A system master unit is connected to a 24V AC power source. One or more slave units is connected to the master unit by a power/communication line. Bulk capacitance in the master and slave units stores power during a power source positive half cycle. When the source voltage is higher than the bulk capacitance voltages, power is delivered to the loads, during which time communication cannot take place over the power/communication line. During the power source negative half cycle, the power/communication line is disconnected from the AC power source and is then used for communication between the master and slave units. system power is delivered from the energy stored in the bulk capacitance.
|
6. A method for providing power and communication between a plurality of low voltage devices in a low voltage system, comprising the steps of:
connecting a master unit to a 24V AC power source;
connecting at least one slave unit to said master unit by a power/communication line, wherein said power/communication line is a two-wire buss consisting of a power/communication wire and a common wire;
storing power in said master and slave units during a power source half cycle of a first polarity;
disconnecting said AC power source from said power/communication wire during a power source half cycle of a second polarity;
delivering power to said system during said power source half cycle of said second polarity from said energy stored in said capacitance means; and
communicating between said master and slave units during said power source half cycle of said second polarity.
1. A system for providing power and communication between a plurality of low voltage devices, comprising:
a master unit connected to a 24V AC power source;
at least one slave unit connected to said master unit by a power/communication line, wherein said power/communication line is a two-wire buss consisting of a power/communication wire and a common wire;
capacitance means in said master and slave units for storing power during a power source half cycle of a first polarity;
disconnecting means for disconnecting said AC power source from said power/communication wire during a power source half cycle of a second polarity;
wherein power is delivered to said system during said power source half cycle of said second polarity from said energy stored in said capacitance means; and
communication means for communicating between said master and slave units during said power source half cycle of said second polarity.
7. A system for providing power and communication between a plurality of low voltage devices, comprising:
a master unit connected to a 24V AC power source;
at least one slave unit connected to said master unit by a power/communication line, wherein said power/communication line is a two-wire buss consisting of a power/communication wire and a common wire;
a capacitance in each of said master and slave units for storing power during a power source half cycle of a first polarity;
a diode in series between said AC power source which disconnects said AC power source from said power/communication wire during a power source half cycle of a second polarity;
wherein power is delivered to said system during said power source half cycle of said second polarity from said energy stored in said capacitance; and
a communication circuit for communicating between said master and slave units during said power source half cycle of said second polarity.
2. A system according to
3. A system according to
4. A system according to
5. A system according to
|
This invention relates generally to the field of power line communications, and more particularly to providing both power and communications over low voltage power lines.
Heating Ventilation and Air Conditioning (HVAC) systems typically operate on 24V AC that is derived from a transformer connected to the AC power line of the home. This single source must provide power for all the components within the HVAC system. In newer systems, power is typically delivered via one pair of wires, while one or more additional wires are used to provide communication. System installation can become a serious issue if the existing house wiring does not support the wiring required for the desired features. It is therefore desirable to have a system that needs only 2 wires to provide both power and communication. This would allow for system component installation unconstrained by the amount of existing wiring.
Two wire solutions currently exist for providing power and communications. However, these power line carrier (PLC) solutions are geared toward communication over the AC power lines within a home where the loads need uninterrupted full cycle AC power. This requirement drives the nature of PLC devices. PLC devices typically communicate by inducing a high frequency voltage or current onto the AC power line and are relatively expensive.
Briefly stated, a system master unit is connected to a 24V AC power source. One or more slave units is connected to the master unit by a power/communication line. Bulk capacitance in the master and slave units stores power during a power source positive half cycle. When the source voltage is higher than the bulk capacitance voltages, power is delivered to the loads, during which time communication cannot take place over the power/communication line. During the power source negative half cycle, the power/communication line is disconnected from the AC power source and is then used for communication between the master and slave units. System power is delivered from the energy stored in the bulk capacitance.
According to an embodiment of the invention, a system for providing power and communication between a plurality of low voltage devices includes a master unit connected to a 24V AC power source; at least one slave unit connected to the master unit by a power/communication line, wherein the power/communication line is a two-wire buss consisting of a power/communication wire and a common wire; capacitance means in the master and slave units for storing power during a power source half cycle of a first polarity; disconnecting means for disconnecting the AC power source from the power/communication wire during a power source half cycle of a second polarity; wherein power is delivered to the system during the power source half cycle of the second polarity from the energy stored in the capacitance means; and communication means for communicating between the master and slave units during the power source half cycle of the second polarity.
According to an embodiment of the invention, a method for providing power and communication between a plurality of low voltage devices in a low voltage system includes the steps of (a) connecting a master unit to a 24V AC power source; (b) connecting at least one slave unit to the master unit by a power/communication line, wherein the power/communication line is a two-wire buss consisting of a power/communication wire and a common wire; (c) storing power in the master and slave units during a power source half cycle of a first polarity; (d) disconnecting the AC power source from the power/communication wire during a power source half cycle of a second polarity; (e) delivering power to the system during the power source half cycle of the second polarity from the energy stored in the capacitance means; and (f) communicating between the master and slave units during the power source half cycle of the second polarity.
According to an embodiment of the invention, a system for providing power and communication between a plurality of low voltage devices includes a master unit connected to a 24V AC power source; at least one slave unit connected to the master unit by a power/communication line, wherein the power/communication line is a two-wire buss consisting of a power/communication wire and a common wire; a capacitance in each of the master and slave units for storing power during a power source half cycle of a first polarity; a diode in series between the AC power source which disconnects the AC power source from the power/communication wire during a power source half cycle of a second polarity; wherein power is delivered to the system during the power source half cycle of the second polarity from the energy stored in the capacitance; and a communication circuit for communicating between the master and slave units during the power source half cycle of the second polarity.
Referring to
As will be explained below, the configuration of master unit 10 and slave units 20 allow power/communication wire 22a to be naturally commutated to allow energy transfer during the positive half-line cycle and communication during most of the negative half cycle. The communication time could be increased by commutating the power/communication wire 22a using an active circuit.
The idea behind this invention is that the portion of the line cycle during which power is not being delivered to slave units 20 is used for communication, while the system configuration allows natural commutation of the line between power transfer and communication.
Referring to
Referring to
Referring to
Referring also to
While the present invention has been described with reference to a particular preferred embodiment and the accompanying drawings, it will be understood by those skilled in the art that the invention is not limited to the preferred embodiment and that various modifications and the like could be made thereto without departing from the scope of the invention as defined in the following claims.
Crenella, David, Smyth, Michael Steel
Patent | Priority | Assignee | Title |
10041690, | Mar 28 2014 | GOOGLE LLC | Detection-facilitating mounting stand for multi-sensing smart home device |
10082307, | Nov 19 2010 | GOOGLE LLC | Adaptive power-stealing thermostat |
10088189, | Jan 07 2015 | GOOGLE LLC | Smart-home device robust against anomalous electrical conditions |
10151501, | Nov 19 2010 | GOOGLE LLC | Thermostat facilitating user-friendly installation thereof |
10175668, | Nov 19 2010 | GOOGLE LLC | Systems and methods for energy-efficient control of an energy-consuming system |
10191727, | Nov 19 2010 | GOOGLE LLC | Installation of thermostat powered by rechargeable battery |
10298009, | Sep 21 2012 | GOOGLE LLC | Monitoring and recoverable protection of switching circuitry for smart-home devices |
10309672, | Nov 19 2010 | GOOGLE LLC | Thermostat wiring connector |
10375356, | Feb 06 2015 | GOOGLE LLC | Systems, methods, and devices for managing coexistence of multiple transceiver devices by optimizing component layout |
10452083, | Dec 31 2010 | GOOGLE LLC | Power management in single circuit HVAC systems and in multiple circuit HVAC systems |
10473338, | Mar 09 2016 | GOOGLE LLC | Superimposed conveyance of data and electrical power |
10613213, | May 13 2016 | GOOGLE LLC | Systems, methods, and devices for utilizing radar with smart devices |
10678200, | Mar 28 2014 | GOOGLE LLC | User-relocatable self-learning environmental control device capable of adapting previous learnings to current location in controlled environment |
10678416, | Oct 21 2011 | GOOGLE LLC | Occupancy-based operating state determinations for sensing or control systems |
10684633, | Feb 24 2011 | GOOGLE LLC | Smart thermostat with active power stealing an processor isolation from switching elements |
10687184, | May 13 2016 | GOOGLE LLC | Systems, methods, and devices for utilizing radar-based touch interfaces |
10732651, | Nov 19 2010 | GOOGLE LLC | Smart-home proxy devices with long-polling |
10771868, | Sep 14 2010 | GOOGLE LLC | Occupancy pattern detection, estimation and prediction |
10798539, | May 13 2016 | GOOGLE LLC | Systems, methods, and devices for utilizing radar with smart devices |
10812762, | Feb 06 2015 | GOOGLE LLC | Systems, methods, and devices for managing coexistence of multiple transceiver devices by optimizing component layout |
10989427, | Dec 20 2017 | Trane International Inc. | HVAC system including smart diagnostic capabilites |
10992175, | Jun 15 2018 | GOOGLE LLC | Communication circuit for 2-wire protocols between HVAC systems and smart-home devices |
11032353, | Jan 13 2004 | MAY PATENTS LTD | Information device |
11122398, | May 13 2016 | GOOGLE LLC | Systems, methods, and devices for utilizing radar-based touch interfaces |
11272335, | May 13 2016 | GOOGLE LLC | Systems, methods, and devices for utilizing radar with smart devices |
11516630, | May 13 2016 | GOOGLE LLC | Techniques for adjusting operation of an electronic device |
11664679, | Jun 15 2018 | GOOGLE LLC | Communication circuit for 2-wire protocols between HVAC systems and smart-home devices |
11708982, | Dec 20 2017 | Trane International Inc. | HVAC system including smart diagnostic capabilities |
12146677, | Jan 11 2021 | Carrier Corporation | Two-wire connection with component control |
7133728, | Sep 14 2001 | Universita Degli Studi Di Roma Tor Vergata | Single-input multi-output control system |
7163158, | Dec 14 2004 | Itron, Inc | HVAC communication system |
7434744, | Dec 12 2005 | Emerson Electric Co. | Low voltage power line communication for climate control system |
7606639, | Sep 07 2005 | Itron, Inc | Local power consumption load control |
7748640, | Dec 18 2006 | Carrier Corporation | Stackable thermostat |
7778737, | Sep 07 2005 | Itron, Inc | Method and system for local load control |
7830858, | Jul 28 1998 | Taiwan Semiconductor Manufacturing Company, Ltd | Local area network of serial intelligent cells |
7835386, | Jul 07 1999 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Local area network for distributing data communication, sensing and control signals |
7841542, | Nov 07 2006 | ROSEN TECHNOLOGIES LLC | System for supplying communications and power to a thermostat over a two-wire system |
7852874, | Jul 28 1998 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Local area network of serial intelligent cells |
7969917, | Jul 28 1998 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Local area network of serial intelligent cells |
7979164, | Dec 12 2005 | COPELAND COMFORT CONTROL LP | Low voltage power line communication for climate control system |
8121132, | Jul 07 1999 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Local area network for distributing data communication, sensing and control signals |
8130084, | Apr 30 2007 | International Business Machines Corporation | Fault tolerant closed system control using power line communication |
8258649, | May 30 2008 | Qualcomm Incorporated | Communicating over power distribution media |
8325636, | Jul 28 1998 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Local area network of serial intelligent cells |
8363797, | Mar 20 2000 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Telephone outlet for implementing a local area network over telephone lines and a local area network using such outlets |
8421614, | Sep 19 2007 | International Business Machines Corporation | Reliable redundant data communication through alternating current power distribution system |
8478447, | Nov 19 2010 | GOOGLE LLC | Computational load distribution in a climate control system having plural sensing microsystems |
8511576, | Feb 24 2011 | GOOGLE LLC | Power management in energy buffered building control unit |
8511577, | Feb 24 2011 | GOOGLE LLC | Thermostat with power stealing delay interval at transitions between power stealing states |
8523083, | Feb 24 2011 | GOOGLE LLC | Thermostat with self-configuring connections to facilitate do-it-yourself installation |
8532827, | Oct 21 2011 | GOOGLE LLC | Prospective determination of processor wake-up conditions in energy buffered HVAC control unit |
8565417, | Feb 16 2004 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Outlet add-on module |
8582598, | Jul 07 1999 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Local area network for distributing data communication, sensing and control signals |
8627127, | Feb 24 2011 | GOOGLE LLC | Power-preserving communications architecture with long-polling persistent cloud channel for wireless network-connected thermostat |
8659302, | Sep 21 2012 | GOOGLE LLC | Monitoring and recoverable protection of thermostat switching circuitry |
8680706, | May 30 2008 | Qualcomm Incorporated | Communicating over power distribution media |
8708242, | Sep 21 2012 | GOOGLE LLC | Thermostat system with software-repurposable wiring terminals adaptable for HVAC systems of different ranges of complexity |
8752771, | Nov 19 2010 | GOOGLE LLC | Thermostat battery recharging during HVAC function active and inactive states |
8757507, | Nov 19 2010 | GOOGLE LLC | Thermostat facilitating user-friendly installation thereof |
8770491, | Feb 24 2011 | GOOGLE LLC | Thermostat with power stealing delay interval at transitions between power stealing states |
8788103, | Feb 24 2011 | GOOGLE LLC | Power management in energy buffered building control unit |
8855277, | Mar 20 2000 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Telephone outlet for implementing a local area network over telephone lines and a local area network using such outlets |
8867523, | Jul 28 1998 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Local area network of serial intelligent cells |
8885659, | Jul 28 1998 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Local area network of serial intelligent cells |
8885660, | Jul 28 1998 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Local area network of serial intelligent cells |
8908673, | Jul 28 1998 | CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC | Local area network of serial intelligent cells |
8924027, | Nov 19 2010 | GOOGLE LLC | Computational load distribution in a climate control system having plural sensing microsystems |
8942853, | Oct 21 2011 | GOOGLE LLC | Prospective determination of processor wake-up conditions in energy buffered HVAC control unit |
8944338, | Feb 24 2011 | GOOGLE LLC | Thermostat with self-configuring connections to facilitate do-it-yourself installation |
8994540, | Sep 21 2012 | GOOGLE LLC | Cover plate for a hazard detector having improved air flow and other characteristics |
9007222, | Sep 21 2012 | GOOGLE LLC | Detector unit and sensing chamber therefor |
9046414, | Sep 21 2012 | GOOGLE LLC | Selectable lens button for a hazard detector and method therefor |
9046898, | Feb 24 2011 | GOOGLE LLC | Power-preserving communications architecture with long-polling persistent cloud channel for wireless network-connected thermostat |
9086703, | Feb 24 2011 | GOOGLE LLC | Thermostat with power stealing delay interval at transitions between power stealing states |
9092039, | Nov 19 2010 | GOOGLE LLC | HVAC controller with user-friendly installation features with wire insertion detection |
9116529, | Feb 24 2011 | GOOGLE LLC | Thermostat with self-configuring connections to facilitate do-it-yourself installation |
9194600, | Oct 06 2004 | GOOGLE LLC | Battery charging by mechanical impeller at forced air vent outputs |
9234668, | Oct 21 2011 | GOOGLE LLC | User-friendly, network connected learning thermostat and related systems and methods |
9261287, | Nov 19 2010 | GOOGLE LLC | Adaptive power stealing thermostat |
9268344, | Nov 19 2010 | Google Inc | Installation of thermostat powered by rechargeable battery |
9349273, | Sep 21 2012 | GOOGLE LLC | Cover plate for a hazard detector having improved air flow and other characteristics |
9396633, | Jun 14 2015 | GOOGLE LLC | Systems, methods, and devices for managing coexistence of multiple transceiver devices by optimizing component layout |
9418540, | Aug 24 2005 | EATON INTELLIGENT POWER LIMITED | Electrical control system |
9435559, | Feb 24 2011 | GOOGLE LLC | Power management in energy buffered building control unit |
9448567, | Nov 19 2010 | GOOGLE LLC | Power management in single circuit HVAC systems and in multiple circuit HVAC systems |
9459018, | Nov 19 2010 | GOOGLE LLC | Systems and methods for energy-efficient control of an energy-consuming system |
9460600, | Sep 21 2012 | GOOGLE LLC | Detector unit and sensing chamber therefor |
9494332, | Nov 19 2010 | GOOGLE LLC | Thermostat wiring connector |
9513642, | Nov 19 2010 | GOOGLE LLC | Flexible functionality partitioning within intelligent-thermostat-controlled HVAC systems |
9543998, | Jun 14 2015 | GOOGLE LLC | Systems, methods, and devices for managing coexistence of multiple transceiver devices using bypass circuitry |
9568201, | Mar 28 2014 | GOOGLE LLC | Environmental control system retrofittable with multiple types of boiler-based heating systems |
9568370, | Sep 21 2012 | GOOGLE LLC | Selectable lens button for a smart home device and method therefor |
9575496, | Nov 19 2010 | GOOGLE LLC | HVAC controller with user-friendly installation features with wire insertion detection |
9581342, | Mar 28 2014 | GOOGLE LLC | Mounting stand for multi-sensing environmental control device |
9605858, | Nov 19 2010 | GOOGLE LLC | Thermostat circuitry for connection to HVAC systems |
9609462, | Mar 28 2014 | GOOGLE LLC | Facilitating radio frequency communications among environmental control system components |
9612031, | Jan 07 2015 | GOOGLE LLC | Thermostat switching circuitry robust against anomalous HVAC control line conditions |
9679454, | Feb 06 2015 | GOOGLE LLC | Systems, methods, and devices for managing coexistence of multiple transceiver devices using control signals |
9684317, | Nov 19 2010 | GOOGLE LLC | Thermostat facilitating user-friendly installation thereof |
9696734, | Nov 19 2010 | GOOGLE LLC | Active power stealing |
9715239, | Nov 19 2010 | GOOGLE LLC | Computational load distribution in an environment having multiple sensing microsystems |
9720585, | Oct 21 2011 | GOOGLE LLC | User friendly interface |
9740385, | Oct 21 2011 | GOOGLE LLC | User-friendly, network-connected, smart-home controller and related systems and methods |
9746859, | Sep 21 2012 | GOOGLE LLC | Thermostat system with software-repurposable wiring terminals adaptable for HVAC systems of different ranges of complexity |
9791839, | Mar 28 2014 | GOOGLE LLC | User-relocatable self-learning environmental control device capable of adapting previous learnings to current location in controlled environment |
9794522, | Feb 06 2015 | GOOGLE LLC | Systems, methods, and devices for managing coexistence of multiple transceiver devices by optimizing component layout |
9838079, | Feb 07 2012 | Samsung Electronics Co., Ltd. | Power line communication apparatus and method, and load power monitoring apparatus and method using same |
9851728, | Dec 31 2010 | GOOGLE LLC | Inhibiting deleterious control coupling in an enclosure having multiple HVAC regions |
9851729, | Nov 19 2010 | GOOGLE LLC | Power-preserving communications architecture with long-polling persistent cloud channel for wireless network-connected thermostat |
9875631, | Sep 21 2012 | GOOGLE LLC | Detector unit and sensing chamber therefor |
9910577, | Oct 21 2011 | GOOGLE LLC | Prospective determination of processor wake-up conditions in energy buffered HVAC control unit having a preconditioning feature |
9923589, | Jun 14 2015 | GOOGLE LLC | Systems, methods, and devices for managing coexistence of multiple transceiver devices using bypass circuitry |
9933794, | Feb 24 2011 | GOOGLE LLC | Thermostat with self-configuring connections to facilitate do-it-yourself installation |
9935455, | Sep 21 2012 | GOOGLE LLC | Monitoring and recoverable protection of thermostat switching circuitry |
9952608, | Feb 24 2011 | GOOGLE LLC | Thermostat with power stealing delay interval at transitions between power stealing states |
9995499, | Nov 19 2010 | GOOGLE LLC | Electronic device controller with user-friendly installation features |
Patent | Priority | Assignee | Title |
4086569, | Aug 30 1975 | Ferranti Limited | Communication systems |
4328482, | Nov 17 1977 | Consumer Electronic Products Corporation | Remote AC power control with control pulses at the zero crossing of the AC wave |
4408185, | Nov 13 1978 | ELSMARK A S, A CORP OF DENMARK | Process for transferring information and system for carrying out the process |
5614811, | Sep 26 1995 | Dyalem Concepts, Inc. | Power line control system |
5694109, | Sep 04 1996 | International Controls and Measurement Corp. | Two-wire dc communication system and transceiver |
5742225, | May 24 1995 | Endress + Hauser GmbH + Co. | Arrangement for signal transmission between a transmitting station and a receiving station |
5920253, | Sep 09 1994 | Local area method arrangement | |
6097761, | Feb 11 1997 | U S PHILIPS CORPORATION | Method and system for the transmission of data and power |
6320494, | Jan 18 2000 | Honeywell International Inc. | Full duplex communication system with power transfer on one pair of conductors |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 02 2002 | Carrier Corporation | (assignment on the face of the patent) | / | |||
Oct 23 2002 | CRENELLA, DAVID | Carrier Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013543 | /0416 | |
Oct 24 2002 | SMYTH, MICHAEL STEEL | Carrier Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013543 | /0416 |
Date | Maintenance Fee Events |
Mar 20 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 06 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 21 2017 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 18 2008 | 4 years fee payment window open |
Apr 18 2009 | 6 months grace period start (w surcharge) |
Oct 18 2009 | patent expiry (for year 4) |
Oct 18 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 18 2012 | 8 years fee payment window open |
Apr 18 2013 | 6 months grace period start (w surcharge) |
Oct 18 2013 | patent expiry (for year 8) |
Oct 18 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 18 2016 | 12 years fee payment window open |
Apr 18 2017 | 6 months grace period start (w surcharge) |
Oct 18 2017 | patent expiry (for year 12) |
Oct 18 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |