An edge connectable lighting fixture assembly has a lighting fixture housing for housing a light source and components for supporting and electrifying the light source including wiring. The housing has at least one laterally extending edge portion and a connecting structure extending along at least a portion of the length of the edge portion with a wire passageway passing through the connecting structure. An edge connector arm has at least one terminal end and a connecting structure formed on the terminal end of the arm which mechanically connects with the connecting structure formed along the edge portion of the housing so that the housing can be mechanically connected at its edge to the terminal end of the edge connector arm. A wireway in the edge connector arm extends to and exits from the terminal end of the edge connector arm such that the wireway can be aligned with the wire passageway in the connecting structure in the housing edge portion by aligning the terminal end of the edge connector arm to the wire passageway. Electrical wires can be passed from the edge connector arm through the edge portion of the housing.
|
1. A method of connecting together a lighting fixture assembly which includes a lighting fixture housing for housing a light source and components for supporting and electrifying the light source including wiring, said housing having at least one laterally extending edge portion and a first connecting structure extending along at least a portion of the length of said edge portion, said first connecting structure having at least one wire passageway therethough, an edge connector arm having at least one terminal end, the terminal end of said edge connector arm having a second connecting structure formed to mechanically connect with the first connecting structure along the edge portion of said housing, and a wireway in said edge connector arm, said wireway extending to and exiting the at least one terminal end of said edge connector arm, said method comprising
connecting said housing and the terminal end of said edge connector arm together at the edge of said housing by means of the connecting structures,
aligning the wireway in said connector arm with the at least one wire passageway in the first connecting structure in said housing edge portion by aligning the terminal end of the edge connector arm to said wire passageway, and
passing said electrical wires through the edge portion of said housing.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
a terminal connector plate at the terminal end of said connector arm, said terminal connector plate containing the second connecting structure of said connector arm and operative to provide a mechanical connection between said connector arm and the first connecting structure located along the edge portion of said housing, and
a bottom plate having an end and a top face, said connector plate being attachable to the end of said bottom plate, and the top face of said bottom plate having a wire channel that runs to the ends of said bottom plate, said wire channel providing at least a portion of the wireway of said connector arm.
10. The method of
11. The method of
|
This application is a continuation of application Ser. No. 10/335,817 filed Jan. 30, 2003, now U.S. Pat. No. 6,769,785 which claims the benefit of provisional application No. 60/365,238, filed Mar. 14, 2002.
The present invention generally relates to overhead lighting systems for producing lighting in an architectural space; it more particularly relates to lighting systems comprised of inter-connectable lighting fixture elements that can be configured to provide both a desired distribution of light and a physical lighting system having a design that compliments the surrounding architecture.
Linear flourescent lighting fixtures have been known for many years. Characterized by elongated fixture housings of a characteristic cross-sectional shape, usually fabricated of steel or extruded aluminum, such fixtures are designed to be suspended from ceilings or wall mounted and to produce ambient lighting within an architectural space in the form of indirect lighting, direct lighting, or a combination of direct and indirect lighting. Early linear lighting housing shapes were mostly basic round and rectangular shapes. However, over the years a variety of unique and aesthetically pleasing shapes have been introduced to give architects and lighting designers a greater selection of products from which to create more innovative, effective and architecturally pleasing lighting designs.
Interconnectibility is one of the important features of linear lighting systems. Presently, straight, T, L and X end connectors are available for joining the ends of individual fixtures together. These connectors are limited to end-to-end fixture configurations such as straight or intersecting runs, or geometric runs such as a closed square. Side connector systems have also been devised which permit linear fixture elements to be connected in a grid pattern. For example, U.S. Pat. No. 4,420,798 to Herst, et al., discloses an adjustable overhead lighting fixture having hanger elements mounted to the ends of the fixtures which fit over and engage the curved side walls of another fixture or runner element. The hanger elements on the ends of the fixtures are relatively bulky and provide a mechanical connection only without any facility to electrically interconnect the fixtures.
U.S. Pat. No. 3,158,327 to R. C. Dameral discloses an overhead flourescent lighting system comprised of an elongated rectangular ballast housing to which the ends of individual linear lighting fixture elements can be mechanically connected and through which the lighting fixture elements are wired to the ballast in the ballast housing. Again, the mechanical connection between the ballast housing and the fixtures is relatively cumbersome and provides no particular aesthetic appeal for the system. In such a system, the ballasts are also separated from the fixture elements, such that the fixture elements cannot act as stand-alone units which can be configured without the use of the ballast housing.
A need exists for a linear lighting system that can be interconnected and configured in a manner not heretofore provided in the prior art. More particularly, a need exists to provide an aesthetically pleasing linear lighting fixture component of a lighting system which can be interconnected with other linear lighting fixture components in a manner that is itself aesthetically pleasing and that permits the linear fixture elements to be easily interconnected, both mechanically and electrically, without the connecting structures dominating the visual appearance of the system.
The present invention provides an edge connectable linear lighting fixture assembly which can be easily interconnected mechanically and electrically, which is aesthetically pleasing, and which provides a lighting designer with a powerful tool for creating overhead lighting systems with an architectural motif that has not heretofore existed.
Briefly, the invention involves an edge connectable lighting fixture assembly comprised of a lighting fixture housing for housing a light source and components for supporting and electrifying the light source including wiring. The housing has at least one laterally extending edge portion and a first connecting structure extending along at least a portion of the length of this edge portion. The first connecting structure of the housing edge includes at least one wire passageway extending through the edge. An edge connector arm is provided for connecting to the extended edge of the fixture housing. This connector arm has at least one terminal end which has a second connecting structure formed to mechanically connect with the first connecting structure along the housing edge portion. A wireway in the edge connector arm extends to and exits the terminal end of the edge connector arm such that the wireway can be aligned with the wire passage in the first connecting structure of the housing edge portion. By aligning the terminal end of the edge connector arm to this wire passageway, electrical wires can be passed from the edge connector arm through the edge portion of the housing for providing electrical power to the housing.
Referring now to the drawings,
It is noted that the linear lighting fixture elements 45 of the configuration shown in
The 90 degree edge connector arms 15 shown in
The opposed faces 80, 82 of bottom plate 83 and top plate 85 of the edge connector arm include opposed channels 97, 99 extending the length of the plates which, when the plates are fastened together, form a wireway 100 through the arm as shown in FIG. 6A. Additionally, the bottom and top plates have opposed openings 101, 103 for receiving a suspension connector in the form of cable gripper 107 and cable gripper anchor screw 109, which provide a suspension point on this connector arm. A further opening 111 is provided in the top plate for feeding in the wires of power cord 19 as shown in FIG. 6B. It will be appreciated that one or more suspension points could be provided on the arm using different types of attachment mechanisms. It will also be appreciated that the gripper anchor screw could be affixed permanently to the connector arm. While the anchor screw or other attachment device is preferably secured from the bottom plate of the arm because it must support the weight of the fixtures of the assembly, securement to the top plate of the arm is also within the scope of the invention.
It is seen that the bottom plate 83 of the connector arm illustrated in
The design of the terminal connector plates 87 of the edge connector arm is shown in greater detail in FIG. 7. The connecting plates provide a second connecting structure for mechanically connecting the connector arm to the above-described connecting structure formed along the housing edge.
Each connector plate has a top 113, a bottom 115, and a terminal end 117 which include keyed projections 119 formed to fit into and slide within a selected one of the keeper slots 73 formed along the extended edges 65a, 65b of the fixture housing 53. The terminal end 117 of the connector plate further includes top and bottom inclined faces 121, 123 designed to mate with and slide on the top and bottom edge faces 75, 77 forming the edge reveal of the housing (see FIG. 3A). Wire channel 125 formed along the bottom of the connector plate provides a continuation of the wireway 100 in the main body of the edge connector arm. This wire channel exits at the wire opening 127 between the keyed projections 119 to permit wires threaded through the connector arm's wireway to be threaded through the edge of the fixture housing to which the arm is connected, such as edge 65a as shown in
It is noted that each end of the fixture housing is provided with an end cap such as the end cap 133 illustrated in
As shown in
Because of their uniform shape the fixture housing and end caps can be extruded and will suitably be extruded aluminum parts cut to desired lengths. The extruded end caps illustrated in the drawings will eliminate the need for the more expensive die cast ends used in most conventional linear lighting systems.
The assembly of the edge connector arm and its connection to the edge of the lighting fixture of the assembly is now described with reference to
The first step of connecting one edge of the edge connector arm to the fixture is to remove the fixture's end cap 133. Here it is noted that the diameter of the bore 71 at the base of the keeper slot is chosen to allow the end cap pins 137 to freely slide within keeper slot 73. Allen-head set screws 136 (
With the end cap removed, a terminal connector plate 87 of the edge connector arm is engaged in the housing's keeper slot by sliding the keyed projections 119 of the terminal connector plate into the slot from the slot access point 157 at the housing's end 135. The end cap is then replaced and tightened down by means of the set screws 136.
Once this is accomplished, the terminal connector plate is aligned with the wire passageway 129 of the fixture housing by sliding the connector plate up against the locator end of the end cap pin 137 engaged in that slot. As mentioned above, a pin length is chosen which achieves this alignment. When the terminal connector plate is in position, it must be locked into place by the plate locking mechanism illustrated in
Once the terminal connector plates 87 are locked onto all the lighting fixture housings of the assembly, assembly of the rest of the edge connector arms and wiring of the assembly can be completed. This is suitably accomplished on the ground before the lighting fixture assembly is hung from the suspension cables (see cables 17 in
A suitable procedure for wiring the four fixture assembly shown in
Once the wiring is completed, the bottom plate 83 of the edge connector arm is fastened to the terminal connector plates by means of screw fasteners 95 as shown is FIG. 4B. The screw fasteners extend through screw openings 96 in the connector plate so as to screw into the threaded screw holes 98 of the bottom plate. The cable gripper 107 is then attached to the bottom plate by means of anchor screw 109, and the top plate 85 of the edge connector arm fastened down onto the bottom plate 83 by means of screw fasteners, such as the illustrated screw fasteners 93, that are screwed into threaded holes 102 in the bottom plate through fastener openings 94 in the top plate. Before fastening the top plate, care must be taken to place the wires pulled between the fixtures into the wire channel 97 of the bottom plate such that the wires are completely captured in the connector arm's wireway 100 after the arm is assembled.
Once the assembly is complete, it can be lifted to permit the suspension cables 17 to be threaded into the suspension connectors, such as cable grippers 107, which project up through gripper opening 103 in the top of the edge connector arm. The suspension cable gripper illustrated in detail in
The above-described installation steps may vary depending on the preference of the installer and the nature of the assembly. For example, in the assembly shown in
Thus, it is appreciated that the present invention provides an edge connectable linear lighting fixture assembly that can be easily interconnected mechanically and electrically, that is aesthetically pleasing, and that provides a lighting designer with a powerful tool for creating overhead lighting systems with an architectural motif that has not heretofore existed. While the invention has been described in considerable detail in the foregoing specification, it is not intended that the invention be limited to such detail, except as necessitated by the following claims.
Herst, Douglas J., Salman, Utkan, Tran, Michael
Patent | Priority | Assignee | Title |
8950909, | Jul 26 2011 | LITELAB CORP | Light fixture with concealed wireway |
Patent | Priority | Assignee | Title |
6769785, | Mar 14 2002 | ABL IP Holding, LLC | Edge connectable lighting fixture assembly |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 21 2004 | Acuity Brands, Inc. | (assignment on the face of the patent) | / | |||
Sep 24 2004 | HERST, DOUGLAS J | ACUITY BRANDS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015283 | /0221 | |
Sep 24 2004 | SALMAN, UTKAN | ACUITY BRANDS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015283 | /0221 | |
Sep 24 2004 | TRAN, MICHAEL | ACUITY BRANDS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015283 | /0221 | |
Sep 26 2007 | ACUITY BRANDS, INC | ABL IP Holding, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023127 | /0378 |
Date | Maintenance Fee Events |
Apr 03 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 17 2013 | REM: Maintenance Fee Reminder Mailed. |
Oct 04 2013 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 04 2008 | 4 years fee payment window open |
Apr 04 2009 | 6 months grace period start (w surcharge) |
Oct 04 2009 | patent expiry (for year 4) |
Oct 04 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 04 2012 | 8 years fee payment window open |
Apr 04 2013 | 6 months grace period start (w surcharge) |
Oct 04 2013 | patent expiry (for year 8) |
Oct 04 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 04 2016 | 12 years fee payment window open |
Apr 04 2017 | 6 months grace period start (w surcharge) |
Oct 04 2017 | patent expiry (for year 12) |
Oct 04 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |