Conventional position-sensorless motor drive control circuits start a motor by a method that has the disadvantage that the motor is not always started in the forward direction or by a method that has the disadvantage that a current detection resistor produces a power loss. According to the invention, a motor drive control circuit that controls, with drive signals, a drive portion that feeds drive currents to the stator coils of a motor has a drive signal output circuit that outputs rotor position detection drive signals to the drive portion before the starting of the motor and a detection circuit that receives the common-terminal voltage of the stator coils when the drive signal output circuit is outputting the rotor position detection drive signals and that detects, according to the common-terminal voltage of the stator coils, the position of the rotor before the starting of the motor.
|
1. A motor drive control circuit that controls, with drive signals, a drive portion that feeds drive currents to stator coils of a motor, comprising:
a drive signal output circuit; and
a detection circuit,
wherein the drive signal output circuit outputs rotor position detection drive signals to the drive portion before starting of the motor,
wherein the detection circuit receives a common-terminal voltage of the stator coils when the drive signal output circuit is outputting the rotor position detection drive signals, and detects, according to the common-terminal voltage of the stator coils, a position of a rotor before starting of the motor, and
wherein the rotor position detection drive signals are signals that control the drive portion so that, before starting of the motor, the drive portion feeds the stator coils with rotor position detection drive currents that cause the common-terminal voltage of the stator coils to vary with the position of the rotor but that do not cause the motor to rotate.
4. A motor drive apparatus comprising:
a motor;
a drive portion that feeds drive currents to stator coils of the motor; and
a motor drive control circuit that controls the drive portion with drive signals,
wherein the motor drive control circuit includes a drive signal output circuit and a detection circuit,
wherein the drive signal output circuit outputs rotor position detection drive signals to the drive portion before starting of the motor,
wherein the detection circuit receives a common-terminal voltage of the stator coils when the drive signal output circuit is outputting the rotor position detection drive signals, and detects, according to the common-terminal voltage of the stator coils, a position of a rotor before starting of the motor, and
wherein the rotor position detection drive signals are signals that control the drive portion so that, before starting of the motor, the drive portion feeds the stator coils with rotor position detection drive currents that cause the common-terminal voltage of the stator coils to vary with the position of the rotor but that do not cause the motor to rotate.
7. An electric appliance comprising:
a motor drive apparatus including:
a motor
a drive portion that feeds drive currents to stator coils of the motor; and
a motor drive control circuit that controls the drive portion with drive signals; and
a rotating member that is driven by the motor drive apparatus,
wherein the motor drive control circuit includes a drive signal output circuit and a detection circuit,
wherein the drive signal output circuit outputs rotor position detection drive signals to the drive portion before starting of the motor,
wherein the detection circuit receives a common-terminal voltage of the stator coils when the drive signal output circuit is outputting the rotor position detection drive signals, and detects, according to the common-terminal voltage of the stator coils, a position of a rotor before starting of the motor, and
wherein the rotor position detection drive signals are signals that control the drive portion so that, before starting of the motor, the drive portion feeds the stator coils with rotor position detection drive currents that cause the common-terminal voltage of the stator coils to vary with the position of the rotor but that do not cause the motor to rotate.
2. A motor drive control circuit that controls, with drive signals, a drive portion that feeds drive currents to stator coils of a motor, comprising:
a drive signal output circuit; and
a detection circuit,
wherein the drive signal output circuit outputs rotor position detection drive signals to the drive portion before starting of the motor,
wherein the detection circuit receives a common-terminal voltage of the stator coils when the drive signal output circuit is outputting the rotor position detection drive signals, and detects, according to the common-terminal voltage of the stator coils, a position of a rotor before starting of the motor,
wherein the detection circuit includes a plurality of resistors, a detection level generation circuit, and a comparator, and detects, according to the output of the comparator, the position of the rotor before starting of the motor,
wherein the plurality of resistors, at one ends thereof, respectively receive voltages at nodes between the motor and the drive portion and, at the other ends thereof, are connected together,
wherein the detection level generation circuit generates detection levels by shifting a voltage at the other ends of the plurality of resistors to levels corresponding to the rotor position detection drive signals, and
wherein the comparator compares the detection levels with the common-terminal voltage of the stator coils.
5. A motor drive apparatus comprising:
a motor;
a drive portion that feeds drive currents to stator coils of the motor; and
a motor drive control circuit that controls the drive portion with drive signals,
wherein the motor drive control circuit includes a drive signal output circuit and a detection circuit,
wherein the drive signal output circuit outputs rotor position detection drive signals to the drive portion before starting of the motor,
wherein the detection circuit receives a common-terminal voltage of the stator coils when the drive signal output circuit is outputting the rotor position detection drive signals, and detects, according to the common-terminal voltage of the stator coils, a position of a rotor before starting of the motor,
wherein the detection circuit includes a plurality of resistors, a detection level generation circuit, and a comparator, and detects, according to the output of the comparator, the position of the rotor before starting of the motor,
wherein the plurality of resistors, at one ends thereof, respectively receive voltages at nodes between the motor and the drive portion and, at the other ends thereof, are connected together,
wherein the detection level generation circuit generates detection levels by shifting a voltage at the other ends of the plurality of resistors to levels corresponding to the rotor position detection drive signals, and
wherein the comparator compares the detection levels with the common-terminal voltage of the stator coils.
8. An electric appliance comprising:
a motor drive apparatus including:
a motor;
a drive portion that feeds drive currents to stator coils of the motor; and
a motor drive control circuit that controls the drive portion with drive signals; and
a rotating member that is driven by the motor drive apparatus,
wherein the motor drive control circuit includes a drive signal output circuit and a detection circuit,
wherein the drive signal output circuit outputs rotor position detection drive signals to the drive portion before starting of the motor,
wherein the detection circuit receives a common-terminal voltage of the stator coils when the drive signal output circuit is outputting the rotor position detection drive signals, and detects, according to the common-terminal voltage of the stator coils, a position of a rotor before starting of the motor,
wherein the detection circuit includes a plurality of resistors, a detection level generation circuit, and a comparator, and detects, according to the output of the comparator, the position of the rotor before starting of the motor,
wherein the plurality of resistors, at one ends thereof, respectively receive voltages at nodes between the motor and the drive portion and, at the other ends thereof, are connected together,
wherein the detection level generation circuit generates detection levels by shifting a voltage at the other ends of the plurality of resistors to levels corresponding to the rotor position detection drive signals, and
wherein the comparator compares the detection levels with the common-terminal voltage of the stator coils.
3. A motor drive control circuit as claimed in
wherein the detection level generation circuit includes a serial circuit having two constant-current sources connected in series, and the other ends of the plurality of resistors are connected, either directly or through a buffer and a resistor, to a node between the two constant-current sources.
6. A motor drive apparatus as claimed in
wherein the detection level generation circuit includes a serial circuit having two constant-current sources connected in series, and the other ends of the plurality of resistors are connected, either directly or through a buffer and a resistor, to a node between the two constant-current sources.
9. An electric appliance as claimed in
wherein the detection level generation circuit includes a serial circuit having two constant-current sources connected in series, and the other ends of the plurality of resistors are connected, either directly or through a buffer and a resistor, to a node between the two constant-current sources.
10. An electric appliance as claimed in
wherein the electric appliance is an optical disk playback apparatus, and the motor is a spindle motor.
11. An electric appliance as claimed in
wherein the electric appliance is an optical disk playback apparatus, and the motor is a spindle motor.
12. An electric appliance as claimed in
wherein the electric appliance is an optical disk playback apparatus, and the motor is a spindle motor.
|
1. Field of the Invention
The present invention relates to a motor drive control circuit of a position-sensorless type, and to a motor drive apparatus provided with such a motor drive control circuit.
2. Description of the Prior Art
In conventional position-sensorless motor drive control circuits, one way to start a motor is by forcibly vibrating the motor with a predetermined sequence that is unrelated to the position of the rotor (hereinafter refereed to as “Method I”). Another way is by providing a current detection resistor and feeding the stator coils of the motor with current pulses before starting the motor so as to detect the energization status of the stator coils with the current detection resistor and then determine, according to the result of the detection, the starting logic state that permits the motor to be started in the forward direction (hereinafter refereed to as “Method II”).
However, Method I described above has the disadvantage that, since the motor is fed with three-phase voltages generated on the basis of a starting logic state that is unrelated to the rotor position, the motor is not always started in the forward direction. On the other hand, Method II has the disadvantage that the current detection resistor produces a power loss. Thus, there have conventionally been available no motor derive apparatuses that are suitable for use in portable appliances, such as portable MD (minidisk) players, in which rotation of a disk is frequently started and stopped.
Incidentally, in the motor drive apparatus disclosed in Japanese Patent Application Laid-Open No. H5-268791, the rotor position is detected by monitoring zero-cross voltages in coils that are in a floating state. With this detection method, however, it is not possible to detect the rotor position unless the motor is rotating. Thus, with this detection method, it is possible to detect the rotor position when synchronism is recovered after being momentarily lost, but it is impossible to detect the rotor position before the starting of the motor.
An object of the present invention is to provide a motor drive control circuit that operates with stable starting characteristics and with low power consumption, a motor drive apparatus employing such a motor drive control circuit, and an electric appliance employing such a motor drive apparatus.
To achieve the above object, according to one aspect of the present invention, a motor drive control circuit that controls, with drive signals, a drive portion that feeds drive currents to the stator coils of a motor is provided with: a drive signal output circuit that outputs rotor position detection drive signals to the drive portion before the starting of the motor; and a detection circuit that receives the common-terminal voltage of the stator coils when the drive signal output circuit is outputting the rotor position detection drive signals and that detects, according to the common-terminal voltage of the stator coils, the position of the rotor before the starting of the motor.
According to another aspect of the present invention, a motor drive apparatus is provided with: a motor; a drive portion that feeds drive currents to the stator coils of the motor; and a motor drive control circuit configured as described above which controls the drive portion with drive signals.
According to still another aspect of the present invention, an electric appliance is provided with: a motor drive apparatus configured as described above; and a rotating member that is driven by the motor drive apparatus
This and other objects and features of the present invention will become clear from the following description, taken in conjunction with the preferred embodiments with reference to the accompanying drawings in which:
The drive portion 1 is a three-phase drive circuit, and is composed of power transistors Q1 to Q6, which are n-channel MOSFETs [metal-oxide semiconductor field-effect transistors]. The drains of the power transistors Q1 to Q3 are connected together, and are connected to a terminal to which a drive voltage VD is applied. The source of the power transistor Q1 is connected to the drain of the power transistor Q4, the source of the power transistor Q2 is connected to the drain of the power transistor Q5, and the source of the power transistor Q3 is connected to the drain of the power transistor Q6. The sources of the power transistors Q4 to Q6 are connected together, and are connected to ground.
The motor 2 has three stator coils Lu, Lv, and Lw. One end of the stator coil Lu is connected to the node between the power transistors Q1 and Q4, one end of the stator coil Lv is connected to the node between the power transistors Q2 and Q5, and one end of the stator coil Lw is connected to the node between the power transistors Q3 and Q6. The other ends of the stator coils Lu, Lv, and Lw of the motor 2 are connected together.
The motor drive control circuit 3 is connected to the individual nodes between the drive portion 1 and the motor 2, is also connected to the other ends (connected together) of the stator coils Lu, Lv, and Lw of the motor 2, and is also connected, through terminals by way of which to output drive signals D1 to D6, to the individual gates of the power transistors Q1 to Q6 provided in the drive portion 1.
The drive portion 1 is controlled by the drive signals D1 to D6 output from the motor drive control circuit 3. Then, the drive portion 1 feeds drive currents to the motor 2 to rotate it.
Next, the motor drive control circuit 3 will be described. The motor drive control circuit 3 is composed of a pulse generator 4, a sequence circuit 5, a mode selector circuit 6, a coil common-terminal variation detection comparator 7, a detection level generation circuit 8, a register 9, a decoder 10, a preset circuit 11, a back electromotive force detection comparator 12, a switching noise mask circuit 13, and a drive waveform generation circuit 14. This configuration eliminates the need to provide a current detection resistor for detecting the conduction status of the stator coils of the motor, and thus helps reduce the power loss in the current detection resistor.
The pulse generator 4, on receiving an external signal (motor start request signal) from an unillustrated control circuit or the like, outputs a short-period pulse signal T1 (for example, a pulse signal with 50 kHz pulses) for a predetermined period to the sequence circuit 5 and to the register 9.
The sequence circuit 5 operates only when it is receiving the short-period pulse signal T1. During this period, on the basis of the short-period pulse signal T1, the sequence circuit 5 generates signals S1 to S6 and a period switch timing signal T2 that indicates time points t1 , t2, . . . , and t6 (all these signals and time points are shown in a time chart in FIG. 2), and outputs the signals S1 to S6 and a start signal K to the mode selector circuit 6.
The signals S1 to S6 are output only for so short a period as not to cause the motor to start to rotate. In this embodiment, the periods from t0 to t1, from t1 to t2, . . . , and from t5 to t6 are each 600 μs. The signals S1 to S6 each have a high-level period, during which it remains high, a low-level period, during which it remains low, and a pulse period, during which it has the same waveform as the short-period pulse signal T1. For example, the signal S1 has a low-level period during the period from t0 to t2, a high-level period during the period from t2 to t3, a pulse period during the period from t3 to t4, a high-level period during the period from t4 to t5, and a low-level period during the period from t5 to t6,
The mode selector circuit 6, when it is receiving the start signal K, operates in a rotor position detection mode; specifically, it selects the signals S1 to S6 and outputs them as the drive signals D1 to D6 to the drive portion 1 in order to turn on and off the power transistors Q1 to Q6 provided in the drive portion 1. Specifically, during the period from t0 to t1, the power transistors Q1, Q5, and Q6 are off, the power transistors Q2 and Q3 are on, and the power transistor Q4 performs switching operation; during the period from t1 to t2, the power transistors Q1, Q2, and Q6 are off, the power transistors Q4 and Q5 are on, and the power transistor Q3 performs switching operation; during the period from t2 to t3, the power transistors Q2, Q4, and Q6 are off, the power transistors Q1 and Q3 are on, and the power transistor Q5 performs switching operation. Likewise, during the period from t3 to t4, the power transistors Q2, Q3, and Q4 are off, the power transistors Q5 and Q6 are on, and the power transistor Q1 performs switching operation; during the period from t4 to t5, the power transistors Q3, Q4, and Q5 are off, the power transistors Q1 and Q2 are on, and the power transistor Q6 performs switching operation; during the period from t5 to t6, the power transistors Q1, Q3, and Q5 are off, the power transistors Q4 and Q6 are on, and the power transistor Q2 performs switching operation. Accordingly, during the period from t0 to t6, the motor voltages Vuout, Vvout, and Vwout, i.e., the voltages at the individual nodes between the drive portion 1 and the motor 2, have waveforms as shown in a time chart in FIG. 3. In this way, short-period current pulses having the same period as the short-period pulse signal T1 are fed to one of the stator coils Lu, Lv, and Lw at a time.
The rotor of the motor 2 is fitted with a magnet, and the magnetic field produced by this magnet causes the impedances of the stator coils to vary. Thus, the impedances of the stator coils vary with the position of the rotor. Accordingly, when short-period current pulses are fed to the stator coils, their common-terminal voltage CT varies with the rotor position. Incidentally, the aim of giving a short period to the current pulses fed to the stator coils is to increase the impedances of the stator coils and thereby increase the variation width of their common-terminal voltage CT.
The coil common-terminal variation detection comparator 7 compares the common-terminal voltage CT of the stator coils with a detection level output from the detection level generation circuit 8, and outputs their differential signal Co to the register 9.
The detection level generation circuit 8 receives the motor voltages Vuout, Vvout, and Vwout and the period switch timing signal T2 output from the sequence circuit 5, and generates different detection levels corresponding to the different periods (i.e., the periods from t0 to t1, from t1 to t2, . . . , and from t5 to t6). Incidentally, how many times to feed the short-period current pulses, the frequency of the short-period current pulses, and the detection levels are determined to suit the motor 2.
The register 9 receives the short-period pulse signal T1, and latches the differential signal Co on every trailing edge of the short-period pulse signal T1. Moreover, the register 9 receives the period switch timing signal T2, and successively stores, as resistor values R1 to R6, the differential signal Co latched at the time points t1 to t6, respectively. The register 9 then outputs the register values R1 to R6 to the decoder 10. Incidentally, if the differential signal Co is high when stored, the value “1” is stored as the register value corresponding to that time point, and, if the differential signal Co is low when stored, the value “0” is stored as the register value corresponding to that time point.
In this embodiment, the relationship between the resistor values R1 to R6 and the rotor position before the starting of the motor is as shown in FIG. 4. In
The sequence circuit 5, on completion of its operation sequence, feeds a preset signal PR to the preset circuit 11. On receiving the preset signal PR, the preset circuit 11 feeds the starting logic state Y1 to Y3 to the drive waveform generation circuit 14.
According to the starting logic state Y1 to Y3, the drive waveform generation circuit 14 generates signals MTX1 to MTX6, and feeds them to the mode selector circuit 6. The mode selector circuit 6, when it ceases to receive the start signal K from the sequence circuit 5, starts to operate in a sensorless drive mode; specifically, it selects the signals MTX1 to MTX6 and feeds them as the drive signals D1 to D6 to the drive portion 1.
The operation described above makes it possible to surely start the motor in the forward direction. After the motor is started, the back electromotive force detection comparator 12 detects, on the basis of the motor voltages Vuout, Vvout, and Vwout and the common-terminal voltage CT of the stator coils, the back electromotive forces appearing in the stator coils in a floating state, and outputs a detection signal of those back electromotive forces to the switching noise mask circuit 13. On receiving the detection signal of the back electromotive forces, the switching noise mask circuit 13 removes therefrom switching noise generated by the switching operation of the power transistors Q1 to Q6, and then outputs it to the drive waveform generation circuit 14. The drive waveform generation circuit 14 has already detected, on the basis of the detection signal of the back electromotive forces, the rotor position during the rotation of the motor, and generates the signals MTX1 to MTX6 according to the rotor position. Here, the mode selector circuit 6 is operating in the sensorless drive mode, and therefore it outputs the signals MTX1 to MTX6 as the drive signals D1 to D6 to the drive portion 1.
The circuit configured as described above operates in the following manner. The resistors R1 to R3 produces a virtual common-terminal voltage from the motor voltages Vuout, Vvout, and Vwout. The differential amplifier 15 buffers the virtual common-terminal voltage.
The resistor R4, the constant current source 16, and the constant current source 17 produce a detection level by offsetting the virtual common-terminal voltage. The constant current sources 16 and 17 are turned on and off by a signal T2′ based on the period switch timing signal T2. During the periods from t0 to t1, from t2 to t3, and from t4 to t5, the constant current source 16 is off, and the constant current source 17 is on. This causes a current I2 to be extracted from the resistor R4, and thus the level of the common-terminal voltage is shifted downward. Incidentally, in this embodiment, the level is shifted by −40 mV. On the other hand, during the periods from t1 to t2, from t3 to t4, and from t5 to t6, the constant current source 16 is on, and the constant current source 17 is off. This causes a current I1 to be supplied to the resistor R4, and thus the level of the common-terminal voltage is shifted upward. Incidentally, in this embodiment, the level is shifted by +40 mV.
The comparator 18 corresponds to the coil common-terminal variation detection comparator 7 shown in FIG. 1. The comparator 18, when the motor coil common-terminal voltage CT is higher than the detection level, turns the differential signal Co high, and, when the motor coil common-terminal voltage CT is not higher than the detection level, turns the differential signal Co low.
Now, why the level of the virtual common-terminal voltage is shifted will be described.
Instead of the configuration shown in
The circuits shown in
Next, as an example of an electric appliance embodying the invention, an optical disk playback apparatus will be described with reference to FIG. 10. An optical pickup apparatus 22 irradiates an optical disk 23, such as a minidisk, with laser light, then reads a signal from the laser light reflected from the optical disk 23, and then feeds the read signal to a microcomputer 20.
A driver circuit 21 drives the optical pickup apparatus 22 according to instructions from the microcomputer 20. The optical pickup apparatus 22 is moved, by a stepping motor (not illustrated) incorporated therein, stepwise in the radial direction of the optical disk 23 so as to be positioned at the track where to read a signal.
Moreover, a driver circuit 24 drives a spindle motor 25 according to instructions from the microcomputer 20. The optical disk 23 is rotated via a spindle by the spindle motor 25.
Here, used as the driver circuit 24 and the spindle motor 25 are the motor drive apparatus shown in FIG. 1. Specifically, as the spindle motor 25 is used the motor 2, and as the driver circuit 24 is used a circuit composed of the drive portion 1 and the motor drive control circuit 3. The motor drive apparatus shown in
Incidentally, detecting the rotor position before the starting of a motor and then starting the motor according to the detection result as practiced in the embodiments described above is called “sensing start.” The embodiments described hereinbefore deal with cases where the drive portion 1 and the motor drive control circuit 3 are formed in separate ICs. However, it is also possible to form the drive portion 1 and the motor drive control circuit 3 in a single IC.
Patent | Priority | Assignee | Title |
11606049, | Oct 31 2016 | AUTOCHIPS WUHAN CO , LTD | Control chip, control system, and control method for motors |
7102312, | Apr 22 2002 | Sony Corporation | Motor driving apparatus, driving method thereof and mobile terminal |
7218846, | Jul 04 2003 | Delta Electronics, Inc. | Fan speed control circuit |
7334854, | Sep 20 2006 | GLOBAL MIXED-MODE TECHNOLOGY INC | Sensorless start-up method for driving a brushless DC motor |
7466093, | Feb 26 2004 | ROHM CO , LTD | Motor drive unit and electric apparatus having a motor |
7535188, | Feb 28 2006 | COLLABO INNOVATIONS, INC | Motor driving apparatus, motor driving method and disk driving apparatus |
7567749, | Nov 19 2003 | Delta Electronics, Inc. | Motor control circuit |
7768226, | Mar 15 2006 | COLLABO INNOVATIONS, INC | Motor drive device and motor drive method |
8054022, | Jun 26 2008 | Western Digital Technologies, Inc.; Western Digital Technologies, INC | Reduced acoustic noise during spin-up by driving a spindle motor open loop using sinusoidal signals |
8179127, | Nov 06 2007 | Chrysler Group LLC | Method and apparatus to monitor position of a rotatable shaft |
8390240, | Aug 06 2007 | GM Global Technology Operations LLC | Absolute position sensor for field-oriented control of an induction motor |
8610391, | Jun 29 2011 | Western Digital Technologies, INC | Disk drive optimizing spindle motor torque by adjusting leading phase angle during spin-up |
8837245, | Jun 25 2004 | Infineon Technologies LLC | Memory cell array latchup prevention |
9842629, | Jun 25 2004 | Infineon Technologies LLC | Memory cell array latchup prevention |
Patent | Priority | Assignee | Title |
5432414, | Mar 30 1992 | Kabushiki Kaisha Toshiba | Sensorless spindle motor control apparatus |
6316894, | Feb 24 1997 | Rohm Co., Ltd. | Driving device for three-phase brushless motor |
JP4046583, | |||
JP4101696, | |||
JP5268791, | |||
JP62189993, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 29 2003 | KANDORI, DAISUKE | ROHM CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014481 | /0279 | |
Sep 04 2003 | Rohm Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 18 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 03 2013 | REM: Maintenance Fee Reminder Mailed. |
Sep 20 2013 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Sep 20 2008 | 4 years fee payment window open |
Mar 20 2009 | 6 months grace period start (w surcharge) |
Sep 20 2009 | patent expiry (for year 4) |
Sep 20 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 20 2012 | 8 years fee payment window open |
Mar 20 2013 | 6 months grace period start (w surcharge) |
Sep 20 2013 | patent expiry (for year 8) |
Sep 20 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 20 2016 | 12 years fee payment window open |
Mar 20 2017 | 6 months grace period start (w surcharge) |
Sep 20 2017 | patent expiry (for year 12) |
Sep 20 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |