The present invention generally relates to optical lithography and more particularly relates to the fabrication of transparent or semitransparent phase shifting masks used in the manufacture of semiconductor devices. In particular, the present invention utilizes a light absorbing film in a conventional aaPSMs to balance the intensity of light through each opening of the photomask. The aaPSM of the present invention is used to make semiconductor devices or integrated circuits.
|
1. A blank alternating aperture phase shift photomask comprising:
a photosensitive resist material layer;
an opaque layer underlying said photosensitive resist material layer;
a partially absorbing film layer underlying said opaque layer; and
a substantially transparent substrate underlying said partially absorbing film layer, wherein said partially absorbing film layer comprises a thickness which substantially balances an aerial image intensity of light transmitted through patterned regions when said blank photomask has been processed into an alternating aperture phase shift photomask, wherein
said patterned regions comprise at least one opening exposing said partially absorbing film layer, and
at least one light transmitting opening in which said partially absorbing film layer has been removed.
15. An alternating aperture phase shift photomask comprising:
a substantially transparent substrate having at least one light transmitting opening formed therein;
a partially absorbing film layer covering portions of said substantially transparent substrate not defined by said at least one light transmitting opening; and
a patterned layer of opaque material affixed to said partially absorbing film, wherein said patterned layer exposes at least one portion of said underlying partially absorbing film layer, wherein said partially absorbing film layer comprises a thickness which substantially balances an aerial image intensity of light transmitted through said at least one exposed portion of said at least one partially absorbing film layer with light transmitted through said at least one light transmitting opening.
21. An alternating aperture phase shift photomask comprising:
a substantially transparent substrate;
a partially absorbing film layer having at least one opening formed therein, wherein portions of said substantially transparent substrate underlying said at least one opening in said partially absorbing film layer are exposed; and
a patterned layer of opaque material affixed to said partially absorbing film layer, said patterned layer of opaque material having at least one opening which exposes underlying portions of said partially absorbing film layer, wherein said partially absorbing film layer comprises a thickness which substantially balances an aerial image intensity of light transmitted through said at least one opening in said opaque layer with light transmitted through at least one opening in said partially absorbing film layer.
6. A method for creating an alternating aperture phase shift photomask from a blank photomask comprising the steps of:
providing a blank photomask comprising a photosensitive resist material layer, an opaque layer underlying said photosensitive resist material layer, a partially absorbing film layer underlying said opaque layer, and a substantially transparent substrate underlying said partially absorbing film layer;
forming in said blank photomask at least one opening which partially absorbs light, wherein said light absorbing opening exposes said partially absorbing film layer; and
forming at least one light transmitting opening in said blank photomask, wherein said light transmitting opening exposes a portion of said substantially transparent substrate, wherein said partially absorbing film layer comprises a thickness which substantially balances an aerial image intensity of light transmitted through said at least one partially absorbing opening with light transmitted through said at least one light transmitting opening.
2. The blank alternating aperture phase shift photomask of
3. The blank alternating aperture phase shift photomask of
4. The blank alternating aperture phase shift photomask of
5. The blank alternating aperture phase shift photomask of
7. The method of
removing at least two portions of said opaque layer thereby exposing said partially absorbing layer underlying said at least two portions of said opaque layer; and
removing at least one portion of said partially absorbing film layer corresponding to at least one portion of said two portions of said removed opaque layer; and
etching to a predetermined depth at least one portion of said substantially transparent substrate underlying said removed partially absorbing film layer.
8. The method of
exposing said photosensitive resist to an energy source;
removing said exposed photosensitive resist; and
removing portions of said opaque layer underlying said removed photoresist, thereby exposing said absorbing film.
9. The method of
re-coating said opaque layer and said exposed absorbing film with a second coating of photosensitive resist;
exposing predefined areas of said second coating of photosensitive resist to said energy source;
removing said exposed areas of photosensitive resist;
removing portions of said opaque layer underlying said areas of removed photosensitive resist; and
etching said absorbing film and said substantially transparent layer underlying said areas of removed opaque layer to a predetermined depth.
10. The method of
11. The method of
12. The method of
13. The method of
14. The method of
removing at least two portions of said opaque layer thereby exposing said partially absorbing layer underlying said at least two portions of said opaque layer; and
removing at least one portion of said partially absorbing film layer corresponding to at least one portion of said two portions of said removed opaque layer.
16. The alternating aperture phase shift photomask of
17. The alternating aperture phase shift photomask of
18. The alternating aperture phase shift photomask of
19. The alternating aperture phase shift photomask of
20. The alternating aperture phase shift photomask of
22. The alternating aperture phase shift photomask of
23. The alternating aperture phase shift photomask of
24. The alternating aperture phase shift photomask of
25. The alternating aperture phase shift photomask of
26. The alternating aperture phase shift photomask of
|
The present invention generally relates to optical lithography and more particularly relates to improved alternating aperture phase shift masks (“aaPSMs”) and methods of making the same.
Photomasks are high precision plates containing microscopic images of electronic circuits. Photomasks are typically made from flat pieces of material that are substantially transparent, such as quartz or glass, with an opaque layer, such as chrome, on one side. Etched in the opaque layer (e.g., chrome) of the mask is a pattern corresponding to a portion of an electronic circuit design. A variety of different photomasks, including for example, aaPSMs, embedded attenuated phase shift masks and binary photomasks (e.g., chrome-on-glass), are used in semiconductor processing to transfer these patterns onto a semiconductor wafer or other type of wafer.
As shown in
As circuit designs have become increasingly complex, semiconductor manufacturing processes have become more sophisticated to meet the requirements of these complexities. In this regard, devices on semiconductor wafers have continued to shrink while circuit densities have continued to increase. This has resulted in an increased use of devices packed with smaller feature sizes, narrower widths and decreased spacing between interconnecting lines. For photolithographic processes, resolution and depth of focus (DoF) are important parameters in obtaining high fidelity of pattern reproduction from a photomask to a wafer. However, as feature sizes continue to decrease, the devices' sensitivity to the varying exposure tool wavelengths (e.g., 248 nm, 193 nm, 157 nm, 13 nm, etc.) used to write images on a semiconductor wafer has increased, thereby making it more and more difficult to write to an accurate image on the semiconductor wafer. In this regard, as feature sizes continue to decrease, light diffraction effects in the photomask are exacerbated, thereby increasing the likelihood that defects will manifest in a pattern written on a semiconductor wafer. Accordingly, it has become necessary to develop new methods to minimize the problems associated with these smaller feature sizes.
One known method for increasing resolution in smaller feature sizes involves the use of shorter exposure wavelengths (e.g., 248 nm, 193 nm, 157 nm, 13 nm, etc.). Shorter exposure wavelengths, however, typically result in a shallower DoF in conventional binary chrome-on-glass (COG) photomasks having smaller feature sizes. In this regard, when the feature size is smaller than the exposure tool wavelength, binary COG photomasks become diffraction limited, thereby making it difficult, if not impossible, to write an accurate image on the semiconductor wafer. Accordingly, phase shifting masks (“PSMs”) have been used to overcome this problem. In this regard, PSMs are known to have properties which permit high resolution while maintaining a sufficient DoF. More particularly, a PSM reduces the diffraction limitation ordinarily associated with a binary COG mask by passing light through substantially transparent areas (e.g., glass or quartz) which have either different thickness and/or different refractive indices than an ordinary binary COG mask. As a result, destructive interference is created in regions on the target semiconductor wafer that are designed to see no exposure. Thus, by reducing the impact of diffraction through phase shifting, the overall printability of an image is vastly improved such that the minimum width of a pattern resolved by using a PSM is approximately half the width of a pattern resolved in using an ordinary binary COG mask.
Various types of PSMs have been developed and are known in the art, including aaPSMs.
d=λ/2(n−1)
where d is film thickness, n is refractive index at exposure wavelength, λ is exposure wavelength. Thus, it is possible to etch smaller features in a semiconductor wafer and use shorter exposure wavelengths. Since the photoresist layer on the semiconductor wafer (
In practice, however, the aaPSM of
It is known in the art of photomask design to etch highly anisotropic features (i.e., features etched more in one direction than in other directions) in aaPSMs, as shown in
However, anisotropic features produce a waveguide effect during wafer printing which induces an aerial image intensity imbalance through focus on the wafer, as shown in
A known method for reducing aerial image intensity imbalance is to create isotropic trenches in conventional aaPSMs by utilizing: a dry plasma etching step to form an anisotropic trench; and thereafter, a wet hydrofluoric acid (HF) dip, as described in U.S. Patent Application Publication No. 2001/0044056 A1 to isotropically etch the anisotropic trench. As shown in
Although these prior art methods are useful in providing for balanced light intensity for some aaPSM designs, the additional step of undercutting the opaque regions of the photomask is both time-consuming and expensive. Accordingly, the overall number of aaPSMs which could be manufactured in a given time period is limited by these factors. Additionally, as feature sizes continue to get smaller, it will become increasingly difficult to undercut the chrome regions and the problems of chrome liftoff and excessive undercut will become increasingly prevalent. As a result, the use of aaPSMs will become less desirable and potentially obsolete. Moreover, the wet etching techniques of the prior art are known to be hazardous.
Thus, there is a long felt need for a new aaPSM and method for making the same which eliminates the need to undercut the opaque layer while at the same time provides for the transmission of balanced light intensities through the aaPSM.
Accordingly, it is an object of the present invention to provide an improved aaPSM which has a balanced aerial intensity which does not utilize hazardous materials.
It is another object of the present invention to provide an aaPSM for use in photolithography and for semiconductor fabrication to enhance resolution and depth of focus.
It is another object of the present invention to provide an improved aaPSM which has a balanced aerial intensity without excessive undercut and chrome liftoff.
It is another object of the present invention to solve the shortcomings of the prior art.
Other objects will become apparent from the foregoing description.
It has now been found that the above and related objects of the present invention are obtained in the form of a aaPSM having an intermediate film which balances the aerial intensity between two alternating recesses of different depths.
More particularly, the present invention relates to a blank photomask comprising: a photosensitive resist material layer; an opaque layer underlying the photosensitive resist material layer; a partially absorbing film layer underlying the opaque layer; and a substantially transparent substrate underlying the partially absorbing film layer. The partially absorbing film layer comprises a thickness which substantially balances an aerial image intensity of light transmitted through patterned regions when the blank photomask has been processed into an aaPSM. When processed, the patterned regions comprises at least one opening exposing the partially absorbing film layer and at least one light transmitting opening in which the partially absorbing film layer has been removed.
The present invention is also directed to a method for creating an aaPSM from the blank photomask described above and comprises the step of providing a blank photomask comprising a photosensitive resist material layer, an opaque layer underlying the photosensitive resist material layer, a partially absorbing film layer underlying the opaque layer, and a substantially transparent substrate underlying the partially absorbing film layer. The method further comprises the steps of forming in the blank photomask at least one opening which partially absorbs light, wherein the light absorbing opening exposes the partially absorbing film layer and forming at least one light transmitting opening in the blank photomask. When an aaPSM is formed by this method, the light transmitting opening exposes a portion of the substantially transparent substrate, wherein the partially absorbing film layer comprises a thickness which substantially balances an aerial image intensity of light transmitted through the at least one partially absorbing opening with light transmitted through the at least one light transmitting opening.
Additionally, the present invention is directed to an aaPSM comprising: a substantially transparent substrate having at least one light transmitting opening formed therein; a partially absorbing film layer covering portions of the substantially transparent substrate not defined by the at least one light transmitting opening; and a patterned layer of opaque material affixed to the partially absorbing film. In this aaPSM, the patterned layer exposes at least one portion of the underlying partially absorbing film layer, wherein the partially absorbing film layer comprises a thickness which substantially balances an aerial image intensity of light transmitted through the at least one exposed portion of the at least one partially absorbing film layer with light transmitted through the at least one light transmitting opening.
Additionally, the present invention is directed to another embodiment in which an aaPSM comprises a substantially transparent substrate; a partially absorbing film layer having at least one opening formed therein, wherein portions of the substantially transparent substrate underlying the at least one opening in the partially absorbing film layer are exposed; and a patterned layer of opaque material affixed to the partially absorbing film layer. In this embodiment, the patterned layer of opaque material has at least one opening which exposes underlying portions of the partially absorbing film layer, wherein the partially absorbing film layer comprises a thickness which substantially balances an aerial image intensity of light transmitted through the at least one opening in the opaque layer with light transmitted through at least one opening in the partially absorbing film layer.
Additionally, the present invention is directed to a method for manufacturing a semiconductor comprising the steps of: interposing an aaPSM between a semiconductor wafer and an energy source, wherein the an aaPSM comprises a substantially transparent substrate having at least one light transmitting opening formed therein; a partially absorbing film layer covering portions of the substantially transparent substrate not defined by the at least one light transmitting opening; and a patterned layer of opaque material affixed to the partially absorbing film. The patterned layer of the aaPSM exposes at least one portion of the underlying partially absorbing film layer, wherein the partially absorbing film layer comprises a thickness which substantially balances an aerial image intensity of light transmitted through the at least one partially absorbing opening with light transmitted through the at least one light transmitting opening. The method further comprises the steps of generating energy in the energy source; transmitting the generated energy through light transmitting opening in the substantially transparent substrate and the at least one exposed partially absorbing film layer; and etching an image on the semiconductor wafer corresponding to the light transmitting opening in the substantially transparent substrate and the at least one exposed partially absorbing film layer.
Additionally, the present invention is directed to a method for manufacturing a semiconductor comprising the steps of: interposing an aaPSM between a semiconductor wafer and an energy source, a substantially transparent substrate; a partially absorbing film layer having at least one opening formed therein, wherein portions of the substantially transparent substrate underlying the opening in the partially absorbing film layer are exposed; and a patterned layer of opaque material affixed to the partially absorbing film layer, the patterned layer of opaque material having at least one opening which exposes underlying portions of the partially absorbing film layer, wherein the partially absorbing film layer comprises a thickness which substantially balances an aerial image intensity of light transmitted through the at least one opening in the opaque layer with light transmitted through at least one opening in the partially absorbing film layer. This method further comprises the steps of generating energy in the energy source; transmitting the generated energy through the at least one opening in the partially absorbing film layer and the at least one exposed portion of the partially absorbing film layer; and etching an image on the semiconductor wafer corresponding to at least one opening in the partially absorbing film layer and the at least one exposed portion of the partially absorbing film layer.
The above and related objects, features and advantages of the present invention will be more fully understood by reference to the following, detailed description of the preferred, albeit illustrative, embodiment of the present invention when taken in conjunction with the accompanying figures, wherein:
The present invention is directed to an improved aaPSM and method for making the same. More particularly, the present invention utilizes a partially absorbent, intermediate film in a blank photomask to make an aaPSM which transmits balanced light intensities through each opening in the finished aaPSM. By utilizing a partially absorbent intermediate film in this manner, the step of undercutting the opaque layer of the aaPSM is no longer needed.
More particularly, referring to
To form the aaPSM of the present invention, a pattern defined by an electronic file is transferred to the blank photomask using conventional lithography tools, including, for example, E-beam and/or laser beam writing tools. In one embodiment, the laser source which is used operates at 365 nm, however, the present invention is not limited to this particular wavelength laser source and will work with a variety of different image sources as discussed herein. As described in detail below, the blank photomask 31 is etched to form an aaPSM 41 having types of transmissive regions: (1) an unetched, film recess 40 covering a corresponding unetched portion of the substantially transparent layer 33; and (2) a subtractively etched trench 38 etched in the substantially transparent layer 33. These transmissive regions alternate between opaque regions on the photomask, as shown in FIG. 6.
In one embodiment of the present invention to make the aaPSM of FIG. 6. First, an opaque region is defined in the photomask. In one embodiment, this is accomplished by several steps. Referring to
Next, alternating phase-shift features are formed in the substantially transparent layer 33. This is also accomplished in several steps in this embodiment of the present invention. In particular, after Step 5 has been completed, the remaining portions of the opaque layer 33 and the uncovered portions of the film 35 are re-coated with photosensitive resist 39, Step 6. Predefined areas 36 in the photosensitive resist layer 39 of the photomask are exposed to an energy source, Step 7. In this regard, these predefined areas preferably alternate with the recesses 40 wherein a portion of chrome separates each alternating recess 40 and predefined area. However, the present invention is not limited to PSMs which have alternating etched regions. It may also be used in any PSM which has etched regions of different depths, whether alternating or not. Next, the exposed areas 36 of the photosensitive resist layer 39 are developed (i.e., removed), Step 8. Thereafter, the portions of the film 35 and the corresponding, underlying portions of the substantially transparent layer 33 that are no longer covered by photosensitive resist material 39 (or opaque material 33) are etched to a specified depth, Step 9. As a result, a phase shifted, transmissive vertical trench 43 is formed in the substantially transparent layer 35. Thereafter, the remaining photoresist 39 is removed, Step 10. The result is an aaPSM having a vertical trench 38 alternating with unetched recess 40 of the substantially transparent layer that are covered by the film 35. The specified depth and the thickness of film 35 are determined so that the light that passes through the unetched recess 40 is approximately 180° out of phase from light that passes through the vertical trench 38.
It is noted, however, that the method for processing the aaPSM of the present invention is not limited to the particular processing steps. In this regard, the processing method could be modified so long as the same results are achieved. Additionally, it is noted that the aaPSM of the present invention can be modified to be etched to different depths.
For example, in another embodiment, the blank photomask of
By making and using an aaPSM having a film as described herein and shown in
Now that the preferred embodiments of the present invention have been shown and described in detail, various modifications and improvements thereon will become readily apparent to those skilled in the art. For example, the present invention is not limited to the precise processing steps described herein. In this regard, the aaPSM of the present invention may be made with fewer or more processing steps, depending upon the equipment used and needs of the photomask maker. Further, the method of the present invention may also, for example, form all the unetched regions 40 in a series of processing steps, and form the etched regions 38 in a second series of processing steps. Thus, the present embodiments are therefor to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims, and all changes that come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4178403, | Aug 04 1977 | Konishiroku Photo Industry Co., Ltd. | Mask blank and mask |
4556608, | Oct 09 1980 | Dai Nippon Insatsu Kabushiki Kaisha | Photomask blank and photomask |
4720442, | May 28 1985 | Asahi Glass Company Ltd. | Photomask blank and photomask |
5451543, | Apr 25 1994 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Straight sidewall profile contact opening to underlying interconnect and method for making the same |
5460908, | Aug 02 1991 | Micron Technology, Inc. | Phase shifting retical fabrication method |
5472811, | Jan 21 1993 | Freescale Semiconductor, Inc | Phase shifting mask structure with multilayer optical coating for improved transmission |
5477058, | Nov 09 1994 | Kabushiki Kaisha Toshiba | Attenuated phase-shifting mask with opaque reticle alignment marks |
5482799, | Oct 08 1993 | Renesas Electronics Corporation | Phase shift mask and manufacturing method thereof |
5547787, | Apr 22 1992 | Kabushiki Kaisha Toshiba | Exposure mask, exposure mask substrate, method for fabricating the same, and method for forming pattern based on exposure mask |
5578402, | Jun 21 1990 | Matsushita Electronics Corporation | Photomask used by photolithography and a process of producing same |
5693568, | Dec 14 1995 | GLOBALFOUNDRIES Inc | Reverse damascene via structures |
5725973, | Feb 07 1994 | Samsung Electronic Co., Ltd. | Photo mask and method for manufacturing same |
5756396, | May 06 1996 | Taiwan Semiconductor Manufacturing Company Ltd | Method of making a multi-layer wiring structure having conductive sidewall etch stoppers and a stacked plug interconnect |
5932377, | Feb 24 1998 | GLOBALFOUNDRIES Inc | Exact transmission balanced alternating phase-shifting mask for photolithography |
5935733, | Apr 05 1996 | Intel Corporation | Photolithography mask and method of fabrication |
5939227, | Mar 09 1998 | Rochester Institute of Technology | Multi-layered attenuated phase shift mask and a method for making the mask |
5955222, | Dec 03 1996 | GOOGLE LLC | Method of making a rim-type phase-shift mask and mask manufactured thereby |
6187480, | Apr 03 1998 | United Microelectronics Corp. | Alternating phase-shifting mask |
6291113, | Oct 21 1999 | Advanced Micro Devices, Inc. | Sidelobe suppressing phase shift mask and method |
6335130, | May 01 2000 | ASML NETHERLANDS B V | System and method of providing optical proximity correction for features using phase-shifted halftone transparent/semi-transparent features |
6355557, | Jul 22 1998 | Applied Materials, Inc.; Applied Materials, Inc | Oxide plasma etching process with a controlled wineglass shape |
6492069, | Mar 10 2000 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Method for forming an attenuated phase-shifting mask |
6743553, | Dec 26 2000 | Hoya Corporation | Halftone phase shift mask and mask blank |
6780548, | Jan 11 2001 | TOPPAN PHOTOMASKS, INC | Alternating aperture phase shifting photomask with improved transmission balancing |
20010044056, | |||
JP2001174973, | |||
JP239153, | |||
JP7104457, | |||
JP876353, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 18 2003 | Photronics, Inc. | (assignment on the face of the patent) | / | |||
Mar 18 2003 | PROGLER, CHRISTOPHER J | PHOTRONICS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013881 | /0076 | |
Mar 18 2003 | PROGLER, CHRISTOPHER J | PHOTRONICS, INC , A CORP OF CONNECTICUT | CORRECTIVE DOCUMENT TO CORRECT ASSIGNEE S ADDRESS AND STATE OF INCORPORATION ON ORIGINAL ASSIGNMENT, RECORDED 03 18 2003 AT REEL 013881 FRAME 0076 | 016991 | /0756 | |
Dec 12 2008 | PHOTRONICS, INC | JPMorgan Chase Bank, National Association | SECURITY AGREEMENT | 021976 | /0635 | |
Feb 12 2010 | PHOTRONICS, INC | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY AGREEMENT | 023928 | /0612 | |
Sep 27 2018 | PHOTRONICS, INC | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 047002 | /0633 |
Date | Maintenance Fee Events |
Feb 11 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 04 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 06 2017 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 23 2008 | 4 years fee payment window open |
Feb 23 2009 | 6 months grace period start (w surcharge) |
Aug 23 2009 | patent expiry (for year 4) |
Aug 23 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 23 2012 | 8 years fee payment window open |
Feb 23 2013 | 6 months grace period start (w surcharge) |
Aug 23 2013 | patent expiry (for year 8) |
Aug 23 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 23 2016 | 12 years fee payment window open |
Feb 23 2017 | 6 months grace period start (w surcharge) |
Aug 23 2017 | patent expiry (for year 12) |
Aug 23 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |