10555695, | Apr 15 2011 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
10561354, | Apr 15 2011 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
10610141, | Apr 15 2011 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
10617823, | Feb 15 2007 | Abbott Diabetes Care Inc. | Device and method for automatic data acquisition and/or detection |
10624568, | Apr 15 2011 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
10682084, | Apr 15 2011 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
10685749, | Dec 19 2007 | Abbott Diabetes Care Inc. | Insulin delivery apparatuses capable of bluetooth data transmission |
10722162, | Apr 15 2011 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
10736547, | Apr 28 2006 | Abbott Diabetes Care Inc. | Introducer assembly and methods of use |
10827954, | Jul 23 2009 | Abbott Diabetes Care Inc. | Continuous analyte measurement systems and systems and methods for implanting them |
10835162, | Apr 15 2011 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
10842420, | Sep 26 2012 | Abbott Diabetes Care Inc. | Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data |
10856785, | Jun 29 2007 | Abbott Diabetes Care Inc. | Analyte monitoring and management device and method to analyze the frequency of user interaction with the device |
10872696, | Feb 11 2011 | Abbott Diabetes Care Inc. | Method of hypoglycemia risk determination |
10874336, | Mar 15 2013 | Abbott Diabetes Care Inc. | Multi-rate analyte sensor data collection with sample rate configurable signal processing |
10874338, | Jun 29 2010 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
10888272, | Jul 10 2015 | Abbott Diabetes Care Inc. | Systems, devices, and methods for meal information collection, meal assessment, and analyte data correlation |
10903116, | Jul 10 2018 | International Business Machines Corporation | Void-free metallic interconnect structures with self-formed diffusion barrier layers |
10903914, | Oct 26 2006 | Abbott Diabetes Care Inc. | Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors |
10923218, | Feb 11 2011 | Abbott Diabetes Care Inc. | Data synchronization between two or more analyte detecting devices in a database |
10959653, | Jun 29 2010 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
10966644, | Jun 29 2010 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
10973449, | Jun 29 2010 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
10980461, | Nov 07 2008 | DexCom, Inc. | Advanced analyte sensor calibration and error detection |
11000215, | Nov 07 2008 | DEXCOM, INC | Analyte sensor |
11013439, | Sep 30 2008 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
11017890, | Feb 11 2011 | Abbott Diabetes Care Inc. | Systems and methods for aggregating analyte data |
11020031, | Nov 07 2008 | DEXCOM, INC | Analyte sensor |
11061491, | Mar 10 2010 | Abbott Diabetes Care Inc. | Systems, devices and methods for managing glucose levels |
11064921, | Jun 29 2010 | Abbott Diabetes Care Inc. | Devices, systems and methods for on-skin or on-body mounting of medical devices |
11152112, | Jun 04 2009 | Abbott Diabetes Care Inc. | Method and system for updating a medical device |
11160475, | Dec 29 2004 | Abbott Diabetes Care Inc. | Sensor inserter having introducer |
11169794, | May 24 2010 | Abbott Diabetes Care Inc. | Systems and methods for updating a medical device |
11202592, | Sep 30 2008 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
11207005, | Oct 30 2009 | Abbott Diabetes Care Inc. | Method and apparatus for detecting false hypoglycemic conditions |
11207006, | Apr 30 2013 | Abbott Diabetes Care Inc. | Systems, devices, and methods for energy efficient electrical device activation |
11229382, | Dec 31 2013 | Abbott Diabetes Care Inc. | Self-powered analyte sensor and devices using the same |
11234621, | Oct 23 2006 | Abbott Diabetes Care Inc. | Sensor insertion devices and methods of use |
11264133, | Jun 21 2007 | Abbott Diabetes Care Inc. | Health management devices and methods |
11272890, | Nov 10 2008 | Abbott Diabetes Care Inc. | Alarm characterization for analyte monitoring devices and systems |
11276492, | Jun 21 2007 | Abbott Diabetes Care Inc. | Health management devices and methods |
11282603, | Oct 25 2006 | Abbott Diabetes Care Inc. | Method and system for providing analyte monitoring |
11298058, | Dec 28 2005 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
11309078, | Jun 04 2009 | Abbott Diabetes Care Inc. | Method and system for updating a medical device |
11331022, | Oct 24 2017 | DexCom, Inc. | Pre-connected analyte sensors |
11350862, | Oct 24 2017 | DexCom, Inc. | Pre-connected analyte sensors |
11382540, | Oct 24 2017 | DEXCOM, INC | Pre-connected analyte sensors |
11406331, | Oct 31 2011 | Abbott Diabetes Care Inc. | Model based variable risk false glucose threshold alarm prevention mechanism |
11457869, | Sep 30 2005 | Abbott Diabetes Care Inc. | Integrated transmitter unit and sensor introducer mechanism and methods of use |
11464430, | Jan 29 2009 | Abbott Diabetes Care Inc. | Method and device for providing offset model based calibration for analyte sensor |
11464434, | Sep 30 2008 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
11478173, | Jun 29 2010 | Abbott Diabetes Care Inc. | Calibration of analyte measurement system |
11484234, | Sep 30 2008 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
11534089, | Feb 28 2011 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
11571149, | Apr 30 2013 | Abbott Diabetes Care Inc. | Systems, devices, and methods for energy efficient electrical device activation |
11621073, | Jul 14 2008 | Abbott Diabetes Care Inc. | Closed loop control system interface and methods |
11627898, | Feb 28 2011 | Abbott Diabetes Care Inc. | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
11627900, | Nov 07 2008 | DexCom, Inc. | Analyte sensor |
11678821, | Jun 29 2007 | Abbott Diabetes Care Inc. | Analyte monitoring and management device and method to analyze the frequency of user interaction with the device |
11678848, | Nov 10 2008 | Abbott Diabetes Care Inc. | Alarm characterization for analyte monitoring devices and systems |
11679200, | Aug 31 2008 | Abbott Diabetes Care Inc. | Closed loop control and signal attenuation detection |
11706876, | Oct 24 2017 | DexCom, Inc. | Pre-connected analyte sensors |
11717225, | Mar 30 2014 | Abbott Diabetes Care Inc. | Method and apparatus for determining meal start and peak events in analyte monitoring systems |
11722229, | Oct 26 2006 | Abbott Diabetes Care Inc.; University of Virginia Patent Foundation | Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors |
11724029, | Oct 23 2006 | Abbott Diabetes Care Inc. | Flexible patch for fluid delivery and monitoring body analytes |
11735295, | May 30 2008 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
11748088, | May 24 2010 | Abbott Diabetes Care Inc. | Systems and methods for updating a medical device |
11793936, | May 29 2009 | Abbott Diabetes Care Inc. | Medical device antenna systems having external antenna configurations |
11854693, | Jun 04 2009 | Abbott Diabetes Care Inc. | Method and system for updating a medical device |
11867652, | Oct 23 2014 | Abbott Diabetes Care Inc. | Electrodes having at least one sensing structure and methods for making and using the same |
11872039, | Feb 28 2006 | Abbott Diabetes Care Inc. | Method and system for providing continuous calibration of implantable analyte sensors |
11872370, | May 29 2009 | Abbott Diabetes Care Inc. | Medical device antenna systems having external antenna configurations |
11896371, | Sep 26 2012 | Abbott Diabetes Care Inc. | Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data |
8965477, | Apr 16 2010 | Abbott Diabetes Care Inc | Analyte monitoring device and methods |
9031630, | Feb 28 2006 | Abbott Diabetes Care Inc. | Analyte sensors and methods of use |
9069536, | Oct 31 2011 | Abbott Diabetes Care Inc | Electronic devices having integrated reset systems and methods thereof |
9113828, | Oct 25 2006 | Abbott Diabetes Care Inc. | Method and system for providing analyte monitoring |
9259175, | Oct 23 2006 | ABBOTT DIABETES CARE, INC | Flexible patch for fluid delivery and monitoring body analytes |
9326707, | Nov 10 2008 | Abbott Diabetes Care Inc | Alarm characterization for analyte monitoring devices and systems |
9332933, | Dec 28 2005 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
9398882, | Sep 30 2005 | ABBOTT DIABETES CARE, INC | Method and apparatus for providing analyte sensor and data processing device |
9465420, | Oct 31 2011 | Abbott Diabetes Care Inc. | Electronic devices having integrated reset systems and methods thereof |
9474475, | Mar 15 2013 | Abbott Diabetes Care Inc | Multi-rate analyte sensor data collection with sample rate configurable signal processing |
9501272, | May 24 2010 | Abbott Diabetes Care Inc. | Systems and methods for updating a medical device |
9532737, | Feb 28 2011 | Abbott Diabetes Care Inc | Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same |
9541556, | May 30 2008 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
9572534, | Jun 29 2010 | Abbott Diabetes Care Inc | Devices, systems and methods for on-skin or on-body mounting of medical devices |
9622691, | Oct 31 2011 | Abbott Diabetes Care Inc | Model based variable risk false glucose threshold alarm prevention mechanism |
9636450, | Feb 19 2007 | ABBOTT DIABETES CARE, INC | Pump system modular components for delivering medication and analyte sensing at seperate insertion sites |
9662056, | Sep 30 2008 | Abbott Diabetes Care Inc. | Optimizing analyte sensor calibration |
9675290, | Oct 30 2012 | Abbott Diabetes Care Inc. | Sensitivity calibration of in vivo sensors used to measure analyte concentration |
9724029, | Apr 16 2010 | Abbott Diabetes Care Inc. | Analyte monitoring device and methods |
9730650, | Nov 10 2008 | Abbott Diabetes Care Inc. | Alarm characterization for analyte monitoring devices and systems |
9760679, | Feb 11 2011 | Abbott Diabetes Care Inc | Data synchronization between two or more analyte detecting devices in a database |
9775563, | Sep 30 2005 | Abbott Diabetes Care Inc. | Integrated introducer and transmitter assembly and methods of use |
9788771, | Oct 23 2006 | ABBOTT DIABETES CARE, INC | Variable speed sensor insertion devices and methods of use |
9795326, | Jul 23 2009 | Abbott Diabetes Care Inc | Continuous analyte measurement systems and systems and methods for implanting them |
9795328, | May 30 2008 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
9795331, | Dec 28 2005 | Abbott Diabetes Care Inc. | Method and apparatus for providing analyte sensor insertion |
9801577, | Oct 30 2012 | Abbott Diabetes Care Inc. | Sensitivity calibration of in vivo sensors used to measure analyte concentration |
9808186, | Sep 10 2006 | Abbott Diabetes Care Inc. | Method and system for providing an integrated analyte sensor insertion device and data processing unit |
9814428, | Oct 25 2006 | Abbott Diabetes Care Inc. | Method and system for providing analyte monitoring |
9844329, | Feb 28 2006 | Abbott Diabetes Care Inc. | Analyte sensors and methods of use |
9882660, | Oct 26 2006 | Abbott Diabetes Care Inc.; University of Virginia Patent Foundation | Method, system and computer program product for real-time detection of sensitivity decline in analyte sensors |
9907492, | Sep 26 2012 | Abbott Diabetes Care Inc | Method and apparatus for improving lag correction during in vivo measurement of analyte concentration with analyte concentration variability and range data |
9913599, | Feb 11 2011 | Abbott Diabetes Care Inc | Software applications residing on handheld analyte determining devices |
9913600, | Jun 29 2007 | Abbott Diabetes Care Inc. | Analyte monitoring and management device and method to analyze the frequency of user interaction with the device |
9913619, | Oct 31 2011 | Abbott Diabetes Care Inc. | Model based variable risk false glucose threshold alarm prevention mechanism |
9931075, | May 30 2008 | Abbott Diabetes Care Inc. | Method and apparatus for providing glycemic control |
9940436, | Jun 04 2009 | Abbott Diabetes Care Inc. | Method and system for updating a medical device |
ER584, | |||
ER7431, |
Patent | Priority | Assignee | Title |
3267010, | |||
3328273, | |||
3664933, | |||
3716462, | |||
3770598, | |||
3878066, | |||
3930963, | Jul 29 1971 | KOLLMORGEN CORPORATION, A CORP OF NY | Method for the production of radiant energy imaged printed circuit boards |
4000046, | Dec 23 1974 | YOSEMITE INVESTMENTS, INC | Method of electroplating a conductive layer over an electrolytic capacitor |
4134802, | Oct 03 1977 | Occidental Chemical Corporation | Electrolyte and method for electrodepositing bright metal deposits |
4272335, | Feb 19 1980 | OMI International Corporation | Composition and method for electrodeposition of copper |
4279948, | May 25 1978 | MacDermid Incorporated | Electroless copper deposition solution using a hypophosphite reducing agent |
4576689, | Apr 25 1980 | INSTITUT FIZIKO-KHIMICHESKIKH OSNOV PERERABOTKI MINERALNOGO SYRIA SIBIRSKOGO OTDELENIA AKADEMII NAUK SSSR, USSR, NOVOSIBIRSK | Process for electrochemical metallization of dielectrics |
4624749, | Sep 03 1985 | Intersil Corporation | Electrodeposition of submicrometer metallic interconnect for integrated circuits |
4959278, | Jun 16 1988 | Nippon Mining Co., Ltd. | Tin whisker-free tin or tin alloy plated article and coating technique thereof |
4990224, | Dec 21 1988 | International Business Machines Corporation | Copper plating bath and process for difficult to plate metals |
5021129, | Sep 25 1989 | International Business Machines Corporation | Multilayer structures of different electroactive materials and methods of fabrication thereof |
5115430, | Sep 24 1990 | AT&T Bell Laboratories; American Telephone and Telegraph Company | Fair access of multi-priority traffic to distributed-queue dual-bus networks |
5116430, | Feb 09 1990 | NIHON PARKERIZING CO , LTD | Process for surface treatment titanium-containing metallic material |
5161168, | May 15 1991 | InterDigital Technology Corp | Spread spectrum CDMA communications system microwave overlay |
5209817, | Aug 22 1991 | International Business Machines Corporation | Selective plating method for forming integral via and wiring layers |
5256274, | Aug 01 1990 | Selective metal electrodeposition process | |
5284548, | Mar 03 1993 | Microelectronics and Computer Technology Corporation; Minnesota Mining and Manufacturing Company | Process for producing electrical circuits with precision surface features |
5368711, | Aug 01 1990 | Selective metal electrodeposition process and apparatus | |
5372848, | Dec 24 1992 | International Business Machines Corporation | Process for creating organic polymeric substrate with copper |
5409587, | Sep 16 1993 | Micron Technology, Inc | Sputtering with collinator cleaning within the sputtering chamber |
5443865, | Dec 11 1990 | International Business Machines Corporation | Method for conditioning a substrate for subsequent electroless metal deposition |
5472509, | Nov 30 1993 | LIGHT POINTE MEDICAL, INC | Gas plasma apparatus with movable film liners |
5482891, | Mar 17 1995 | II-VI DELAWARE, INC | VCSEL with an intergrated heat sink and method of making |
5549808, | May 12 1995 | GLOBALFOUNDRIES Inc | Method for forming capped copper electrical interconnects |
5576052, | Apr 22 1996 | Motorola, Inc. | Method of metallizing high aspect ratio apertures |
5639316, | Jan 13 1995 | International Business Machines Corp. | Thin film multi-layer oxygen diffusion barrier consisting of aluminum on refractory metal |
5674787, | Jan 16 1996 | Cornell Research Foundation, Inc | Selective electroless copper deposited interconnect plugs for ULSI applications |
5695810, | Nov 20 1996 | Cornell Research Foundation, Inc.; Sematech, Inc.; Intel Corporation | Use of cobalt tungsten phosphide as a barrier material for copper metallization |
5719447, | Jun 03 1993 | Intel Corporation | Metal alloy interconnections for integrated circuits |
5723387, | Jul 22 1996 | Transpacific IP Ltd | Method and apparatus for forming very small scale Cu interconnect metallurgy on semiconductor substrates |
5730854, | May 30 1996 | ENTHONE INC | Alkoxylated dimercaptans as copper additives and de-polarizing additives |
5750018, | Mar 18 1997 | LeaRonal, Inc. | Cyanide-free monovalent copper electroplating solutions |
5824599, | Jan 16 1996 | Cornell Research Foundation, Inc | Protected encapsulation of catalytic layer for electroless copper interconnect |
5882498, | Oct 16 1997 | Advanced Micro Devices, Inc. | Method for reducing oxidation of electroplating chamber contacts and improving uniform electroplating of a substrate |
5891513, | Jan 16 1996 | Cornell Research Foundation, Inc | Electroless CU deposition on a barrier layer by CU contact displacement for ULSI applications |
5897368, | Nov 10 1997 | General Electric Company | Method of fabricating metallized vias with steep walls |
5908543, | Feb 03 1997 | OKUNO CHEMICAL INDUSTRIES CO., LTD. | Method of electroplating non-conductive materials |
5913147, | Jan 21 1997 | GLOBALFOUNDRIES Inc | Method for fabricating copper-aluminum metallization |
5932077, | Feb 09 1998 | Reynolds Tech Fabricators, Inc. | Plating cell with horizontal product load mechanism |
5969422, | May 15 1997 | AMD TECHNOLOGIES HOLDINGS, INC ; GLOBALFOUNDRIES Inc | Plated copper interconnect structure |
5972192, | Jul 23 1997 | GLOBALFOUNDRIES Inc | Pulse electroplating copper or copper alloys |
6036836, | Dec 20 1996 | ST MICROELECTRONICS N V | Process to create metallic stand-offs on an electronic circuit |
6065424, | Dec 19 1995 | Cornell Research Foundation, Inc | Electroless deposition of metal films with spray processor |
6069068, | May 30 1997 | GLOBALFOUNDRIES Inc | Sub-quarter-micron copper interconnections with improved electromigration resistance and reduced defect sensitivity |
6113771, | Apr 21 1998 | Applied Materials, Inc. | Electro deposition chemistry |
6197688, | Feb 12 1998 | Freescale Semiconductor, Inc | Interconnect structure in a semiconductor device and method of formation |
6210781, | Jun 06 1994 | International Business Machines Corporation | Method for photoselective seeding and metallization of three-dimensional materials |
6309524, | Jul 10 1998 | Applied Materials Inc | Methods and apparatus for processing the surface of a microelectronic workpiece |
6319831, | Mar 18 1999 | Taiwan Semiconductor Manufacturing Company | Gap filling by two-step plating |
6413383, | Oct 08 1999 | Applied Materials, Inc. | Method for igniting a plasma in a sputter reactor |
6531046, | Dec 15 1999 | SHIPLEY COMPANY, L L C | Seed layer repair method |
20020043466, | |||
GB2285174, | |||
JP5142262, | |||
JP5216433, | |||
WO9947731, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 27 2003 | Semitool, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 31 2005 | ASPN: Payor Number Assigned. |
Feb 23 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 27 2009 | R1551: Refund - Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 27 2009 | R1554: Refund - Surcharge for Late Payment, Large Entity. |
Jan 25 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 26 2017 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 23 2008 | 4 years fee payment window open |
Feb 23 2009 | 6 months grace period start (w surcharge) |
Aug 23 2009 | patent expiry (for year 4) |
Aug 23 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 23 2012 | 8 years fee payment window open |
Feb 23 2013 | 6 months grace period start (w surcharge) |
Aug 23 2013 | patent expiry (for year 8) |
Aug 23 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 23 2016 | 12 years fee payment window open |
Feb 23 2017 | 6 months grace period start (w surcharge) |
Aug 23 2017 | patent expiry (for year 12) |
Aug 23 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |