A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit is provided. The circuit includes a differential input for receiving a differential input signal. A switch pair is coupled to the differential input. A pair of load resistors coupled to the switch pair defines a differential output for providing a differential output signal. A current source is coupled to the switch pair. A control input receives a control signal and control circuitry coupled to the control input disable the current source to select a cmos testing mode responsive to the control signal being activated.
|
1. A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit comprising:
a differential input for receiving a differential input signal;
a switch pair coupled to said differential input;
a pair of load resistors coupled to said switch pair defining a differential output for providing a differential output signal;
a current source coupled to said switch pair;
a control input for receiving a control signal; and
control circuitry coupled to said control input for disabling said current source to select a cmos testing mode responsive to said control signal being activated.
17. A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit comprising:
a differential input for receiving a differential input signal;
a switch pair of field effect transistors coupled to said differential input;
a pair of load resistors coupled to said switch pair of field effect transistors defining a differential output for providing a differential output signal;
a first pair of field effect transistors and a second pair of field effect transistors connected in parallel between said pair of load resistors and a voltage supply rail; said first pair of field effect transistors being substantially larger than said second pair of field effect transistors;
a current source field effect transistor coupled to said switch pair of field effect transistors;
a control input for receiving a control signal; and
control circuitry coupled to said control input for disabling said current source to select a cmos testing mode responsive to said control signal being activated.
2. A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit as recited in
3. A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit as recited in
4. A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit as recited in
5. A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit as recited in
6. A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit as recited in
7. A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit as recited in
8. A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit as recited in
9. A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit as recited in
10. A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit as recited in
11. A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit as recited in
12. A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit as recited in
13. A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit as recited in
14. A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit as recited in
15. A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit as recited in
16. A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit as recited in
18. A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit as recited in
19. A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit as recited in
20. A dual mode, analog differential and complementary metal oxide semiconductor (cmos) logic circuit as recited in
|
The present invention relates generally to semiconductor devices, and more particularly, relates to a dual mode, analog differential and complementary metal oxide semiconductor (CMOS) logic circuit.
High speed data links require analog differential circuitry to meet performance requirements. When such analog differential circuitry is implemented in application specific integrated circuit (ASIC) technology, strict methodology and testing rules must be met. These testing rules are intended for complementary metal oxide semiconductor (CMOS) logic circuits and generally are difficult or impossible to apply to analog differential circuitry.
One past approach has been to provide duplicate circuits; a first analog differential circuit that is normally used or is the functional circuit and a second duplicate circuit that is a CMOS copy of the functional analog differential circuit. The second CMOS duplicate circuit is provided merely to mimic the first functional analog differential circuit during test modes. A selection switch is provided for selecting between the duplicate circuits.
Significant disadvantages of this approach are that the first functional analog differential circuit is not really tested, and extra circuitry is required for the CMOS duplicate circuit and the selection switch. Also the capacitive loads of the selection circuitry compromise the performance of the functional analog differential circuit.
A principal object of the present invention is to provide a dual mode, analog differential and complementary metal oxide semiconductor (CMOS) logic circuit. Other important objects of the present invention are to provide such dual mode, analog differential and complementary metal oxide semiconductor (CMOS) logic circuit substantially without negative effect and that overcome many of the disadvantages of prior art arrangements.
In brief, a dual mode, analog differential and complementary metal oxide semiconductor (CMOS) logic circuit is provided. The circuit includes a differential input for receiving a differential input signal. A switch pair is coupled to the differential input. A pair of load resistors coupled to the switch pair defines a differential output for providing a differential output signal. A current source is coupled to the switch pair. A control input receives a control signal and control circuitry coupled to the control input disable the current source to select a CMOS testing mode responsive to the control signal being activated.
The present invention together with the above and other objects and advantages may best be understood from the following detailed description of the preferred embodiments of the invention illustrated in the drawings, wherein:
Having reference now to the drawings, in
In accordance with features of the preferred embodiment, dual mode, analog differential and CMOS logic circuit 100 continues to function during leak testing where no DC current is allowed. Typically analog differential circuits require DC current and therefore are not functional during leak testing. Dual mode, analog differential and CMOS logic circuit 100 allows a no DC current mode or CMOS mode for test purposes. Dual mode, analog differential and CMOS logic circuit 100 functions as an analog differential circuit providing high speed operation to meet normal performance requirements. During the CMOS mode with no DC current, the dual mode, analog differential and CMOS logic circuit 100 operates at a substantially slower speed for test purposes and forms a pair of CMOS inverters during the CMOS testing mode. The pair of CMOS inverters during the CMOS testing mode provide a differential output signal of a full rail-to-rail swing signal from a positive supply rail to a negative supply rail.
A plurality of signals including a pair of differential true and complement input signals (AT), (AC), a leak test (LT) signal, and a bias (BIAS) signal are applied to the dual mode, analog differential and CMOS logic circuit 100. Dual mode, analog differential and CMOS logic circuit 100 provides a pair of output signals or differential true and complement output signals (ZT), (ZC) during both normal analog differential circuit function and test CMOS logic circuit function.
Dual mode, analog differential and CMOS logic circuit 100 is a differential buffer with a switch pair formed of a pair of N-channel field effect transistors (NFETS) 102, 104, a pair of load resistors 106, 108 and an NFET current source 110 at the common source connection of the NFET switching pair 102, 104. A first pair of P-channel field effect transistors (PFETs) 112, 114 and a parallel second pair of P-channel field effect transistors (PFETs) 116, 118 are connected in series between the pair load resistors 106, 108 and a voltage supply rail VDD. The PFETs 116, 118 are substantially larger than the PFETs 112, 114. For example, PFETs 116, 118 are ten times larger than the PFETs 112, 114. The small PFETs 112, 114 are provided for operation during the CMOS mode of logic circuit 100.
A control NFET 120 in parallel with the current source NFET 110 is connected between the common source connection of the NFET switching pair 102, 104 at node labeled VCM and ground. The differential true and complement input signals AT, AC respectively are applied to a gate of the respective switching NFETs 102, 104 and respective small PFETs 112, 114. The BIAS signal is applied to the gate of current source NFET 110. The leak test LT signal is applied to the respective gate of the NFET 120 and the PFETs 116, 118 having a common gate connection.
In normal operation or analog differential mode, the LT input is low and the pair of small PFETs 112, 114 in series with the load resistors 106, 108 are shorted out by larger PFETs 116, 118 which connect the supply voltage to the load resistors 106, 108 and these larger PFETs 116, 118 effectively become part of the respective load resistors 106, 108. The control NFET 120 is turned off when the LT input is low.
In the testing or CMOS mode, where the LT pin goes high, the larger shorting PFETs 116, 118 are turned off or are open and the NFET 120 in parallel with the current source shorts out the current source FET 110. The smaller PFETs 112, 114 and switching NFETs 102, 104 remain active during the CMOS testing mode. PFET 112 and NFET 102; and PFET 114 and NFET 104 form a pair of CMOS inverters during the CMOS testing mode.
Referring now to
The first stage of the dual mode, analog differential and CMOS logic circuit 100 is formed by a pair of NFETs 202, 204, a pair of load resistors 206, 208 and an NFET current source 210 at the common source connection of the NFET switching pair 202, 204. A first pair and a parallel second pair of PFETs 212, 214 and PFETs 216, 218 are connected in series between the load resistors 206, 208 and a voltage supply rail VDD. A control NFET 220 in parallel with the current source NFET 210 is connected between the common source connection of the switching NFET pair 202, 204 at node labeled VCM1 and ground. One of a pair of differential true and complement input clock signals CIP, CIM respectively is applied to a gate of the respective switching NFETs 202, 204 and respective PFETs 212, 214. The leak test (LT) signal is applied to the gates of the PFETs 216, 218 that are connected together and is applied to the NFET 220. The PFETs 216, 218 are substantially larger than the PFETs 212, 214.
The second stage of dual mode, analog differential and CMOS logic circuit 100 is connected in series with the first stage of circuit 100 and is formed by a pair of NFETs 232, 234, a pair of load resistors 236, 238 and an NFET current source 240 at the common source connection of the NFET switching pair 232, 234. A first pair and a parallel second pair of PFETs 242, 244 and PFETs 246, 248 are connected in series between the load resistors 236, 238 and a voltage supply rail VDD. A control NFET 250 in parallel with the current source NFET 240 is connected between the common source connection of the switching NFET pair 232, 234 at node labeled VCM2 and ground. The differential true and complement output signals at the junction of the respective switching NFETs 202, 204 and load resistors 206, 208 of the first stage respectively are applied to a gate of the respective switching NFETs 232, 234 and respective PFETs 242, 244. The leak test (LT) signal is applied to the gates of the PFETs 246, 248 that are connected together and to the NFET 250. The PFETs 246, 248 are substantially larger than the PFETs 242, 244. The BIAS signal is applied to the current source NFETs 210 and 240 via a resistor capacitor circuit formed by a pair of series connected resistors 252, 254 and a pair of NFETs 256, 558 defining thin oxide capacitors, each having a common source and drain connection tied to ground and a gate coupled to the series connected resistors 252, 254, as shown.
The second stage of dual mode, analog differential and CMOS logic circuit 100 provides a pair of output signals or differential true and complement output clock signals (CP), (CM) at the junction of the respective switching NFETs 232, 234 and load resistors 236, 238 during both normal analog differential circuit function and test CMOS logic circuit function. During the CMOS testing mode, the current source NFET 240 is disabled and the PFETs 246, 248 are turned off responsive to the activated leak test LT signal. The smaller PFETs 242, 244 and switching NFETs 232, 234 form a pair of CMOS inverters during the CMOS testing mode providing a differential output signal CP, CM of a full rail-to-rail swing signal from a positive supply rail to a negative supply rail.
Referring now to
A plurality of inputs including a multiplexer input (JP), a multiplexer select input (SELJ), and conventional pair of differential true and complement input signals (AT) and (AC) are applied to the differential multiplexer circuit 300. The multiplexer input JP is applied to a first inverter formed by a series connected PFET 302 and NFET 304. The inverted JP output at the drain and source connection of PFET 302 and NFET 304 is applied to a first 2-way NAND formed by PFETs 306, 308 and NFETs 310, 312; and the multiplexer input JP is applied to a second 2-way NAND formed by PFETs 314, 316 and NFETs 318, 320. The multiplexer select input SELJ is applied to the respective gate of PFETs 308, 316. The multiplexer select input SELJ also is applied to a second inverter formed by a series connected PFET 322 and NFET 324 and to the respective gate of NFETs 312, 320. The outputs of the 2-way NANDs at the respective drain and source connections of PFETs 306, 308 and NFET 310 and of PFETs 314, 316 and NFETs 318 and the multiplexer select input SELJ are applied to a first pair of pass-gate circuits respectively formed by PFET 326 and NFET 330, and PFET 328 and NFET 332, as shown. A second pair of pass-gate circuit respectively formed by PFET 334 and NFET 338, and PFET 336 and NFET 340, is coupled to the first pass-gate circuits. The conventional differential true and complement input signals AT and AC are applied to the second pair of pass-gate circuits. The pair of 2-way NANDs, redundant for the pass-gate circuits, provides noise isolation. The pass-gate circuits disconnect the output from the input, if off; and provide the output equal to the input, if on. The differential true and complement output signals of the pass-gate circuits respectively are applied to the output stage of the dual mode, analog differential and CMOS logic circuit 100 of the exemplary differential multiplexer circuit 300.
The output stage of the dual mode, analog differential and CMOS logic circuit 100 is formed by a pair of switching NFETs 350, 352, a pair of load resistors 354, 356 and an NFET current source 358 at the common source connection of the NFET switching pair 350, 352. A first pair and a parallel second pair of PFETs 360, 362 and PFETs 364, 366 are connected in series between the load resistors 354, 356 and a voltage supply rail VDD. A control NFET 368 in parallel with the current source NFET 358 is connected between the common source connection of the switching NFET pair 350, 352 at node labeled VCM and ground. The differential true and complement output signals of the pass-gate circuits respectively are applied to a gate of the respective switching NFETs 350, 352 and respective PFETs 360, 362. The leak test LT signal is applied to the gates of the PFETs 364, 366 that are connected together and to the NFET 368. The PFETs 364, 366 are substantially larger than the PFETs 360, 362. The BIAS signal is applied to the current source NFET 358 via a resistor capacitor circuit formed by a pair of series connected resistors 370, 372 and an NFET 374 defining a thin oxide capacitor with a common source and drain connection tied to ground and a gate coupled to a junction of the series connected resistors 370, 372.
Differential multiplexer outputs ZC, ZT are provided at the respective junction of NFET 350 and load resistor 354; and NFET 352 and load resistor 356 of the output stage of the dual mode, analog differential and CMOS logic circuit 100 of the exemplary differential multiplexer circuit 300. During the CMOS testing mode, the PFETs 364, 366 are turned off or open responsive to the leak test LT signal and the current source NFET 358 is disabled by the control NFET 368 responsive to the leak test LT signal pulling node VCM to ground. The small PFETs 360, 362 and NFETS 350, 352 form a pair of CMOS inverters during the CMOS testing mode providing a differential output signal ZC, ZT of a full rail-to-rail swing signal from a positive supply rail to a negative supply rail.
Referring now to
The differential outputs of the first stage at respective nodes DPB, DMB are applied to an output stage of the dual mode, analog differential and CMOS logic circuit 100 of
The BIAS signal is applied to a resistor capacitor circuit formed by a pair of series connected resistors 478, 480 and an NFET 482 defining a thin oxide capacitor with a common source and drain connection tied to ground and a gate coupled to a junction of the series connected resistors 478, 480 to provide a BIAS2 signal, as shown. The BIAS2 signal is applied to the gate of the current source NFETs 440, 476.
An inverted leak test (LTM) is generated with the leak test input LT signal applied to an inverter formed by a series connected PFET 484 and NFET 486. The inverted leak test LTM signal at the drain connection of the PFET 484 and NFET 486 is applied to two stages respectively formed by a PFET 488 and NFET 490 connected between nodes labeled DPB, QM; and a PFET 492 and an NFET 494 connected between nodes labeled DMB, QP. The leak test input LT signal is applied to the gate input of NFETs 490, 494 and the inverted leak test input LTM signal is applied to the gate input of the PFETs 488, 492.
The inverted leak test LTM signal is applied to the gate of NFETs 460, 464. Differential output signals QM, QP are provided at the respective junction connection of NFET 434 and load resistor 436, and NFET 435 and load resistor 438 and is applied to a gate input of NFETs 462, 466. The leak test input LT signal is applied to the gates of the PFETs 446, 448 that are connected together and to the control NFETs 450, 476. The PFETs 446, 448 are substantially larger than the PFETs 442, 444.
During the CMOS testing mode, the PFETs 446, 448 are turned off or are open responsive to the leak test LT signal and the current source NFETs 440, 476 are disabled by the respective control NFETs 450, 474 responsive to the leak test LT signal pulling nodes VCM2 and VCM3 to ground. The small PFETs 442. 444 and NFETs 434, 435 form a pair of CMOS inverters during the CMOS testing mode to provide a differential output signal QM, QP of a full rail-to-rail swing signal from a positive supply rail to a negative supply rail.
While the present invention has been described with reference to the details of the embodiments of the invention shown in the drawing, these details are not intended to limit the scope of the invention as claimed in the appended claims.
Cecchi, Delbert R., Launsbach, Michael, Siljenberg, David W., Preuss, Curtis Walter
Patent | Priority | Assignee | Title |
7573299, | May 31 2006 | Renesas Electronics Corporation | Semiconductor integrated circuit including output circuit |
7579876, | Jan 17 2007 | Scintera Networks LLC | Multi-use input/output pin systems and methods |
7629810, | Aug 16 2006 | LONGITUDE SEMICONDUCTOR S A R L | Input and output circuit |
8217682, | Aug 10 2010 | XILINX, Inc.; Xilinx, Inc | Output driver and operation thereof |
Patent | Priority | Assignee | Title |
6087879, | Oct 26 1995 | Hitachi, LTD | Semiconductor integrated circuit device and low-amplitude signal receiving method |
6337819, | Apr 28 1999 | Fujitsu Limited | Semiconductor device having on-chip terminal with voltage to be measured in test |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 17 2003 | CECCHI, DELBERT R | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014727 | /0155 | |
Nov 17 2003 | LAUNSBACH, MICHAEL | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014727 | /0155 | |
Nov 17 2003 | PREUSS, CURTIS WALTER | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014727 | /0155 | |
Nov 20 2003 | International Business Machines Corporation | (assignment on the face of the patent) | / | |||
Nov 20 2003 | SILJENBERG, DAVID W | International Business Machines Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014727 | /0155 | |
Jun 04 2013 | International Business Machines Corporation | INTELLECTUAL DISCOVERY, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030628 | /0554 |
Date | Maintenance Fee Events |
Jun 09 2005 | ASPN: Payor Number Assigned. |
Feb 17 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 08 2013 | REM: Maintenance Fee Reminder Mailed. |
Jun 28 2013 | LTOS: Pat Holder Claims Small Entity Status. |
Jul 18 2013 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Jul 18 2013 | M2555: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity. |
Aug 02 2013 | ASPN: Payor Number Assigned. |
Aug 02 2013 | RMPN: Payer Number De-assigned. |
Feb 07 2017 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Feb 17 2017 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Nov 16 2017 | PTGR: Petition Related to Maintenance Fees Granted. |
Nov 16 2017 | M1559: Payment of Maintenance Fee under 1.28(c). |
Date | Maintenance Schedule |
Aug 23 2008 | 4 years fee payment window open |
Feb 23 2009 | 6 months grace period start (w surcharge) |
Aug 23 2009 | patent expiry (for year 4) |
Aug 23 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 23 2012 | 8 years fee payment window open |
Feb 23 2013 | 6 months grace period start (w surcharge) |
Aug 23 2013 | patent expiry (for year 8) |
Aug 23 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 23 2016 | 12 years fee payment window open |
Feb 23 2017 | 6 months grace period start (w surcharge) |
Aug 23 2017 | patent expiry (for year 12) |
Aug 23 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |