There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device, having mechanical structures encapsulated in a chamber prior to final packaging and a contact area disposed at least partially outside the chamber. The contact area is electrically isolated from nearby electrically conducting regions by way of dielectric isolation trench that is disposed around the contact area. The material that encapsulates the mechanical structures, when deposited, includes one or more of the following attributes: low tensile stress, good step coverage, maintains its integrity when subjected to subsequent processing, does not significantly and/or adversely impact the performance characteristics of the mechanical structures in the chamber (if coated with the material during deposition), and/or facilitates integration with high-performance integrated circuits. In one embodiment, the material that encapsulates the mechanical structures is, for example, silicon (polycrystalline, amorphous or porous, whether doped or undoped), silicon carbide, silicon-germanium, germanium, or gallium-arsenide.
|
9. A method of manufacturing a microelectromechanical device having a micromechanical structure that resides in a chamber and wherein the microelectromechanical device further includes a contact, the method comprising:
depositing a first encapsulation layer over the micromechanical structure wherein the first encapsulation layer is a semiconductor material;
forming at least one vent in the first encapsulation layer;
forming the chamber;
depositing a second encapsulation layer over or in the vent to seal the chamber wherein the second encapsulation layer is a semiconductor material;
forming a trench around at least a portion of the contact wherein the trench and at least the portion of the contact are disposed outside the chamber; and
depositing a first material in the trench to electrically isolate the contact.
1. A method of sealing a chamber of a microelectromechanical device having a micromechanical structure and a contact wherein the micromechanical structure is in a chamber, the method comprising:
depositing a sacrificial layer over at least a portion of the micromechanical structure;
depositing a first encapsulation layer over the sacrificial layer;
forming at least one vent through the first encapsulation layer to allow removal of at least a portion of the sacrificial layer;
removing at least a portion of the sacrificial layer to form the chamber;
depositing a second encapsulation layer over or in the vent to seal the chamber wherein the second encapsulation layer is a semiconductor material;
forming a trench around at least a portion of the contact which is disposed outside the chamber; and
depositing an insulating material in the trench to electrically isolate the contact.
19. A method of manufacturing an microelectromechanical device having a micromechanical structure that resides in a chamber, wherein the microelectromechanical device further includes a contact, the method comprising:
depositing a first encapsulation layer over the micromechanical structure;
depositing a second encapsulation layer on the first encapsulation layer and on the contact, wherein the second encapsulation layer is a semiconductor material;
forming a trench around at least a portion of the contact which is disposed outside the chamber;
depositing an insulating material in the trench, and on at least a first surface of the contact, and over the second encapsulation layer;
removing at least a portion of the insulating material that is disposed on the first surface of the contact to thereby expose a portion of the first surface of the contact; and
depositing a conductive material on the exposed portion of the first surface of the contact.
2. The method of
3. The method of
4. The method of
5. The method of
8. The method of
depositing an insulating layer on at least a portion of the trench;
depositing an highly conductive material on the contact and over the insulating layer.
10. The method of
12. The method of
13. The method of
14. The method of
16. The method of
depositing an insulating layer on at least a portion of the trench;
depositing an highly conductive material on the contact and over the insulating layer.
17. The method of
18. The method of
20. The method of
21. The method of
22. The method of
23. The method of
24. The method of
25. The method of
depositing a sacrificial layer over at least a portion of the micromechanical structure;
depositing the first encapsulation layer over the sacrificial layer; and
removing at least a portion of the sacrificial layer.
26. The method of
forming at least one vent through the first encapsulation layer to allow removal of at least the portion of the sacrificial layer; and
depositing the second encapsulation layer over or in the vent to seal the chamber.
27. The method of
|
This invention relates to electromechanical systems and techniques for fabricating microelectromechanical and nanoelectromechanical systems; and more particularly, in one aspect, to fabricating or manufacturing microelectromechanical and nanoelectromechanical systems with high performance integrated circuits on a common substrate.
Microelectromechanical systems (“MEMS”), for example, gyroscopes, resonators and accelerometers, utilize micromachining techniques (i.e., lithographic and other precision fabrication techniques) to reduce mechanical components to a scale that is generally comparable to microelectronics. MEMS typically include a mechanical structure fabricated from or on, for example, a silicon substrate using micromachining techniques.
The mechanical structures are typically sealed in a chamber. The delicate mechanical structure may be sealed in, for example, a hermetically sealed metal container (for example, a TO-8 “can”, see, for example, U.S. Pat. No. 6,307,815) or bonded to a semiconductor or glass-like substrate having a chamber to house, accommodate or cover the mechanical structure (see, for example, U.S. Pat. Nos. 6,146,917; 6,352,935; 6,477,901; and 6,507,082). In the context of the hermetically sealed metal container, the substrate on, or in which, the mechanical structure resides may be disposed in and affixed to the metal container. The hermetically sealed metal container also serves as a primary package as well.
In the context of the semiconductor or glass-like substrate packaging technique, the substrate of the mechanical structure may be bonded to another substrate whereby the bonded substrates form a chamber within which the mechanical structure resides. In this way, the operating environment of the mechanical structure may be controlled and the structure itself protected from, for example, inadvertent contact. The two bonded substrates may or may not be the primary package for the MEMS as well.
MEMS that employ a hermetically sealed metal container or a bonded semiconductor or glass-like substrate to protect the mechanical structures tend to be difficult to cost effectively integrate with high performance integrated circuitry on the same substrate. In this regard, the additional processing required to integrate the high performance integrated circuitry, tends to either damage or destroy the mechanical structures.
Another technique for forming the chamber that protects the delicate mechanical structure employs micromachining techniques. (See, for example, International Published Patent Applications Nos. WO 01/77008 A1 and WO 01/77009 A1). In this regard, the mechanical structure is encapsulated in a chamber using a conventional oxide (SiO2) deposited or formed using conventional techniques (i.e., oxidation using low temperature techniques (LTO), tetraethoxysilane (TEOS) or the like). (See, for example, WO 01/77008 A1, FIGS. 2-4). When implementing this technique, the mechanical structure is encapsulated prior to packaging and/or integration with integrated circuitry.
While employing a conventional oxide to encapsulate the mechanical structures of the MEMS may provide advantages relative to hermetically sealed metal container or a bonded semiconductor or glass-like substrate, a conventional oxide, deposited using conventional techniques, often exhibits high tensile stress at, for example, corners or steps (i.e., significant spatial transitions in the underlying surface(s)). Further, such an oxide is often formed or deposited in a manner that provides poor coverage of those areas where the underlying surface(s) exhibit significant spatial transitions. In addition, a conventional oxide (deposited using conventional techniques) often provides an insufficient vacuum where a vacuum is desired as the environment in which the mechanical structures are encapsulated and designed to operate. These shortcomings may impact the integrity and/or performance of the MEMS.
Moreover, a conventional oxide, deposited using conventional techniques, may produce a film on the mechanical structures during the encapsulation process. This film may impact the integrity of the mechanical structures and, as such, the performance or operating characteristics of the MEMS (for example, the operating characteristics of a resonator).
There is a need for, among other things, MEMS (for example, gyroscopes, resonators, temperature sensors and/or accelerometers) that (1) overcome one, some or all of the shortcomings of the conventional materials and techniques and/or (2) may be efficiently integrated on a common substrate with high performance integrated circuits and/or additional MEMS.
There are many inventions described and illustrated herein. In a first principal aspect, the present invention is a method of sealing a chamber of an electromechanical device having a mechanical structure disposed within the chamber. The device also includes a contact (i.e., a conductive region, such as the contact area and/or contact via) that is partially or wholly disposed outside of the chamber. The method includes depositing a sacrificial layer over at least a portion of the mechanical structure and depositing a first encapsulation layer (for example, a polycrystalline silicon, amorphous silicon, germanium, silicon/germanium or gallium arsenide) over the sacrificial layer. At least one vent is formed through the first encapsulation layer, and at least a portion of the sacrificial layer is removed to form the chamber. Thereafter, a second encapsulation layer is deposited over or in the vent to seal the chamber wherein the second encapsulation layer is a semiconductor material (for example, polycrystalline silicon, amorphous silicon, silicon carbide, silicon/germanium, germanium, or gallium arsenide).
The method of this aspect of the present invention includes forming a trench around the contact. An insulating material (for example, silicon dioxide or silicon nitride) may be disposed in the trench to electrically isolate the contact from adjacent conductive regions. In one embodiment, the trench surrounds the contact to electrically isolate the contact.
The method may further include depositing an insulating layer on at least a portion of the trench and, thereafter, depositing an highly conductive material on the contact and over the insulating layer to provide electrical connection to the contact. In one embodiment, a semiconductor material may be deposited in the trench after depositing the insulating material.
In another principal aspect, the present invention is a method of manufacturing an electromechanical device having a contact and a mechanical structure that resides in a chamber. The chamber may include a fluid having a pressure that provides mechanical damping for the mechanical structure. The method comprises depositing a first encapsulation layer (comprised of a semiconductor material, for example, polycrystalline silicon, amorphous silicon, silicon carbide, silicon/germanium, germanium, or gallium arsenide) over the mechanical structure. At least one vent is then formed in the first encapsulation layer and the chamber is formed. Thereafter, a second encapsulation layer (comprised of a semiconductor material, for example, polycrystalline silicon, porous polycrystalline silicon, amorphous silicon, silicon carbide, silicon/germanium, germanium, or gallium arsenide) is deposited over or in the vent to seal the chamber.
The method further includes forming a trench around at least a portion of the contact wherein the contact and the trench are disposed outside the chamber. Thereafter, a first material (for example, a silicon nitride or silicon dioxide) is deposited in the trench to electrically isolate the contact. The trench may surround and electrically isolate the contact.
In one embodiment, a second material may be deposited in the trench after deposition of the first material. The second material may be a semiconductor material.
In another embodiment, a first portion of the first encapsulation layer is comprised of a monocrystalline silicon and a second portion is comprised of a polycrystalline silicon. In this embodiment, a surface of the second encapsulation layer may be planarized to expose the first portion of the first encapsulation. Thereafter, a monocrystalline silicon may be grown on the first portion of the first encapsulation.
The method may further include depositing an insulating layer on at least a portion of the trench and, thereafter, depositing an highly conductive material on the contact and over the insulating layer to provide electrical connection to the contact. In one embodiment, a semiconductor material may be deposited in the trench after depositing the insulating material.
In another principal aspect, the present invention is an electromechanical device comprising a chamber including a first encapsulation layer (for example, polycrystalline silicon, porous polycrystalline silicon, amorphous silicon, germanium, silicon/germanium, gallium arsenide, silicon nitride or silicon carbide), having at least one vent, and a mechanical structure having at least a portion disposed in the chamber. The electromechanical device also includes a second encapsulation layer comprised of a semiconductor material (for example, polycrystalline silicon, porous polycrystalline silicon, amorphous silicon, silicon carbide, silicon/germanium, germanium, or gallium arsenide), deposited over or in the vent, to thereby seal the chamber.
The electromechanical device of this aspect of the invention includes a contact (at least partially disposed outside the chamber) and a trench. The trench is, disposed around at least a portion of the contact wherein the contact and the trench as disposed outside the chamber. The trench includes a first material (for example, an insulating material such as silicon dioxide and/or silicon nitride) disposed therein to electrically isolate the contact from surrounding conductive materials.
In one embodiment, the first material is an insulating material that is disposed on at least the outer surfaces of the trench and a second material is disposed in a central portion of the trench. The second material may be a semiconductor material.
In another embodiment, the trench is disposed on an etch stop region comprised of, for example, silicon nitride or silicon dioxide.
The device of this aspect of the present invention may include a first portion of the first encapsulation layer that is comprised of a monocrystalline silicon and a second portion is comprised of a polycrystalline silicon. In addition, the present invention may include a field region disposed outside and above the chamber wherein the field region is comprised of a monocrystalline silicon.
In one embodiment, the first portion of the first encapsulation layer may be comprised of a monocrystalline silicon and a second portion comprised of a porous or amorphous silicon. In this embodiment, the second encapsulation layer overlying the second portion of the first encapsulation layer is a polycrystalline silicon.
In the course of the detailed description to follow, reference will be made to the attached drawings. These drawings show different aspects of the present invention and, where appropriate, reference numerals illustrating like structures, components, materials and/or elements in different figures are labeled similarly. It is understood that various combinations of the structures, components, materials and/or elements, other than those specifically shown, are contemplated and are within the scope of the present invention.
There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device, having mechanical structures encapsulated in a chamber prior to final packaging and/or completion of the device. The material that encapsulates the mechanical structures may include one or more of the following attributes: low tensile stress, good step coverage, maintains integrity when subjected to subsequent processing, does not significantly and/or adversely affect the performance characteristics of the mechanical structures (if coated with the material during its deposition, formation and/or growth) within the chamber, maintains designed, appropriate and/or suitable encapsulation attributes over operating conditions and/or time, and/or facilitates integration with high-performance integrated circuits. In one embodiment, the mechanical structures are encapsulated by a semiconductor material, for example, silicon (for example, monocrystalline silicon, polycrystalline silicon, amorphous silicon or porous polycrystalline silicon, whether doped or undoped), germanium, silicon-germanium, silicon carbide or gallium arsenide, or combinations thereof. Such materials may maintain one or more of the following attributes over typical operating conditions and the lifetime of the MEMS.
With reference to
The data processing electronics 16 and/or interface circuitry 18 may be integrated in or on substrate 14. In this regard, MEMS 10 may be a monolithic structure including mechanical structure 12, data processing electronics 16 and interface circuitry 18. The data processing electronics 16 and/or interface circuitry 18 may also reside on a separate, discrete substrate that, after fabrication, is bonded to or on substrate 14.
With reference to
Moreover, the micromachined mechanical structure 12 may be an accelerometer, gyroscope or other transducer (for example, pressure sensor, strain sensor, tactile sensor, magnetic sensor and/or temperature sensor), or resonator. The micromachined mechanical structure 12 may also include mechanical structures of a plurality of transducers or sensors including one or more accelerometers, gyroscopes, pressure sensors, tactile sensors and temperature sensors. Where micromachined mechanical structure 12 is an accelerometer, mechanical structures 20a-d may be a portion of the interdigitated or comb-like finger electrode arrays that comprise the sensing features of the accelerometer (See, for example, U.S. Pat. No. 6,122,964).
With continued reference to
The encapsulating layers 28a and 28b may be comprised of, for example, a semiconductor. In one embodiment, encapsulating layers 28a and 28b may contain silicon (for example, monocrystalline silicon, polycrystalline silicon, amorphous silicon or porous polycrystalline silicon, whether doped or undoped), germanium, silicon/germanium, silicon carbide, and gallium arsenide (and combinations thereof). The encapsulating layers 28a and 28b may be the same materials or different materials.
The encapsulating layers 28a and 28b may be deposited, formed and/or grown using the same or different techniques. For example, encapsulating layer 28a may be a polycrystalline silicon deposited using a low pressure (“LP”) chemically vapor deposited (“CVD”) process (in a tube or EPI reactor) or plasma enhanced (“PE”) CVD process and encapsulating layer 28b may be a doped polycrystalline silicon deposited using an atmospheric pressure (“AP”) CVD process. Alternatively, for example, encapsulating layer 28a may be a silicon germanium deposited using a LPCVD process and encapsulating layer 28b may be doped polycrystalline silicon deposited using a PECVD process. Indeed, all semiconductor materials and deposition techniques, and permutations thereof, for encapsulating chamber 26, whether now known or later developed, are intended to be within the scope of the present invention.
It should be noted that the mechanical structures of one or more transducers or sensors (for example, accelerometers, gyroscopes, pressure sensors, tactile sensors and/or temperature sensors) may be contained or reside in a single chamber and exposed to an environment within that chamber. Under this circumstance, the environment contained in chamber 26 provides a mechanical damping for the mechanical structures of one or more micromachined mechanical structures (for example, an accelerometer, a pressure sensor, a tactile sensor and/or temperature sensor).
Moreover, the mechanical structures of the one or more transducers or sensors may themselves include multiple layers that are vertically and/or laterally stacked or interconnected. (See, for example, micromachined mechanical structure 12b of
In one aspect of the present invention, contact area 24 of micromachined mechanical structure 12 is electrically isolated from nearby electrically conducting regions (for example, second encapsulation layer 28b and/or a field region (not illustrated)). With continued reference to
With reference to
With reference to
With reference to
The first encapsulation layer 28a may be etched to form passages or vents 36 (see, FIG. 4E). In one exemplary embodiment, the vents have a diameter or aperture size of between 0.1 μm to 2 μm.
The vents 36 are intended to permit etching and/or removal of at least selected portions of first and second sacrificial layers 30 and 32, respectively (see, FIG. 4F). For example, in one embodiment, where first and second sacrificial layers 30 and 32 are comprised of silicon dioxide, selected portions of layers 30 and 32 may be removed/etched using well known wet etching techniques and buffered HF mixtures (i.e., a buffered oxide etch) or well known vapor etching techniques using vapor HF. Proper design of mechanical structures 20a-d and sacrificial layers 30 and 32, and control of the HF etching process parameters may permit the sacrificial layer 30 to be sufficiently etched to remove all or substantially all of layer 30 around mechanical elements 20a-d and thereby release elements 20a-d to permit proper operation of MEMS 10.
In another embodiment, where first and second sacrificial layers 30 and 32 are comprised of silicon nitride, selected portions of layers 30 and 32 may be removed/etched using phosphoric acid. Again, proper design of mechanical structures 20a-d and sacrificial layers 30 and 32, and control of the wet etching process parameters may permit the sacrificial layer 30 to be sufficiently etched to remove all or substantially all of sacrificial layer 30 around mechanical elements 20a-d which will release mechanical elements 20a-d.
It should be noted that there are: (1) many suitable materials for layers 30 and/or 32 (for example, silicon dioxide, silicon nitride, and doped and undoped glass-like materials, e.g., phosphosilicate (“PSG”) or borophosphosilicate (“BPSG”)) and spin on glass (“SOG”)), (2) many suitable/associated etchants (for example, a buffered oxide etch, phosphoric acid, and alkali hydroxides such as, for example, NaOH and KOH), and (3) many suitable etching or removal techniques (for example, wet, plasma, vapor or dry etching), to eliminate, remove and/or etch sacrificial layers 30 and/or 32. Indeed, layers 30 and/or 32 may be a doped or undoped semiconductor (for example, polycrystalline silicon, silicon/germanium or germanium) in those instances where mechanical structures 20a-d and contact area 24 are the same or similar semiconductors (i.e., processed, etched or removed similarly) provided that mechanical structures 20a-d and contact area 24 are not adversely affected by the etching or removal processes (for example, where structures 20a-d and area 24 are “protected” during the etch or removal process (e.g., an oxide layer protecting a silicon based structures 20a-d) or where structures 20a-d and contact area 24 are comprised of a material that is adversely affected by the etching or removal process of layers 30 and/or 32). Accordingly, all materials, etchants and etch techniques, and permutations thereof, for eliminating, removing and/or etching, whether now known or later developed, are intended to be within the scope of the present invention.
It should be further noted that, in certain embodiments, in addition to forming vents 36, the etching process of first encapsulation layer 28a removes the material overlying contact area 24 to form contact via 38a to facilitate electrical continuity from electrical contact area 24 to a level to or above first encapsulation layer 28a. In this way, additional processing may be avoided, eliminated and/or minimized, for example, processing related to removal of the portion of first encapsulation layer 28a overlying electrical contact area 24 and deposition, formation and/or growth of a suitable material (to provide adequate electrical contact between the various layers of MEMS 10, for example, monocrystalline silicon). Indeed, the resistivity or conductivity of contact via 38 may be adjusted (for example, resistivity reduced and/or conductivity enhanced) using well-known impurity implantation techniques.
Moreover, contact 24 may remain partially, substantially or entirely surrounded by portions of first and second sacrificial layers 30 and/or 32. For example, with reference to
It should be noted that, in another embodiment, an insignificant amount of material comprising second sacrificial layer 32 (or little to no second sacrificial layer 32) remains after etching second sacrificial layer 32. As such, materials for layers 30 and/or 32 may be selected with little regard to subsequent processing.
With reference to
In one embodiment, second encapsulation layer 28b may be epitaxially deposited using an epitaxy reactor and conditions similar to conventional selective epitaxial silicon growth. This may be in a silane, dichlorosilane, or trichlorosilane process with H2, and/or HCl gases. These processes may typically be run from 600° C. to 1400° C.
In one embodiment, the thickness of second encapsulation layer 28b in the region overlying second first encapsulation layer and elements 20a-d may be between 5 μm and 25 μm. Indeed, as MEMS 10, including mechanical structure 12, scale over time and various and/or different materials are implemented, the suitable or necessary thicknesses of first encapsulation layer 28a, second encapsulation layer 28b and combination thereof are likely to change. As such, a ratio of about 1:1 to 1:10 between thicknesses of first encapsulation layer 28a and second encapsulation layer 28b may be advantageous. It is noted, however, that other ratios and thicknesses are clearly suitable (see, for example,
As mentioned above, in one aspect of the present invention, contact area 24 of micromachined mechanical structure 12 is dielectrically isolated from the surrounding conductor and/or semiconductor layers. With reference to
It may also be advantageous to employ multiple layers of insulation materials, for example, silicon dioxide and silicon nitride or silicon dioxide and silicon. In this way, suitable dielectric isolation is provided in view of manufacturability considerations.
After formation of dielectric isolation regions 44a and 44b, it may be advantageous to substantially planarize micromachined mechanical structure 12 to provide a “smooth” surface layer and/or (substantially) planar surface using, for example, polishing techniques (for example, chemical mechanical polishing (“CMP”)). In this way, the exposed planar surface of micromachined mechanical structure 12 may be a well-prepared base upon which integrated circuits (for example, CMOS transistors) and/or micromachined mechanical structure 12 may be fabricated on or in using well known fabrication techniques and equipment.
To facilitate integration of high performance integrated circuits in MEMS 10, it may be advantageous to include field region 22 that is comprised of monocrystalline silicon in or on which such circuits may be fabricated. In this regard, with reference to
In another embodiment, the portion of first encapsulation layer 28a overlying field region 22a1, may be removed, using conventional etching techniques, to expose field region 22a1. Thereafter, monocrystalline silicon may be grown on field region 22a1 to thereby provide field regions 22a2 and/or 22a3.
In yet another embodiment, the portion of first encapsulation layer 28a overlying field region 22a1 may be etched to expose field region 22a1, which is comprised of monocrystalline structure. Thereafter, transistors or other active components may be integrated in or on field region 22a1 using well-known fabrication techniques.
With reference to
After growing monocrystalline silicon field region 22a2 and contact via 38a, first encapsulation layer 28a may be deposited, formed and/or grown. The first encapsulation layer 28a may be, for example, a silicon-based material (for example, silicon/germanium, silicon carbide, monocrystalline silicon, polycrystalline silicon or amorphous silicon, whether doped or undoped), germanium, and gallium arsenide (and combinations thereof, which is deposited and/or formed using, for example, an epitaxial, a sputtering or a CVD-based reactor (for example, APCVD, LPCVD, or PECVD). The deposition, formation and/or growth may be by a conformal process or non-conformal process. The material may be the same as or different from first monocrystalline silicon field region 22a2. In the illustrated embodiment, first encapsulation layer 28a is comprised of a polycrystalline silicon material.
The subsequent processing of micromachined mechanical structure 12 of
Briefly, first encapsulation layer 28a may be etched (see,
After releasing mechanical elements 20a-d, second encapsulation layer 28b may be deposited, formed and/or grown (see, FIG. 6F). Before, concurrently (simultaneously) or after deposition, formation and/or growth of second encapsulation layer 28b, a monocrystalline structure may be deposited, grown or formed on field region 22a2 and contact via 38a.
The second encapsulation layer 28b may be, for example, a silicon-based material (for example, a monocrystalline silicon, polycrystalline silicon and/or silicon-germanium), which is deposited using, for example, an epitaxial, a sputtering or a CVD-based reactor (for example, APCVD, LPCVD, or PECVD). The deposition, formation and/or growth may be by a conformal process or non-conformal process. The material may be the same as or different from first encapsulation layer 28a. As mentioned above, however, it may be advantageous to employ the same material to form first and second encapsulation layers 28a and 28b in order to enhance the “seal” of chamber 26.
It should be noted that the materials and/or surfaces underlying first and second encapsulation layer 28a and 28b, as well as the techniques employed to deposit, form and/or grow first and second encapsulation layer 28a and 28b, may initially determine the crystalline structure of the underlying material. For example, in an epitaxial environment having a predetermined set of parameters, the single/mono crystalline structure of encapsulation layers 28a and/or 28b will deposit, form and/or grow in a “retreating” manner (see, FIG. 7A). In contrast, with another predetermined set of parameters, the single/mono crystalline structure of encapsulation layers 28a and/or 28b will deposit, form and/or grow in an “advancing” manner (see, FIG. 7B). The structures and elements herein may be deposited, formed and/or grown in these or other manners. Accordingly, the single/mono crystalline structure (for example, field region 22a2) that is deposited, formed and/or grown on a material having single/mono crystalline structure (for example, field region 22a1) is illustrated as depositing, forming and/or growing in the perpendicular direction (see, for example,
It should be further noted that the material comprising second encapsulation layer 28b may deposit, form or grow over surfaces in chamber 26 (for example, the surfaces of mechanical structures 20a-d) as the chamber is sealed or encapsulated. When depositing, forming and/or growing second encapsulation layer 28b, care may need to be taken to preserve the desired integrity of the structures and/or surfaces within chamber 26 (see, for example, FIG. 15).
Again, the subsequent processing of micromachined mechanical structure 12 of
The trenches 46a and 46b may be etched (see,
After formation of dielectric isolation regions 44a and 44b, it may be advantageous to substantially planarize micromachined mechanical structure 12 to provide a “smooth” surface layer and/or (substantially) planar surface. In this way, the exposed planar surface of micromachined mechanical structure 12 may be well-prepared base upon which integrated circuits (for example, CMOS transistors) and/or micromachined mechanical structure 12 may be fabricated on or in using well known fabrication techniques and equipment.
With reference to
It should be noted that dielectric isolation regions 44a and 44b of
In another embodiment, vents 36 and trenches 46a and 46b may be formed serially or at the same time. In one embodiment, with reference to
In another embodiment, dielectric isolation regions 44a and 44b may be formed or completed while processing the “back-end” of the integrated circuit fabrication of MEMS 10. In this regard, with reference to
Thus, in the embodiment of
With reference to
The processing pertaining to forming dielectric isolation regions 44a and 44b (
It should be noted that it may be advantageous to deposit and form material 40 on the upper surface of contact area 24 that is not removed or etched when layers 30 and 32 are removed during the etching process. In this way, the material disposed next to or near opening 34 is not removed and it may function as an etch stop during processing of trenches 46a and 46b. For example, layers 30 and/or 32 may be a silicon dioxide and material 40 may be a silicon nitride.
In one embodiment, where the permeable or semi-permeable material is an amorphous sputtered silicon or porous CVD deposited polycrystalline silicon, having a thickness of between 0.1 μm and 2 μm. After etching and/or removal of layers 30 and 32, second encapsulation layer 28b may be a thickness of between 5 μm and 25 μm.
With reference to
With reference to
Thereafter, third encapsulation layer 28c may be deposited, formed and/or grown. The third encapsulation layer 28c may “seal” or close, or more fully “seal” or close chamber 26. The deposition, formation and/or growth of third encapsulation layer 28c may be the same as, substantially similar to, or different from that of encapsulation layers 28a and/or 28b. In this regard, third encapsulation layer 28c may be comprised of, for example, a semiconductor material, an insulator material (for example, silicon nitride or silicon oxide), plastic (for example, photo resist or low-K dielectric) or metal bearing material. The third encapsulation layer 28c may be deposited and/or formed using, for example, an epitaxial, a sputtering or a CVD-based reactor (for example, APCVD, LPCVD or PECVD). The deposition, formation and/or growth process may be conformal or non-conformal.
It should be further noted that encapsulation layer 28c (see, for example,
Depending upon the purpose or function of encapsulation layer 28c, it may be, for example, a semiconductor material (for example, a polycrystalline silicon, silicon carbide, silicon/germanium or germanium), an insulator material (for example, silicon dioxide, silicon nitride, BPSG, PSG, or SOG) or metal bearing material (for example, silicides). The encapsulation layer 28c may be, for example, deposited, formed or grown using, for example, an epitaxial, a sputtering or a CVD-based reactor (for example, APCVD, LPCVD or PECVD). The deposition, formation and/or growth may be by a conformal process or non-conformal process. The material comprising encapsulation layer 28c may be the same as or different from the other encapsulation layers.
The encapsulation process employing three or more layers may be applied to any of micromachined mechanical structure 12 described and illustrated herein. For the sake of brevity, the discussion pertaining to
The environment (for example, the gas or gas vapor pressure) within chamber 26 determines to some extent the mechanical damping for mechanical structures 20a-d. In this regard, chamber 26 includes fluid 42 that is “trapped”, “sealed” and/or contained within chamber 26. The state of fluid 42 within chamber 26 (for example, the pressure) may be determined using conventional techniques and/or using those techniques described and illustrated in non-provisional patent application entitled “Electromechanical System having a Controlled Atmosphere, and Method of Fabricating Same”, which was filed on Mar. 20, 2003 and assigned Ser. No. 10/392,528 (hereinafter “the Electromechanical System having a Controlled Atmosphere Patent Application”).
The inventions described and illustrated in the Electromechanical System having a Controlled Atmosphere Patent Application may be implemented with any and all of the inventions described and illustrated in this application. For example, the encapsulation techniques described above may be implemented with techniques described in the Electromechanical System having a Controlled Atmosphere Patent Application to trap and/or seal a fluid having a selected, desired and/or predetermined state within the chamber. In this way, the fluid provides a desired, predetermined, appropriate and/or selected mechanical damping for mechanical structures within the chamber.
As another example, the Electromechanical System having a Controlled Atmosphere Patent Application describes a MEMS that includes a plurality of monolithically integrated micromachined mechanical structures having one or more electromechanical systems (for example, gyroscopes, resonators, temperature sensors and/or accelerometers). With reference to
In certain embodiments, chambers 26a-d are sealed or encapsulated using the techniques described above. The chambers 26a-d may be sealed or encapsulated in the same or substantially the same manner or using differing techniques. In this way, the plurality of structures 12a-d may be fabricated in ways that provide the same, substantially the same, different or substantially different desired, predetermined, appropriate and/or selected mechanical damping for mechanical structures 20a-p.
Indeed, in at least one embodiment, structure 12c includes a plurality of chambers, namely chambers 26c and 26d, each containing fluid 42c and 42d, respectively. The chambers 22c and 22d may be sealed or encapsulated in a manner that fluids 42c and 42d, respectively, are maintained at the same or substantially the same selected, desired and/or predetermined states. As such, in this embodiment, fluids 42c and 42d may provide the same or substantially the same desired, predetermined, appropriate and/or selected mechanical damping for mechanical structures 20h-k and 20l-p, respectively.
Alternatively, in at least another embodiment, chambers 26c and 26d may be sealed or encapsulated using different or differing techniques such that fluids 24c and 24d may be “trapped”, “sealed”, maintained and/or contained in chambers 26c and 26d, respectively, at different or substantially different selected, desired and/or predetermined states. In this embodiment, chambers 26c and 26d may be “sealed” using different processing techniques, different processing conditions and/or different materials (for example, gases or gas vapors). As such, after encapsulation, fluids 42c and 42d provide different or substantially different mechanical damping characteristics for mechanical structures 20h-k and 20l-p, respectively. In this way, micromachined mechanical structure 12c may include different electromechanical systems (for example, gyroscopes, resonators, temperature sensors and accelerometers) that require different or substantially different mechanical damping characteristics for optimum, predetermined, desired operation.
For the sake of brevity, all of the inventions described and illustrated in the Electromechanical System having a Controlled Atmosphere Patent Application will not be repeated here. It is expressly noted, however, that the entire contents of the Electromechanical System having a Controlled Atmosphere Patent Application, including for example, the features, attributes, alternatives, materials, techniques and advantages of all of the inventions, are incorporated by reference herein.
As mentioned above, in one set of embodiments, a monolithic structure may include mechanical structure 12 and data processing electronics 16 and/or interface circuitry 18 that are integrated on or in a common substrate. With reference to
It should be noted that mechanical structure 12 may be electrically connected to integrated circuits 54 via low resistance layer 52. The integrated circuits 54 may be fabricated using conventional techniques.
In particular, in those instances where contact 24 is accessed directly by integrated circuitry 54, it may be advantageous to provide a low resistance electrical path. The insulation layer 48 may be deposited, formed and/or grown and patterned to provide or. facilitate interconnection with contact area 24. Thereafter, a low resistance layer 52 (for example, a heavily doped polysilicon or metal such as aluminum, chromium, gold, silver, molybdenum, platinum, palladium, tungsten, titanium, and/or copper) is formed.
There are many inventions described and illustrated herein. While certain embodiments, features, materials, configurations, attributes and advantages of the inventions have been described and illustrated, it should be understood that many other, as well as different and/or similar embodiments, features, materials, configurations, attributes, structures and advantages of the present inventions that are apparent from the description, illustration and claims. As such, the embodiments, features, materials, configurations, attributes, structures and advantages of the inventions described and illustrated herein are not exhaustive and it should be understood that such other, similar, as well as different, embodiments, features, materials, configurations, attributes, structures and advantages of the present inventions are within the scope of the present invention.
For example, any and all of the embodiments illustrated and described herein may include multiple layers of mechanical structures, contacts areas and buried contacts that are vertically and/or laterally stacked or interconnected (see, for example, micromachined mechanical structure 12 of
In addition, it should be noted that rather than depositing an insulation material in trenches 46a and 46b, it may be advantageous to deposit an oppositely doped material that would form or create a junction isolation between the contact area and the surrounding conductive materials. In this regard, the material deposited in trenches 46a and 46b may doped with impurities having an opposite conductivity relative to the impurities in first encapsulation layer 28a and/or second encapsulation layer 28b. For example, first encapsulation layer 28a may be doped with boron and the material deposited in trenches 46a and 46b may be doped with phosphorous. In this way, upon completion of the sealing or encapsulation process, junctions surrounding electrical contact area 24 are formed which electrically “isolate” contact area 24 from, for example, field region 22b.
Thereafter, in another set of embodiments, micromachined mechanical structure 12 may be substantially planarized using, for example, polishing techniques (for example, chemical mechanical polishing (“CMP”)). In this regard, it may be advantageous to remove the layer of material used to fill trenches 46a and 46b that forms on the encapsulation layer(s) so that contact via 38 is electrically isolated by oppositely doped materials.
Moreover, with reference to
The term “depositing” and other forms (i.e., deposit, deposition and deposited) in the claims, means, among other things, depositing, creating, forming and/or growing a layer of material using, for example, a reactor (for example, an epitaxial, a sputtering or a CVD-based reactor (for example, APCVD, LPCVD, or PECVD)).
Further, in the claims, the term “contact” means a conductive region partially or wholly disposed outside the chamber, such as the contact area and/or contact via.
Finally, it should be further noted that while the present inventions have been described in the context of microelectromechanical systems including micromechanical structures or elements, the present inventions are not limited in this regard. Rather, the inventions described herein are applicable to other electromechanical systems including, for example, nanoelectromechanical systems. Thus, the present inventions are pertinent to electromechanical systems, for example, gyroscopes, resonators, temperatures sensors and/or accelerometers, made in accordance with fabrication techniques, such as lithographic and other precision fabrication techniques, which reduce mechanical components to a scale that is generally comparable to microelectronics.
Lutz, Markus, Partridge, Aaron, Kronmueller, Silvia
Patent | Priority | Assignee | Title |
10096511, | Dec 06 2013 | INFINEON TECHNOLOGIES DRESDEN GMBH | Carrier and a method for processing a carrier |
10099917, | Jan 20 2006 | SiTime Corporation | Encapsulated microelectromechanical structure |
10155655, | Oct 12 2012 | Taiwan Semiconductor Manufacturing Company, Ltd. | MEMS devices and fabrication methods thereof |
10160633, | Jun 15 2012 | Taiwan Semiconductor Manufacturing Company, Ltd. | MEMS devices and fabrication methods thereof |
10171007, | Apr 23 2008 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of manufacturing a device with a cavity |
10192850, | Sep 19 2016 | SiTime Corporation | Bonding process with inhibited oxide formation |
10216698, | Jun 07 2010 | Commissariat a l Energie Atomique et aux Energies Alternatives; California Institute of Technology | Analysis device including a MEMS and/or NEMS network |
10221065, | Jun 27 2012 | Invensense, Inc. | CMOS-MEMS integrated device including multiple cavities at different controlled pressures and methods of manufacture |
10230458, | Jun 10 2013 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Optical die test interface with separate voltages for adjacent electrodes |
10450190, | Jan 20 2006 | SiTime Corporation | Encapsulated microelectromechanical structure |
10458858, | Sep 09 2011 | SiTime Corporation | Micromachined thermistor |
10532926, | Jun 27 2011 | Invensense, Inc. | Methods for CMOS-MEMS integrated devices with multiple sealed cavities maintained at various pressures |
10541224, | Sep 19 2016 | SiTime Corporation | Bonding process with inhibited oxide formation |
10651151, | Feb 11 2015 | Invensense, Inc. | 3D integration using Al—Ge eutectic bond interconnect |
10746612, | Nov 30 2016 | The Board of Trustees of Western Michigan University | Metal-metal composite ink and methods for forming conductive patterns |
10766768, | Jan 20 2006 | SiTime Corporation | Encapsulated microelectromechanical structure |
10850973, | Jun 27 2011 | Invensense, Inc. | Methods for CMOS-MEMS integrated devices with multiple sealed cavities maintained at various pressures |
10910341, | Sep 19 2016 | SiTime Corporation | Bonding process with inhibited oxide formation |
11488930, | Sep 19 2016 | SiTime Corporation | Bonding process with inhibited oxide formation |
11685650, | Jan 20 2006 | SiTime Corporation | Microelectromechanical structure with bonded cover |
11869870, | Sep 19 2016 | SiTime Corporation | Bonding process with inhibited oxide formation |
7104129, | Feb 02 2004 | InvenSense Inc | Vertically integrated MEMS structure with electronics in a hermetically sealed cavity |
7259436, | Apr 11 2000 | Robert Bosch GmbH | Micromechanical component and corresponding production method |
7442570, | Mar 18 2005 | Invensence Inc.; InvenSense Inc | Method of fabrication of a AL/GE bonding in a wafer packaging environment and a product produced therefrom |
7541209, | Oct 14 2005 | Hewlett-Packard Development Company, L.P. | Method of forming a device package having edge interconnect pad |
7563633, | Aug 25 2006 | Robert Bosch GmbH | Microelectromechanical systems encapsulation process |
7582514, | Aug 25 2006 | Robert Bosch GmbH | Microelectromechanical systems encapsulation process with anti-stiction coating |
7585744, | Dec 08 2003 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Method of forming a seal for a semiconductor device |
7635901, | Dec 19 2003 | COMMISSARIAT A L ENERGIE ATOMIQUE | Microcomponent comprising a hermetically-sealed cavity and a plug, and method of producing one such microcomponent |
7718457, | Apr 05 2005 | Analog Devices, Inc.; Analog Devices, Inc | Method for producing a MEMS device |
7748272, | Oct 15 2004 | Morgan Research Corporation | MEMS sensor suite on a chip |
7757393, | Sep 28 2007 | Georgia Tech Research Corporation | Capacitive microaccelerometers and fabrication methods |
7767484, | May 31 2006 | Georgia Tech Research Corporation | Method for sealing and backside releasing of microelectromechanical systems |
7851875, | Jan 11 2008 | Infineon Technologies AG | MEMS devices and methods of manufacture thereof |
7859091, | Feb 22 2007 | Denso Corporation | Manufacturing methods for semiconductor device with sealed cap |
7898046, | Aug 25 2006 | Robert Bosch GmbH | Microelectromechanical systems encapsulation process |
7919346, | Dec 15 2005 | Robert Bosch GmbH | Micromechanical component and manufacturing method |
7943525, | Dec 19 2008 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Method of producing microelectromechanical device with isolated microstructures |
8058143, | Jan 21 2009 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Substrate bonding with metal germanium silicon material |
8084332, | Mar 18 2005 | Invensense, Inc. | Method of fabrication of AI/GE bonding in a wafer packaging environment and a product produced therefrom |
8125046, | Jun 04 2008 | Infineon Technologies AG | Micro-electromechanical system devices |
8174085, | Oct 16 2008 | Rohm Co., Ltd. | Method of manufacturing MEMS sensor and MEMS sensor |
8198690, | Jan 11 2008 | Infineon Technologies AG | MEMS devices and methods of manufacture thereof |
8269290, | Sep 15 2008 | Denso Corporation | Semiconductor device including a plurality of semiconductor substrates and method of manufacturing the same |
8273603, | Apr 04 2008 | The Charles Stark Draper Laboratory, Inc | Interposers, electronic modules, and methods for forming the same |
8283738, | Jan 09 2009 | Denso Corporation | Semiconductor device including sensor member and cap member and method of making the same |
8287956, | Nov 14 2003 | Robert Bosch GmbH | Crack and residue free conformal deposited silicon oxide with predictable and uniform etching characteristics |
8318581, | Jun 04 2008 | Infineon Technologies AG | Micro-electromechanical system devices |
8343790, | Jun 04 2006 | Robert Bosch GmbH | Methods for trapping charge in a microelectromechanical system and microelectromechanical system employing same |
8349634, | Feb 22 2007 | Denso Corporation | Semiconductor device with sealed cap |
8350346, | Jul 03 2012 | Invensense, Inc. | Integrated MEMS devices with controlled pressure environments by means of enclosed volumes |
8372677, | May 10 2006 | Panasonic Corporation | Three-axis accelerometers and fabrication methods |
8390084, | Jun 16 2008 | Rohm Co., Ltd. | MEMS sensor |
8405170, | Mar 15 2004 | Georgia Tech Research Corporation | Packaging for micro electro-mechanical systems and methods of fabricating thereof |
8468887, | Apr 14 2008 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Resonant accelerometer with low sensitivity to package stress |
8476096, | Mar 15 2004 | Georgia Tech Research Corporation | Packaging for micro electro-mechanical systems and methods of fabricating thereof |
8499629, | Oct 10 2008 | Honeywell International Inc. | Mounting system for torsional suspension of a MEMS device |
8513747, | Jul 03 2012 | Invensense, Inc. | Integrated MEMS devices with controlled pressure environments by means of enclosed volumes |
8535984, | Apr 04 2008 | The Charles Stark Draper Laboratory, Inc. | Electronic modules and methods for forming the same |
8552512, | Oct 20 2006 | Seiko Epson Corporation | MEMS device and fabrication method thereof |
8567246, | Oct 12 2010 | Invensense, Inc. | Integrated MEMS device and method of use |
8592926, | Jan 21 2009 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Substrate bonding with metal germanium silicon material |
8633049, | Mar 18 2005 | Invensense, Inc. | Method of fabrication of Al/GE bonding in a wafer packaging environment and a product produced therefrom |
8643125, | Oct 20 2011 | Industrial Technology Research Institute | Structure and process for microelectromechanical system-based sensor |
8648432, | Nov 28 2011 | Texas Instruments Incorporated | Fully embedded micromechanical device, system on chip and method for manufacturing the same |
8648663, | Apr 13 2011 | Seiko Epson Corporation | Oscillator having a plurality of switchable MEMS vibrators |
8669824, | Mar 17 2011 | Seiko Epson Corporation | Oscillator having a plurality of switchable MEMS vibrators |
8710597, | Apr 21 2010 | MOVELLA INC | Method and structure for adding mass with stress isolation to MEMS structures |
8716051, | Oct 21 2010 | Taiwan Semiconductor Manufacturing Company, Ltd. | MEMS device with release aperture |
8749019, | Mar 04 2011 | Denso Corporation | Region-divided substrate, semiconductor device having region-divided substrate, and method for manufacturing the same |
8766706, | Jun 04 2006 | Robert Bosch GmbH | Methods for trapping charge in a microelectromechanical system and microelectromechanical system employing same |
8841156, | Jan 11 2010 | SILICON MICROSTRUCTURES, INC | Method for the production of micro-electromechanical semiconductor component |
8860409, | Jan 11 2011 | Invensense, Inc.; INVENSENSE, INC | Micromachined resonant magnetic field sensors |
8871551, | Jan 20 2006 | SiTime Corporation | Wafer encapsulated microelectromechanical structure and method of manufacturing same |
8878071, | Jan 20 2011 | ELPIS TECHNOLOGIES INC | Integrated device with defined heat flow |
8906729, | Apr 23 2008 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of manufacturing a device with a cavity |
8947081, | Jan 11 2011 | Invensense, Inc.; INVENSENSE, INC | Micromachined resonant magnetic field sensors |
8962367, | Oct 21 2010 | Taiwan Semiconductor Manufacturing Company, Ltd | MEMS device with release aperture |
8975671, | Jan 11 2010 | SILICON MICROSTRUCTURES, INC | Microelectromechanical semiconductor component that is sensitive to mechanical stresses, and comprises an ion implantation masking material defining a channel region |
8993394, | Jun 04 2008 | Infineon Technologies AG | Micro-electromechanical system devices |
8994128, | Jan 11 2010 | SILICON MICROSTRUCTURES, INC | Micro-electromechanical semiconductor comprising stress measuring element and stiffening braces separating wall depressions |
9013015, | Jan 11 2010 | SILICON MICROSTRUCTURES, INC | Micro-electromechanical semiconductor component |
9091820, | Jun 10 2013 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Communication system die stack |
9094135, | Jun 10 2013 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Die stack with optical TSVs |
9139428, | Mar 18 2005 | Invensense, Inc. | Method of fabrication of Al/Ge bonding in a wafer packaging environment and a product produced therefrom |
9193582, | Dec 06 2012 | Commissariat a l Energie Atomique et aux Energies Alternatives | Method of forming a suspended structure and a transistor co-integrated on a same substrate |
9261556, | Jun 10 2013 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Optical wafer and die probe testing |
9266719, | Jan 11 2008 | Infineon Technologies AG | Methods of manufacture MEMS devices |
9321629, | Apr 21 2010 | MOVELLA INC | Method and structure for adding mass with stress isolation to MEMS structures |
9403676, | Jan 11 2010 | SILICON MICROSTRUCTURES, INC | Semiconductor component |
9403677, | Jan 11 2010 | SILICON MICROSTRUCTURES, INC | Micro-electromechanical semiconductor component |
9406563, | Jan 20 2011 | ELPIS TECHNOLOGIES INC | Integrated device with defined heat flow |
9434608, | Jan 20 2006 | SiTime Corporation | Wafer encapsulated microelectromechanical structure |
9435952, | Jun 10 2013 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Integration of a MEMS beam with optical waveguide and deflection in two dimensions |
9440845, | Jan 20 2006 | SiTime Corporation | Encapsulated microelectromechanical structure |
9442254, | Jun 10 2013 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Method and apparatus for beam control with optical MEMS beam waveguide |
9452924, | Jun 15 2012 | Taiwan Semiconductor Manufacturing Company, Ltd | MEMS devices and fabrication methods thereof |
9452925, | Jun 27 2011 | INVENSENSE, INC | Method of increasing MEMS enclosure pressure using outgassing material |
9540230, | Jun 27 2011 | INVENSENSE, INC | Methods for CMOS-MEMS integrated devices with multiple sealed cavities maintained at various pressures |
9550666, | Oct 21 2010 | Taiwan Semiconductor Manufacturing Company, Ltd. | MEMS device with release aperture |
9664750, | Jan 11 2011 | Invensense, Inc. | In-plane sensing Lorentz force magnetometer |
9718679, | Jun 27 2011 | Invensense, Inc. | Integrated heater for gettering or outgassing activation |
9731963, | Jun 27 2011 | Invensense, Inc. | Method of increasing MEMS enclosure pressure using outgassing material |
9738512, | Jun 27 2012 | Invensense, Inc. | CMOS-MEMS integrated device including multiple cavities at different controlled pressures and methods of manufacture |
9751752, | Mar 18 2005 | Invensense, Inc. | Method of fabrication of Al/Ge bonding in a wafer packaging environment and a product produced therefrom |
9754922, | Feb 11 2015 | Invensense, Inc. | 3D integration using Al—Ge eutectic bond interconnect |
9758371, | Jan 20 2006 | SiTime Corporation | Encapsulated microelectromechanical structure |
9766409, | Jun 10 2013 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Optical redundancy |
9810843, | Jun 10 2013 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Optical backplane mirror |
9859818, | Apr 23 2008 | Taiwan Semiconductor Manufacturing Company, Ltd. | Micro-device with a cavity |
9929181, | Dec 06 2013 | INFINEON TECHNOLOGIES DRESDEN GMBH | Method for manufacturing an electronic device and method for operating an electronic device |
Patent | Priority | Assignee | Title |
4665610, | Apr 22 1985 | Stanford University | Method of making a semiconductor transducer having multiple level diaphragm structure |
4674319, | Mar 20 1985 | The Regents of the University of California | Integrated circuit sensor |
4766666, | Sep 30 1985 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Semiconductor pressure sensor and method of manufacturing the same |
4849071, | Dec 13 1986 | HAMILTON STANDARD CONTROLS, INC A CORP OF DE | Method of forming a sealed diaphragm on a substrate |
4945769, | Mar 06 1989 | Delphi Technologies Inc | Semiconductive structure useful as a pressure sensor |
4990462, | Apr 12 1989 | Advanced Micro Devices, Inc. | Method for coplanar integration of semiconductor ic devices |
5075253, | Apr 12 1989 | Advanced Micro Devices, Inc. | Method of coplanar integration of semiconductor IC devices |
5139624, | Dec 06 1990 | SRI International | Method for making porous semiconductor membranes |
5156903, | Dec 21 1989 | MURATA MANUFACTURING CO , LTD | Multilayer ceramic substrate and manufacture thereof |
5338416, | Feb 05 1993 | Massachusetts Institute of Technology | Electrochemical etching process |
5445991, | Dec 24 1993 | Mando Corporation | Method for fabricating a semiconductor device using a porous silicon region |
5455547, | Aug 30 1994 | The Regents of the University of California | Microelectromechanical signal processors |
5461916, | Aug 21 1992 | NIPPONDENSO CO , LTD | Mechanical force sensing semiconductor device |
5470797, | Apr 05 1993 | University of Michigan | Method for producing a silicon-on-insulator capacitive surface micromachined absolute pressure sensor |
5491604, | Dec 11 1992 | Regents of the University of California, The | Q-controlled microresonators and tunable electronic filters using such resonators |
5504026, | Apr 14 1995 | Analog Devices, Inc. | Methods for planarization and encapsulation of micromechanical devices in semiconductor processes |
5510156, | Aug 23 1994 | Analog Devices, Inc | Micromechanical structure with textured surface and method for making same |
5517123, | Aug 26 1994 | Analog Devices, Inc | High sensitivity integrated micromechanical electrostatic potential sensor |
5537083, | Dec 11 1992 | Regents of the University of California | Microelectromechanical signal processors |
5540095, | Aug 17 1990 | Analog Devices, Inc. | Monolithic accelerometer |
5583290, | Dec 20 1994 | Analog Devices, Inc. | Micromechanical apparatus with limited actuation bandwidth |
5589082, | Dec 11 1992 | The Regents of the University of California | Microelectromechanical signal processor fabrication |
5604312, | Nov 25 1994 | DOW CHEMICAL COMPANY, THE | Rate-of-rotation sensor |
5613611, | Jul 29 1994 | Analog Devices, Inc. | Carrier for integrated circuit package |
5616514, | Jun 03 1993 | Robert Bosch GmbH | Method of fabricating a micromechanical sensor |
5620931, | Aug 17 1990 | Analog Devices, Inc. | Methods for fabricating monolithic device containing circuitry and suspended microstructure |
5627317, | Jun 07 1994 | Astra AB | Acceleration sensor |
5627318, | Aug 21 1992 | Nippondenso Co., Ltd. | Mechanical force sensing semiconductor device |
5631422, | Feb 02 1995 | Robert Bosch GmbH | Sensor comprising multilayer substrate |
5640039, | Dec 01 1994 | Analog Devices, Inc | Conductive plane beneath suspended microstructure |
5679436, | Aug 23 1994 | Analog Devices, Inc. | Micromechanical structure with textured surface and method for making same |
5683591, | May 25 1993 | Robert Bosch GmbH | Process for producing surface micromechanical structures |
5703293, | May 27 1995 | Robert Bosch GmbH | Rotational rate sensor with two acceleration sensors |
5721377, | Jul 22 1995 | Robert Bosch GmbH | Angular velocity sensor with built-in limit stops |
5723353, | Feb 10 1995 | Robert Bosch GmbH | Process for manufacturing a sensor |
5728936, | Aug 16 1995 | Robert Bosch GmbH | Rotary speed sensor |
5751041, | Oct 23 1995 | Denso Corporataion | Semiconductor integrated circuit device |
5760455, | Mar 17 1995 | Infineon Technologies AG | Micromechanical semiconductor component and manufacturing method therefor |
5761957, | Feb 08 1996 | Denso Corporation | Semiconductor pressure sensor that suppresses non-linear temperature characteristics |
5804083, | Jun 28 1995 | Sharp Kabushiki Kaisha | Method of forming a microstructure |
5818227, | Feb 22 1996 | Analog Devices, Inc. | Rotatable micromachined device for sensing magnetic fields |
5839062, | Mar 18 1994 | Regents of the University of California, The | Mixing, modulation and demodulation via electromechanical resonators |
5847280, | Aug 17 1990 | Analog Devices, Inc. | Monolithic micromechanical apparatus with suspended microstructure |
5858809, | Dec 01 1994 | Analog Devices | Conductive plane beneath suspended microstructure |
5872024, | Aug 21 1992 | Nippondenso Co., Ltd. | Method for manufacturing a mechanical force sensing semiconductor device |
5880369, | Mar 15 1996 | Analog Devices, Inc | Micromachined device with enhanced dimensional control |
5889207, | May 03 1996 | Robert Bosch GmbH | Micromechanical rate of rotation sensor having ring with drive element and detection element |
5898218, | Apr 26 1996 | Kyocera Corporation | Structure for mounting electronic components and method for mounting the same |
5919364, | Jun 24 1996 | CALIFORNIA UNIVERSITY OF THE, REGENTS OF | Microfabricated filter and shell constructed with a permeable membrane |
5922212, | Jun 08 1995 | Nippondenso Co., Ltd | Semiconductor sensor having suspended thin-film structure and method for fabricating thin-film structure body |
5937275, | Jul 21 1995 | Robert Bosch GmbH | Method of producing acceleration sensors |
5948991, | Dec 09 1996 | Denso Corporation | Semiconductor physical quantity sensor device having semiconductor sensor chip integrated with semiconductor circuit chip |
5955932, | Dec 11 1992 | The Regents of the University of California | Q-controlled microresonators and tunable electric filters using such resonators |
5959208, | Feb 08 1995 | Robert Bosch, GmbH | Acceleration sensor |
5969249, | May 07 1997 | CALIFORNIA, UNIVERSITY OF THE REGENTS, THE | Resonant accelerometer with flexural lever leverage system |
5986316, | Nov 26 1997 | Denso Corporation | Semiconductor type physical quantity sensor |
5987989, | Feb 05 1996 | Denso Corporation | Semiconductor physical quantity sensor |
5992233, | May 31 1996 | Regents of the University of California, The | Micromachined Z-axis vibratory rate gyroscope |
6009753, | Aug 17 1990 | Analog Devices, Inc. | Monolithic micromechanical apparatus with suspended microstructure |
6028332, | Jun 30 1997 | Denso Corporation | Semiconductor type yaw rate sensor |
6035714, | Sep 08 1997 | MICHIGAN, REGENTS OF THE UNIVERSITY OF | Microelectromechanical capacitive accelerometer and method of making same |
6048774, | Jun 26 1997 | Denso Corporation | Method of manufacturing dynamic amount semiconductor sensor |
6055858, | Feb 10 1995 | Robert Bosch GmbH | Acceleration sensor |
6065341, | Feb 18 1998 | Denso Corporation | Semiconductor physical quantity sensor with stopper portion |
6067858, | May 31 1996 | Regents of the University of California, The | Micromachined vibratory rate gyroscope |
6090718, | Dec 17 1996 | Denso Corporation | Dry etching method for semiconductor substrate |
6100108, | Feb 17 1998 | Denso Corporation | Method of fabricating electronic circuit device |
6106735, | Jan 11 1997 | Robert Bosch GmbH | Wafer stack and method of producing sensors |
6117701, | Aug 09 1996 | Robert Bosch GmbH | Method for manufacturing a rate-of-rotation sensor |
6119518, | Aug 05 1996 | Nippon Soken, Inc.; Denso Corporation | Angular velocity sensor |
6122964, | Feb 28 1998 | Robert Bosch GmbH | Micromechanical comb structure |
6125700, | Jun 13 1997 | Mitsubishi Denki Kabushiki Kaisha | Vibrating type angular velocity sensor |
6140709, | May 09 1998 | Robert Bosch GmbH | Bonding pad structure and method for manufacturing the bonding pad structure |
6142358, | May 31 1997 | CALIFORNIA, UNIVERSITY OF THE, REGENTS OF, THE | Wafer-to-wafer transfer of microstructures using break-away tethers |
6146917, | Mar 03 1997 | Visteon Global Technologies, Inc | Fabrication method for encapsulated micromachined structures |
6147756, | Jan 22 1992 | Northeastern University | Microspectrometer with sacrificial layer integrated with integrated circuit on the same substrate |
6149190, | May 26 1993 | GEFUS SBIC II, L P | Micromechanical accelerometer for automotive applications |
6151966, | May 11 1998 | Denso Corporation | Semiconductor dynamical quantity sensor device having electrodes in Rahmen structure |
6153839, | Oct 22 1998 | Northeastern University | Micromechanical switching devices |
6156652, | Oct 09 1998 | AIR FORCE, GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF THE, THE | Post-process metallization interconnects for microelectromechanical systems |
6163643, | Aug 12 1998 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Micro-mechanical variable optical attenuator |
6170332, | May 26 1993 | GEFUS SBIC II, L P | Micromechanical accelerometer for automotive applications |
6171881, | Apr 27 1992 | Denso Corporation | Acceleration sensor and process for the production thereof |
6187210, | Jun 30 1997 | Regents of the University of California, The | Epidermal abrasion device with isotropically etched tips, and method of fabricating such a device |
6187607, | Apr 18 1998 | Robert Bosch GmbH | Manufacturing method for micromechanical component |
6191007, | Apr 28 1997 | Denso Corporation | Method for manufacturing a semiconductor substrate |
6192757, | Aug 17 1990 | Analog Devices, Inc. | Monolithic micromechanical apparatus with suspended microstructure |
6199430, | Jun 17 1997 | Denso Corporation | Acceleration sensor with ring-shaped movable electrode |
6199874, | May 26 1993 | GEFUS SBIC II, L P | Microelectromechanical accelerometer for automotive applications |
6204085, | Sep 15 1998 | Texas Instruments Incorporated | Reduced deformation of micromechanical devices through thermal stabilization |
6210988, | Jan 15 1999 | Regents of the University of California, The | Polycrystalline silicon germanium films for forming micro-electromechanical systems |
6214243, | Oct 20 1995 | Robert Bosch GmbH | Process for producing a speed of rotation coriolis sensor |
6218717, | Jan 16 1998 | Denso Corporation | Semiconductor pressure sensor and manufacturing method therefof |
6227049, | Apr 27 1992 | Denso Corporation | Acceleration sensor and process for the production thereof |
6227050, | Aug 21 1992 | Nippondense Co., Ltd. | Semiconductor mechanical sensor and method of manufacture |
6230567, | Aug 03 1999 | The Charles Stark Draper Laboratory, Inc. | Low thermal strain flexure support for a micromechanical device |
6233811, | Feb 22 1996 | Analog Devices, Inc. | Rotatable micromachined device for sensing magnetic fields |
6236281, | Dec 11 1992 | The Regents of the University of California | Q-controlled microresonators and tunable electronic filters using such resonators |
6240782, | Feb 12 1998 | Denso Corporation | Semiconductor physical quantity sensor and production method thereof |
6244112, | Apr 27 1992 | Denso Corporation | Acceleration sensor and process for the production thereof |
6245593, | Nov 27 1998 | Denso Corporation | Semiconductor device with flat protective adhesive sheet and method of manufacturing the same |
6249073, | Jan 13 2000 | REGENTS OF THE UNIVERSITY OF MICHIGAN, THE | Device including a micromechanical resonator having an operating frequency and method of extending same |
6250156, | May 19 1996 | Regents of the University of California, The | Dual-mass micromachined vibratory rate gyroscope |
6250165, | Feb 02 1998 | Denso Corporation | Semiconductor physical quantity sensor |
6251754, | May 09 1997 | Denso Corporation | Semiconductor substrate manufacturing method |
6255741, | Mar 17 1998 | Denso Corporation | Semiconductor device with a protective sheet to affix a semiconductor chip |
6264363, | Jul 24 1998 | Denso Corporation | Temperature sensor and method of manufacturing thereof |
6274452, | Nov 06 1996 | Denso Corporation | Semiconductor device having multilayer interconnection structure and method for manufacturing the same |
6275034, | Mar 11 1998 | ANALOG DEVICES INC | Micromachined semiconductor magnetic sensor |
6276207, | Nov 13 1998 | Denso Corporation | Semiconductor physical quantity sensor having movable portion and fixed portion confronted each other and method of manufacturing the same |
6279585, | Sep 09 1998 | Denso Corporation | Etching method and method for manufacturing semiconductor device using the same |
6282960, | Mar 15 1996 | Analog Devices, Inc. | Micromachined device with enhanced dimensional control |
6284670, | Jul 23 1997 | Denso Corporation | Method of etching silicon wafer and silicon wafer |
6287885, | May 08 1998 | Denso Corporation | Method for manufacturing semiconductor dynamic quantity sensor |
6291315, | Jul 11 1996 | Denso Corporation | Method for etching trench in manufacturing semiconductor devices |
6291875, | Jun 24 1998 | ANALOG DEVICES IMI, INC | Microfabricated structures with electrical isolation and interconnections |
6296779, | May 31 1996 | The Regents of the University of California | Method of fabricating a sensor |
6297072, | Apr 17 1998 | Interuniversitair Micro-Elktronica Centrum (IMEC VZW) | Method of fabrication of a microstructure having an internal cavity |
6300294, | Nov 16 1998 | Texas Instruments Incorporated | Lubricant delivery for micromechanical devices |
6307815, | Jul 23 1998 | National Technology & Engineering Solutions of Sandia, LLC | Microelectromechanical timer |
6308567, | Dec 10 1998 | Denso Corporation | Angular velocity sensor |
6311555, | Nov 17 1999 | American GNC Corporation | Angular rate producer with microelectromechanical system technology |
6315062, | Sep 24 1999 | Vermeer Manufacturing Company | Horizontal directional drilling machine employing inertial navigation control system and method |
6318175, | Jun 03 1993 | Robert Bosch GmbH | Micromechanical sensor and method for the manufacture thereof |
6323550, | Jun 06 1995 | Analog Devices, Inc | Package for sealing an integrated circuit die |
6325886, | Feb 14 2000 | SMC Kabushiki Kaisha | Method for attaching a micromechanical device to a manifold, and fluid control system produced thereby |
6352935, | Jan 18 2000 | Analog Devices, Inc | Method of forming a cover cap for semiconductor wafer devices |
6373007, | Apr 19 2000 | The United States of America as represented by the Secretary of the Air Force | Series and shunt mems RF switch |
6378989, | Oct 16 1998 | Zamtec Limited | Micromechanical device with ribbed bend actuator |
6386032, | Aug 26 1999 | ANALOG DEVICES IMI, INC | Micro-machined accelerometer with improved transfer characteristics |
6388279, | Jun 11 1997 | Denso Corporation | Semiconductor substrate manufacturing method, semiconductor pressure sensor and manufacturing method thereof |
6389899, | Jun 09 1998 | BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, THE | In-plane micromachined accelerometer and bridge circuit having same |
6389903, | Aug 04 1998 | Denso Corporation | Pressure-detecting device coupling member with interchangeable connector part |
6392144, | Mar 01 2000 | National Technology & Engineering Solutions of Sandia, LLC | Micromechanical die attachment surcharge |
6396711, | Jun 06 2000 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Interconnecting micromechanical devices |
6402968, | Sep 08 1997 | Microelectromechanical capactive accelerometer and method of making same | |
6416831, | Dec 19 1996 | Murata Manufacturing Co., Ltd.; Compaq Computer Corporation | Evacuated package and a method of producing the same |
6422078, | Aug 21 1992 | Denso Corporation | Semiconductor mechanical sensor |
6423563, | May 08 1998 | Denso Corporation | Method for manufacturing semiconductor dynamic quantity sensor |
6424074, | Jan 14 1999 | The Regents of the University of Michigan | Method and apparatus for upconverting and filtering an information signal utilizing a vibrating micromechanical device |
6429506, | Mar 19 1999 | Denso Corporation | Semiconductor device produced by dicing |
6429755, | Aug 17 1999 | GLOBALFOUNDRIES Inc | Method for constructing an encapsulated MEMS band-pass filter for integrated circuits |
6433401, | Apr 06 1999 | ANALOG DEVICES IMI, INC | Microfabricated structures with trench-isolation using bonded-substrates and cavities |
6433411, | May 22 2000 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Packaging micromechanical devices |
6437551, | Nov 02 1999 | Lawrence Livermore National Security, LLC | Microfabricated AC impedance sensor |
6440766, | Feb 16 2000 | ANALOG DEVICES IMI, INC | Microfabrication using germanium-based release masks |
6441481, | Apr 10 2000 | Analog Devices, Inc | Hermetically sealed microstructure package |
6443008, | Feb 19 2000 | Robert Bosch GmbH | Decoupled multi-disk gyroscope |
6444543, | Jun 27 2000 | Denso Corporation | Semiconductor sensor device and method of manufacturing the same |
6448109, | Nov 15 2000 | Analog Devices, Inc. | Wafer level method of capping multiple MEMS elements |
6448604, | Sep 12 2000 | Robert Bosch GmbH | Integrated adjustable capacitor |
6448622, | Jan 15 1999 | The Regents of the University of California | Polycrystalline silicon-germanium films for micro-electromechanical systems application |
6449406, | May 28 1999 | CROSSFIBER INC | Micromachined optomechanical switching devices |
6460234, | Aug 19 1998 | Wisconsin Alumni Research Foundation | Method of forming micromachined sealed capacitive pressure sensors |
6462566, | Sep 12 1997 | Robert Bosch GmbH | Sensor element |
6463803, | Aug 21 1992 | Nippon Denso Co., Ltd. | Semiconductor mechanical sensor |
6465281, | Sep 08 2000 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Method of manufacturing a semiconductor wafer level package |
6472290, | Jan 13 2000 | MICROMECHA, INC | Isolation in micromachined single crystal silicon using deep trench insulation |
6477901, | Dec 21 1999 | Integrated Sensing Systems, Inc. | Micromachined fluidic apparatus |
6478974, | Jun 24 1996 | The Regents of the University of California | Microfabricated filter and shell constructed with a permeable membrane |
6483957, | Jan 29 2001 | 3M Innovative Properties Company | MEMS-based polarization mode dispersion compensator |
6495389, | Sep 05 2000 | Denso Corporation | Method for manufacturing semiconductor pressure sensor having reference pressure chamber |
6507044, | Mar 25 1999 | Advanced Micro Devices, INC | Position-selective and material-selective silicon etching to form measurement structures for semiconductor fabrication |
6507082, | Feb 22 2000 | Texas Instruments Incorporated | Flip-chip assembly of protected micromechanical devices |
6508124, | Sep 10 1999 | STMICROELECTRONICS S R L | Microelectromechanical structure insensitive to mechanical stresses |
6508126, | Jul 21 2000 | Denso Corporation | Dynamic quantity sensor having movable and fixed electrodes with high rigidity |
6508561, | Oct 17 2001 | Analog Devices, Inc. | Optical mirror coatings for high-temperature diffusion barriers and mirror shaping |
6512255, | Sep 17 1999 | Denso Corporation | Semiconductor pressure sensor device having sensor chip covered with protective member |
6521508, | Dec 31 1999 | Hyundai Electronics Industries Co., Ltd. | Method of manufacturing a contact plug in a semiconductor device using selective epitaxial growth of silicon process |
6521965, | Sep 12 2000 | Robert Bosch GmbH | Integrated pressure sensor |
6522052, | Dec 28 2000 | Denso Corporation; Nippon Soken, Inc. | Multilayer-type piezoelectric actuator |
6524890, | Nov 17 1999 | Denso Corporation | Method for manufacturing semiconductor device having element isolation structure |
6531767, | Apr 09 2001 | Analog Devices, Inc | Critically aligned optical MEMS dies for large packaged substrate arrays and method of manufacture |
6534340, | Nov 18 1998 | Analog Devices, Inc | Cover cap for semiconductor wafer devices |
6550331, | Aug 21 1992 | Denso Corporation | Semiconductor mechanical sensor |
6550339, | May 06 1999 | Denso Corporation | Pressure sensor for detecting differential pressure between two spaces |
6551853, | May 12 2000 | Denso Corporation | Sensor having membrane structure and method for manufacturing the same |
6552404, | Apr 17 2001 | Analog Devices, Inc. | Integratable transducer structure |
6555417, | Dec 05 2000 | Analog Devices, Inc | Method and device for protecting micro electromechanical system structures during dicing of a wafer |
6555901, | Oct 04 1996 | Denso Corporation | Semiconductor device including eutectic bonding portion and method for manufacturing the same |
6555904, | Mar 05 2001 | Analog Devices, Inc | Electrically shielded glass lid for a packaged device |
6558976, | Apr 09 2001 | Analog Devices, Inc. | Critically aligned optical MEMS dies for large packaged substrate arrays and method of manufacture |
6621134, | Feb 07 2002 | Bell Semiconductor, LLC | Vacuum sealed RF/microwave microresonator |
6624726, | Aug 31 2001 | Google Technology Holdings LLC | High Q factor MEMS resonators |
6635509, | Apr 12 2002 | TELEDYNE DIGITAL IMAGING, INC | Wafer-level MEMS packaging |
6808954, | Sep 07 2001 | Intel Corporation | Vacuum-cavity MEMS resonator |
20010001931, | |||
20010009110, | |||
20010034076, | |||
20020016058, | |||
20020135047, | |||
20030215974, | |||
20040016989, | |||
20040065932, | |||
EP451992, | |||
EP1217735, | |||
GB2198611, | |||
WO146066, | |||
WO177008, | |||
WO177009, | |||
WO9749475, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 04 2003 | Robert Bosch GmbH | (assignment on the face of the patent) | / | |||
Aug 23 2003 | KRONMUELLER, SILVIA | Robert Bosch GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014509 | /0518 | |
Aug 27 2003 | LUTZ, MARKUS | Robert Bosch GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014509 | /0429 | |
Sep 05 2003 | PARTRIDGE, AARON | Robert Bosch GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014508 | /0028 |
Date | Maintenance Fee Events |
Feb 17 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 20 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 22 2017 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 30 2008 | 4 years fee payment window open |
Mar 02 2009 | 6 months grace period start (w surcharge) |
Aug 30 2009 | patent expiry (for year 4) |
Aug 30 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 30 2012 | 8 years fee payment window open |
Mar 02 2013 | 6 months grace period start (w surcharge) |
Aug 30 2013 | patent expiry (for year 8) |
Aug 30 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 30 2016 | 12 years fee payment window open |
Mar 02 2017 | 6 months grace period start (w surcharge) |
Aug 30 2017 | patent expiry (for year 12) |
Aug 30 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |