A system master unit is connected to a 24V AC power source. One or more slave units is connected to the master unit by a power/communication line. Bulk capacitance in the master and slave units stores power during a power source positive half cycle. When the source voltage is higher than the bulk capacitance voltages, power is delivered to the loads, during which time communication cannot take place over the power/communication line. During the power source negative half cycle, the power/communication line is disconnected from the AC power source and is then used for communication between the master and slave units. system power is delivered from the energy stored in the bulk capacitance.

Patent
   6956463
Priority
Oct 02 2002
Filed
Oct 02 2002
Issued
Oct 18 2005
Expiry
Apr 21 2024
Extension
567 days
Assg.orig
Entity
Large
116
9
all paid
6. A method for providing power and communication between a plurality of low voltage devices in a low voltage system, comprising the steps of:
connecting a master unit to a 24V AC power source;
connecting at least one slave unit to said master unit by a power/communication line, wherein said power/communication line is a two-wire buss consisting of a power/communication wire and a common wire;
storing power in said master and slave units during a power source half cycle of a first polarity;
disconnecting said AC power source from said power/communication wire during a power source half cycle of a second polarity;
delivering power to said system during said power source half cycle of said second polarity from said energy stored in said capacitance means; and
communicating between said master and slave units during said power source half cycle of said second polarity.
1. A system for providing power and communication between a plurality of low voltage devices, comprising:
a master unit connected to a 24V AC power source;
at least one slave unit connected to said master unit by a power/communication line, wherein said power/communication line is a two-wire buss consisting of a power/communication wire and a common wire;
capacitance means in said master and slave units for storing power during a power source half cycle of a first polarity;
disconnecting means for disconnecting said AC power source from said power/communication wire during a power source half cycle of a second polarity;
wherein power is delivered to said system during said power source half cycle of said second polarity from said energy stored in said capacitance means; and
communication means for communicating between said master and slave units during said power source half cycle of said second polarity.
7. A system for providing power and communication between a plurality of low voltage devices, comprising:
a master unit connected to a 24V AC power source;
at least one slave unit connected to said master unit by a power/communication line, wherein said power/communication line is a two-wire buss consisting of a power/communication wire and a common wire;
a capacitance in each of said master and slave units for storing power during a power source half cycle of a first polarity;
a diode in series between said AC power source which disconnects said AC power source from said power/communication wire during a power source half cycle of a second polarity;
wherein power is delivered to said system during said power source half cycle of said second polarity from said energy stored in said capacitance; and
a communication circuit for communicating between said master and slave units during said power source half cycle of said second polarity.
2. A system according to claim 1, wherein said disconnecting means includes a diode connected in said power/communication wire between said communication means in said master unit and said AC power source.
3. A system according to claim 1, wherein said communication means includes a communication driver and line synchronization circuit in each of said master and slave units.
4. A system according to claim 3, wherein said capacitance means includes a capacitance connected in parallel with said communication driver and line synchronization circuit in each of said master and slave units.
5. A system according to claim 1, wherein said first polarity is positive and said second polarity is negative.

This invention relates generally to the field of power line communications, and more particularly to providing both power and communications over low voltage power lines.

Heating Ventilation and Air Conditioning (HVAC) systems typically operate on 24V AC that is derived from a transformer connected to the AC power line of the home. This single source must provide power for all the components within the HVAC system. In newer systems, power is typically delivered via one pair of wires, while one or more additional wires are used to provide communication. System installation can become a serious issue if the existing house wiring does not support the wiring required for the desired features. It is therefore desirable to have a system that needs only 2 wires to provide both power and communication. This would allow for system component installation unconstrained by the amount of existing wiring.

Two wire solutions currently exist for providing power and communications. However, these power line carrier (PLC) solutions are geared toward communication over the AC power lines within a home where the loads need uninterrupted full cycle AC power. This requirement drives the nature of PLC devices. PLC devices typically communicate by inducing a high frequency voltage or current onto the AC power line and are relatively expensive.

Briefly stated, a system master unit is connected to a 24V AC power source. One or more slave units is connected to the master unit by a power/communication line. Bulk capacitance in the master and slave units stores power during a power source positive half cycle. When the source voltage is higher than the bulk capacitance voltages, power is delivered to the loads, during which time communication cannot take place over the power/communication line. During the power source negative half cycle, the power/communication line is disconnected from the AC power source and is then used for communication between the master and slave units. System power is delivered from the energy stored in the bulk capacitance.

According to an embodiment of the invention, a system for providing power and communication between a plurality of low voltage devices includes a master unit connected to a 24V AC power source; at least one slave unit connected to the master unit by a power/communication line, wherein the power/communication line is a two-wire buss consisting of a power/communication wire and a common wire; capacitance means in the master and slave units for storing power during a power source half cycle of a first polarity; disconnecting means for disconnecting the AC power source from the power/communication wire during a power source half cycle of a second polarity; wherein power is delivered to the system during the power source half cycle of the second polarity from the energy stored in the capacitance means; and communication means for communicating between the master and slave units during the power source half cycle of the second polarity.

According to an embodiment of the invention, a method for providing power and communication between a plurality of low voltage devices in a low voltage system includes the steps of (a) connecting a master unit to a 24V AC power source; (b) connecting at least one slave unit to the master unit by a power/communication line, wherein the power/communication line is a two-wire buss consisting of a power/communication wire and a common wire; (c) storing power in the master and slave units during a power source half cycle of a first polarity; (d) disconnecting the AC power source from the power/communication wire during a power source half cycle of a second polarity; (e) delivering power to the system during the power source half cycle of the second polarity from the energy stored in the capacitance means; and (f) communicating between the master and slave units during the power source half cycle of the second polarity.

According to an embodiment of the invention, a system for providing power and communication between a plurality of low voltage devices includes a master unit connected to a 24V AC power source; at least one slave unit connected to the master unit by a power/communication line, wherein the power/communication line is a two-wire buss consisting of a power/communication wire and a common wire; a capacitance in each of the master and slave units for storing power during a power source half cycle of a first polarity; a diode in series between the AC power source which disconnects the AC power source from the power/communication wire during a power source half cycle of a second polarity; wherein power is delivered to the system during the power source half cycle of the second polarity from the energy stored in the capacitance; and a communication circuit for communicating between the master and slave units during the power source half cycle of the second polarity.

FIG. 1 shows a master unit connected to one or more slave units.

FIG. 2 shows a block diagram of the slave unit.

FIG. 3 shows a block diagram of the master unit.

FIG. 4 shows a block diagram of the master unit connected to one slave unit.

FIG. 5 shows a schematic of a communication driver and line synchronization circuit according to an embodiment of the invention.

FIG. 6 shows a power source voltage waveform and communication data transmitted during a negative half cycle of the power source.

Referring to FIG. 1, a master unit 10 is connected to one or more slave units 20. The system master unit 10 is connected to a 24V AC power source. All slave units 20 are connected to the master unit 10 via a 2-wire buss 22 and receive half-wave rectified AC power over these two wires. These two wires also allow two-way communication between all components connected to the buss. Buss 22 includes a power/communication wire 22a and a common wire 22b.

As will be explained below, the configuration of master unit 10 and slave units 20 allow power/communication wire 22a to be naturally commutated to allow energy transfer during the positive half-line cycle and communication during most of the negative half cycle. The communication time could be increased by commutating the power/communication wire 22a using an active circuit.

The idea behind this invention is that the portion of the line cycle during which power is not being delivered to slave units 20 is used for communication, while the system configuration allows natural commutation of the line between power transfer and communication.

Referring to FIG. 2, a block diagram of slave unit 20 is shown. Each slave unit 20 contains its own power supply 24 and a communication/synchronization circuit 26 used to communicate with other units on buss 22. A diode D1 disconnects power supply 24 from power/communication line 22a during the negative half cycle of the AC power input. Each slave unit 20 receives half-wave rectified AC power via its two buss terminals during the positive half line cycle. A capacitor C1 provides energy storage during the negative half cycle. A power supply 24 for slave unit 20 can be any type of DC power supply compatible with half-wave rectified AC input voltage. A communication and line sync circuit 26 preferably includes a transmitter capable of placing a high (˜11V) or low (˜1V) voltage on communication line 22a, a receiver for detecting high and low states of communication line 22a, and a line sync circuit that can provide a logic level based on the AC voltage of the source. The exact nature of this circuit is not critical, but the transmitter output levels must be between ˜−0.7V and ˜18V to allow natural commutation to occur.

Referring to FIG. 3, a block diagram of master unit 10 is shown. Master unit 10 includes a diode D2 and capacitor C2 for the same purposes as diode D1 and capacitor C1 serve in slave unit 20. The source AC voltage is applied to master unit 10 where it is half wave rectified by a diode D3. The rectified voltage is then applied to 2-wire buss 22 to provide power to all modules on the network.

Referring to FIG. 4, a block diagram of master unit 10 connected to slave unit 20 is shown. The configuration of diodes D1, D2, and D3, and capacitors C1 and C2 allow the power/communication wire (buss 22) to be naturally commutated to allow energy transfer during the positive half-line cycle and communication during most of the negative half cycle.

Referring also to FIG. 5, an example of communication/synchronization circuit 26 is shown. In normal operation, the master and slave unit bulk capacitance, C1 and C2, is charged to around 35V. The communication line 22 is pulled to the logic high voltage level used for communication through a 1K resistor 30. As shown in FIG. 6, the logic high voltage level is about 11V. When the source voltage is higher than the bulk capacitance voltages, power is delivered to the loads, during which time communication cannot take place. During the negative half of the power line cycle, diode D3 is reverse biased, blocking the source voltage from the system. Because line 22 is pulled to 11V and the voltages on C1 and C2 are about 35V, diodes D1 and D2 are reverse biased as well. When diodes D1 and D2 are off, line 22a is effectively disconnected from the power supplies 24 of the master unit 10 and slave units 20. During this time, line 22a is free for communication between units 10, 20 and the system is powered by the energy stored in capacitors C1 and C2. Communication timing is based on the line sync output from the communication circuitry of FIG. 5.

While the present invention has been described with reference to a particular preferred embodiment and the accompanying drawings, it will be understood by those skilled in the art that the invention is not limited to the preferred embodiment and that various modifications and the like could be made thereto without departing from the scope of the invention as defined in the following claims.

Crenella, David, Smyth, Michael Steel

Patent Priority Assignee Title
10041690, Mar 28 2014 GOOGLE LLC Detection-facilitating mounting stand for multi-sensing smart home device
10082307, Nov 19 2010 GOOGLE LLC Adaptive power-stealing thermostat
10088189, Jan 07 2015 GOOGLE LLC Smart-home device robust against anomalous electrical conditions
10151501, Nov 19 2010 GOOGLE LLC Thermostat facilitating user-friendly installation thereof
10175668, Nov 19 2010 GOOGLE LLC Systems and methods for energy-efficient control of an energy-consuming system
10191727, Nov 19 2010 GOOGLE LLC Installation of thermostat powered by rechargeable battery
10298009, Sep 21 2012 GOOGLE LLC Monitoring and recoverable protection of switching circuitry for smart-home devices
10309672, Nov 19 2010 GOOGLE LLC Thermostat wiring connector
10375356, Feb 06 2015 GOOGLE LLC Systems, methods, and devices for managing coexistence of multiple transceiver devices by optimizing component layout
10452083, Dec 31 2010 GOOGLE LLC Power management in single circuit HVAC systems and in multiple circuit HVAC systems
10473338, Mar 09 2016 GOOGLE LLC Superimposed conveyance of data and electrical power
10613213, May 13 2016 GOOGLE LLC Systems, methods, and devices for utilizing radar with smart devices
10678200, Mar 28 2014 GOOGLE LLC User-relocatable self-learning environmental control device capable of adapting previous learnings to current location in controlled environment
10678416, Oct 21 2011 GOOGLE LLC Occupancy-based operating state determinations for sensing or control systems
10684633, Feb 24 2011 GOOGLE LLC Smart thermostat with active power stealing an processor isolation from switching elements
10687184, May 13 2016 GOOGLE LLC Systems, methods, and devices for utilizing radar-based touch interfaces
10732651, Nov 19 2010 GOOGLE LLC Smart-home proxy devices with long-polling
10771868, Sep 14 2010 GOOGLE LLC Occupancy pattern detection, estimation and prediction
10798539, May 13 2016 GOOGLE LLC Systems, methods, and devices for utilizing radar with smart devices
10812762, Feb 06 2015 GOOGLE LLC Systems, methods, and devices for managing coexistence of multiple transceiver devices by optimizing component layout
10989427, Dec 20 2017 Trane International Inc. HVAC system including smart diagnostic capabilites
10992175, Jun 15 2018 GOOGLE LLC Communication circuit for 2-wire protocols between HVAC systems and smart-home devices
11032353, Jan 13 2004 MAY PATENTS LTD Information device
11122398, May 13 2016 GOOGLE LLC Systems, methods, and devices for utilizing radar-based touch interfaces
11272335, May 13 2016 GOOGLE LLC Systems, methods, and devices for utilizing radar with smart devices
11516630, May 13 2016 GOOGLE LLC Techniques for adjusting operation of an electronic device
11664679, Jun 15 2018 GOOGLE LLC Communication circuit for 2-wire protocols between HVAC systems and smart-home devices
11708982, Dec 20 2017 Trane International Inc. HVAC system including smart diagnostic capabilities
7133728, Sep 14 2001 Universita Degli Studi Di Roma Tor Vergata Single-input multi-output control system
7163158, Dec 14 2004 Itron, Inc HVAC communication system
7434744, Dec 12 2005 Emerson Electric Co. Low voltage power line communication for climate control system
7606639, Sep 07 2005 Itron, Inc Local power consumption load control
7748640, Dec 18 2006 Carrier Corporation Stackable thermostat
7778737, Sep 07 2005 Itron, Inc Method and system for local load control
7830858, Jul 28 1998 Taiwan Semiconductor Manufacturing Company, Ltd Local area network of serial intelligent cells
7835386, Jul 07 1999 CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC Local area network for distributing data communication, sensing and control signals
7841542, Nov 07 2006 ROSEN TECHNOLOGIES LLC System for supplying communications and power to a thermostat over a two-wire system
7852874, Jul 28 1998 CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC Local area network of serial intelligent cells
7969917, Jul 28 1998 CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC Local area network of serial intelligent cells
7979164, Dec 12 2005 COPELAND COMFORT CONTROL LP Low voltage power line communication for climate control system
8121132, Jul 07 1999 CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC Local area network for distributing data communication, sensing and control signals
8130084, Apr 30 2007 International Business Machines Corporation Fault tolerant closed system control using power line communication
8258649, May 30 2008 Qualcomm Incorporated Communicating over power distribution media
8325636, Jul 28 1998 CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC Local area network of serial intelligent cells
8363797, Mar 20 2000 CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC Telephone outlet for implementing a local area network over telephone lines and a local area network using such outlets
8421614, Sep 19 2007 International Business Machines Corporation Reliable redundant data communication through alternating current power distribution system
8478447, Nov 19 2010 GOOGLE LLC Computational load distribution in a climate control system having plural sensing microsystems
8511576, Feb 24 2011 GOOGLE LLC Power management in energy buffered building control unit
8511577, Feb 24 2011 GOOGLE LLC Thermostat with power stealing delay interval at transitions between power stealing states
8523083, Feb 24 2011 GOOGLE LLC Thermostat with self-configuring connections to facilitate do-it-yourself installation
8532827, Oct 21 2011 GOOGLE LLC Prospective determination of processor wake-up conditions in energy buffered HVAC control unit
8565417, Feb 16 2004 CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC Outlet add-on module
8582598, Jul 07 1999 CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC Local area network for distributing data communication, sensing and control signals
8627127, Feb 24 2011 GOOGLE LLC Power-preserving communications architecture with long-polling persistent cloud channel for wireless network-connected thermostat
8659302, Sep 21 2012 GOOGLE LLC Monitoring and recoverable protection of thermostat switching circuitry
8680706, May 30 2008 Qualcomm Incorporated Communicating over power distribution media
8708242, Sep 21 2012 GOOGLE LLC Thermostat system with software-repurposable wiring terminals adaptable for HVAC systems of different ranges of complexity
8752771, Nov 19 2010 GOOGLE LLC Thermostat battery recharging during HVAC function active and inactive states
8757507, Nov 19 2010 GOOGLE LLC Thermostat facilitating user-friendly installation thereof
8770491, Feb 24 2011 GOOGLE LLC Thermostat with power stealing delay interval at transitions between power stealing states
8788103, Feb 24 2011 GOOGLE LLC Power management in energy buffered building control unit
8855277, Mar 20 2000 CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC Telephone outlet for implementing a local area network over telephone lines and a local area network using such outlets
8867523, Jul 28 1998 CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC Local area network of serial intelligent cells
8885659, Jul 28 1998 CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC Local area network of serial intelligent cells
8885660, Jul 28 1998 CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC Local area network of serial intelligent cells
8908673, Jul 28 1998 CONVERSANT INTELLECTUAL PROPERTY MANAGEMENT INC Local area network of serial intelligent cells
8924027, Nov 19 2010 GOOGLE LLC Computational load distribution in a climate control system having plural sensing microsystems
8942853, Oct 21 2011 GOOGLE LLC Prospective determination of processor wake-up conditions in energy buffered HVAC control unit
8944338, Feb 24 2011 GOOGLE LLC Thermostat with self-configuring connections to facilitate do-it-yourself installation
8994540, Sep 21 2012 GOOGLE LLC Cover plate for a hazard detector having improved air flow and other characteristics
9007222, Sep 21 2012 GOOGLE LLC Detector unit and sensing chamber therefor
9046414, Sep 21 2012 GOOGLE LLC Selectable lens button for a hazard detector and method therefor
9046898, Feb 24 2011 GOOGLE LLC Power-preserving communications architecture with long-polling persistent cloud channel for wireless network-connected thermostat
9086703, Feb 24 2011 GOOGLE LLC Thermostat with power stealing delay interval at transitions between power stealing states
9092039, Nov 19 2010 GOOGLE LLC HVAC controller with user-friendly installation features with wire insertion detection
9116529, Feb 24 2011 GOOGLE LLC Thermostat with self-configuring connections to facilitate do-it-yourself installation
9194600, Oct 06 2004 GOOGLE LLC Battery charging by mechanical impeller at forced air vent outputs
9234668, Oct 21 2011 GOOGLE LLC User-friendly, network connected learning thermostat and related systems and methods
9261287, Nov 19 2010 GOOGLE LLC Adaptive power stealing thermostat
9268344, Nov 19 2010 Google Inc Installation of thermostat powered by rechargeable battery
9349273, Sep 21 2012 GOOGLE LLC Cover plate for a hazard detector having improved air flow and other characteristics
9396633, Jun 14 2015 GOOGLE LLC Systems, methods, and devices for managing coexistence of multiple transceiver devices by optimizing component layout
9418540, Aug 24 2005 EATON INTELLIGENT POWER LIMITED Electrical control system
9435559, Feb 24 2011 GOOGLE LLC Power management in energy buffered building control unit
9448567, Nov 19 2010 GOOGLE LLC Power management in single circuit HVAC systems and in multiple circuit HVAC systems
9459018, Nov 19 2010 GOOGLE LLC Systems and methods for energy-efficient control of an energy-consuming system
9460600, Sep 21 2012 GOOGLE LLC Detector unit and sensing chamber therefor
9494332, Nov 19 2010 GOOGLE LLC Thermostat wiring connector
9513642, Nov 19 2010 GOOGLE LLC Flexible functionality partitioning within intelligent-thermostat-controlled HVAC systems
9543998, Jun 14 2015 GOOGLE LLC Systems, methods, and devices for managing coexistence of multiple transceiver devices using bypass circuitry
9568201, Mar 28 2014 GOOGLE LLC Environmental control system retrofittable with multiple types of boiler-based heating systems
9568370, Sep 21 2012 GOOGLE LLC Selectable lens button for a smart home device and method therefor
9575496, Nov 19 2010 GOOGLE LLC HVAC controller with user-friendly installation features with wire insertion detection
9581342, Mar 28 2014 GOOGLE LLC Mounting stand for multi-sensing environmental control device
9605858, Nov 19 2010 GOOGLE LLC Thermostat circuitry for connection to HVAC systems
9609462, Mar 28 2014 GOOGLE LLC Facilitating radio frequency communications among environmental control system components
9612031, Jan 07 2015 GOOGLE LLC Thermostat switching circuitry robust against anomalous HVAC control line conditions
9679454, Feb 06 2015 GOOGLE LLC Systems, methods, and devices for managing coexistence of multiple transceiver devices using control signals
9684317, Nov 19 2010 GOOGLE LLC Thermostat facilitating user-friendly installation thereof
9696734, Nov 19 2010 GOOGLE LLC Active power stealing
9715239, Nov 19 2010 GOOGLE LLC Computational load distribution in an environment having multiple sensing microsystems
9720585, Oct 21 2011 GOOGLE LLC User friendly interface
9740385, Oct 21 2011 GOOGLE LLC User-friendly, network-connected, smart-home controller and related systems and methods
9746859, Sep 21 2012 GOOGLE LLC Thermostat system with software-repurposable wiring terminals adaptable for HVAC systems of different ranges of complexity
9791839, Mar 28 2014 GOOGLE LLC User-relocatable self-learning environmental control device capable of adapting previous learnings to current location in controlled environment
9794522, Feb 06 2015 GOOGLE LLC Systems, methods, and devices for managing coexistence of multiple transceiver devices by optimizing component layout
9838079, Feb 07 2012 Samsung Electronics Co., Ltd. Power line communication apparatus and method, and load power monitoring apparatus and method using same
9851728, Dec 31 2010 GOOGLE LLC Inhibiting deleterious control coupling in an enclosure having multiple HVAC regions
9851729, Nov 19 2010 GOOGLE LLC Power-preserving communications architecture with long-polling persistent cloud channel for wireless network-connected thermostat
9875631, Sep 21 2012 GOOGLE LLC Detector unit and sensing chamber therefor
9910577, Oct 21 2011 GOOGLE LLC Prospective determination of processor wake-up conditions in energy buffered HVAC control unit having a preconditioning feature
9923589, Jun 14 2015 GOOGLE LLC Systems, methods, and devices for managing coexistence of multiple transceiver devices using bypass circuitry
9933794, Feb 24 2011 GOOGLE LLC Thermostat with self-configuring connections to facilitate do-it-yourself installation
9935455, Sep 21 2012 GOOGLE LLC Monitoring and recoverable protection of thermostat switching circuitry
9952608, Feb 24 2011 GOOGLE LLC Thermostat with power stealing delay interval at transitions between power stealing states
9995499, Nov 19 2010 GOOGLE LLC Electronic device controller with user-friendly installation features
Patent Priority Assignee Title
4086569, Aug 30 1975 Ferranti Limited Communication systems
4328482, Nov 17 1977 Consumer Electronic Products Corporation Remote AC power control with control pulses at the zero crossing of the AC wave
4408185, Nov 13 1978 ELSMARK A S, A CORP OF DENMARK Process for transferring information and system for carrying out the process
5614811, Sep 26 1995 Dyalem Concepts, Inc. Power line control system
5694109, Sep 04 1996 International Controls and Measurement Corp. Two-wire dc communication system and transceiver
5742225, May 24 1995 Endress + Hauser GmbH + Co. Arrangement for signal transmission between a transmitting station and a receiving station
5920253, Sep 09 1994 Local area method arrangement
6097761, Feb 11 1997 U S PHILIPS CORPORATION Method and system for the transmission of data and power
6320494, Jan 18 2000 Honeywell International Inc. Full duplex communication system with power transfer on one pair of conductors
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Oct 02 2002Carrier Corporation(assignment on the face of the patent)
Oct 23 2002CRENELLA, DAVIDCarrier CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0135430416 pdf
Oct 24 2002SMYTH, MICHAEL STEELCarrier CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0135430416 pdf
Date Maintenance Fee Events
Mar 20 2009M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Mar 06 2013M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Mar 21 2017M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Oct 18 20084 years fee payment window open
Apr 18 20096 months grace period start (w surcharge)
Oct 18 2009patent expiry (for year 4)
Oct 18 20112 years to revive unintentionally abandoned end. (for year 4)
Oct 18 20128 years fee payment window open
Apr 18 20136 months grace period start (w surcharge)
Oct 18 2013patent expiry (for year 8)
Oct 18 20152 years to revive unintentionally abandoned end. (for year 8)
Oct 18 201612 years fee payment window open
Apr 18 20176 months grace period start (w surcharge)
Oct 18 2017patent expiry (for year 12)
Oct 18 20192 years to revive unintentionally abandoned end. (for year 12)