Methods and apparatus are provided for removing emboli during an angioplasty, stenting or surgical procedure comprising a catheter having a funnel-shaped occlusion balloon of uniform thickness disposed on a distal end of the catheter. The occlusion balloon is fused to the distal end so that it provides a substantially seamless flow transition into a working lumen of the catheter. Additionally, a distal edge of the occlusion balloon is configured to be in close proximity with an inner wall of a vessel to facilitate blood flow into the catheter and efficiently remove emboli.
|
1. Apparatus for removing emboli from a vessel during an interventional procedure, the apparatus comprising:
a catheter having proximal and distal ends, a working lumen extending therethrough; to define an interior surface, and an exterior surface; and
an occlusion balloon having a distal end affixed to the exterior surface of the catheter adjacent the distal end of the catheter and a proximal end everted to surround, and affixed to, the exterior surface of the catheter at a location proximal of the distal end of the catheter, the occlusion balloon having a contracted state suitable for insertion into a vessel and a deployed state configured to occlude antegrade flow in the vessel, the occlusion balloon having a substantially rhomboidal shape in the deployed state,
wherein the occlusion balloon consists of a single sheet of elastomeric having a substantially uniform wall thickness, and in the deployed state, provides a funnel-shaped surface that extends beyond the distal end of the catheter, a portion of the distal end of the occlusion element also affixed to the interior surface of the catheter to provide a seamless transition into the working lumen.
14. Apparatus for removing emboli from a vessel during an interventional procedure, the apparatus comprising:
a catheter having proximal and distal ends, a working lumen extending therethrough, the catheter comprising an interior polymer cover defining the working lumen, an exterior polymer cover, and a wire braid disposed between the interior polymer cover and the exterior polymer cover;
a radiopaque marker band disposed at the distal end of the catheter between the wire braid and the exterior polymer cover; and
an occlusion balloon having a distal end affixed to the exterior polymer cover and a proximal end everted to surround, and affixed to the exterior polymer cover at a location proximal of the distal end of the catheter, the occlusion balloon having a contracted state suitable for insertion into a vessel and a deployed state configured to occlude antegrade flow in the vessel,
wherein the occlusion balloon comprises an elastomeric material having a substantially uniform wall thickness, and in the deployed state, provides a funnel-shaped surface, the distal end of the occlusion balloon also affixed to the interior polymer cover to form a seamless transition into the working lumen.
3. The apparatus of
4. The apparatus of
5. The apparatus of
6. The apparatus of
7. The apparatus of
8. The apparatus of
9. The apparatus of
10. The apparatus of
11. The apparatus of
12. The apparatus of
13. The apparatus of
15. The apparatus of
16. The apparatus of
17.The apparatus of
18. The apparatus of
19. The apparatus of
20. The apparatus of
21. The apparatus of
22. The apparatus of
23. The apparatus of
24. The apparatus of
|
The present application is a continuation-in-part of U.S. patent application Ser. No. 09/418,727, filed Oct. 15, 1999, now U.S. Pat. No. 6,423,032, which is a continuation-in-part of U.S. patent application Ser. No. 09/333,074, filed Jun. 14, 1999, now U.S. Pat. No. 6,206,868, which is a continuation-in-part of International Application PCT/US99/05469, filed Mar. 12, 1999, which is a continuation-in-part of U.S. patent application Ser. No. 09/078,263, filed May 13, 1998, now U.S. Pat. No. 6,413,235.
This invention relates to apparatus and methods for removing emboli during vascular interventions. More particularly, the apparatus and methods of the present invention provide a catheter having an occlusion balloon of uniform thickness that facilitates retrograde flow and removes emboli from a treatment vessel via a funnel-shaped taper of the occlusion balloon.
Today there is a growing need to provide controlled access and vessel management during such procedures as stenting, atherectomy and angioplasty. Generally during these procedures there is a high opportunity for the release of embolic material. The emboli may travel downstream from the occlusion, lodging deep within the vascular bed and causing ischemia. The resulting ischemia may pose a serious threat to the health or life of a patient if the blockage forms in a critical area, such as the heart, lungs, or brain.
Several previously known apparatus and methods attempt to remove emboli formed during endovascular procedures by aspirating the emboli out of the vessel of interest using a catheter having an occlusion balloon. These previously known occlusion balloons, however, have various drawbacks, including variability in deployment of the balloon to the desired shape, inefficiency in removing emboli, and/or high cost and complicated processes associated with manufacturing the balloon.
In applicant's co-pending U.S. patent application Ser. No. 09/418,727, filed Oct. 15, 1999, which is incorporated herein by reference in its entirety, applicant describes the use of a bell or pear-shaped occlusion balloon disposed on the distal end of an arterial catheter. The occlusion balloon comprises a compliant material having a variable thickness along its length to provide a bell-shape when inflated. The balloon is affixed to distal end of the catheter so that a distal portion of the balloon extends beyond the distal end of the catheter to provide an atraumatic tip or bumper for the catheter.
The balloon of that catheter may be formed using previously known techniques, such as varying the thickness of the balloon wall to achieve the preferred bell-shape in the deployed position. Such processes, however, can lead to variability in the final product due to the manufacturing process. Because variable thickness balloons present greater difficulties during manufacture than balloons having uniform wall thickness, the cost of such balloons may be higher.
In view of the foregoing limitations of previously known devices, it would be desirable to provide an apparatus for removing emboli from a vessel comprising an occlusion balloon of uniform thickness to enhance manufacturability of the occlusion balloon.
It also would be desirable to provide an apparatus for removing emboli from a vessel comprising an occlusion balloon of uniform thickness to reduce manufacturing cost and enhance product yield.
It further would be desirable to provide an apparatus for removing emboli from a vessel comprising a catheter having an occlusion balloon of uniform thickness that facilitates retrograde flow and efficiently removes emboli.
In view of the foregoing, it is an object of this invention to provide an apparatus for removing emboli from a vessel comprising an occlusion balloon of uniform thickness to enhance manufacturability of the occlusion balloon.
It also is an object of the present invention to provide an apparatus for removing emboli from a vessel comprising an occlusion balloon of uniform thickness to reduce manufacturing cost and enhance product yield.
It further is an object of the present invention to provide an apparatus for removing emboli from a vessel comprising a catheter having an occlusion balloon of uniform thickness that facilitates retrograde flow and efficiently removes emboli.
The foregoing objects of the present invention are accomplished by providing interventional apparatus comprising a catheter having proximal and distal ends, a working lumen extending therethrough and an occlusion balloon having proximal and distal ends disposed on the distal end of the catheter. The occlusion balloon has a contracted state suitable for insertion into a vessel and a deployed state configured to occlude antegrade flow in the vessel.
In a preferred embodiment, the catheter comprises an inner layer covered with a layer of flat stainless steel wire braid and a polymer cover. A distal section of the occlusion balloon is melt-bonded to a distalmost end of the inner layer and, optionally, to a distalmost end of the polymer cover to form a substantially seamless transition into the working lumen of the catheter. The proximal end of the occlusion balloon is everted and affixed to the polymer cover to form an inflation chamber between the polymer cover and the balloon.
In the deployed state, the occlusion balloon is configured to extend distal of the catheter and provides a funnel-shaped transition into the working lumen of the catheter. A distal edge of the occlusion balloon is configured to be in close proximity with an inner wall of a vessel to facilitate retrograde flow into the working lumen of the catheter and efficiently remove emboli. Additionally, because the occlusion balloon of the present invention comprises a uniform thickness, the balloon may be more reliable, easier to manufacture and more cost-effective than an occlusion balloon having a variable thickness along its length.
Preferred methods of making and using the apparatus of the present invention also are disclosed.
Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description of the preferred embodiments, in which:
Referring to
As described hereinabove, the variable thickness characteristic of occlusion balloon 20, which is used to deploy the balloon to the preferred bell-shape, presents certain manufacturing challenges. In particular, manufacturing a balloon having a variable wall thickness can lead to reduced yield due to variability of the manufacturing process. Additionally, a variable thickness balloon may be difficult to manufacture and may have a higher cost relative to a balloon having a uniform thickness.
Referring now to
Occlusion balloon 42 comprises a uniform thickness material having a contracted state suitable for insertion into a vessel and a deployed state in which occlusion balloon 42 occludes antegrade flow in the vessel. In the deployed state, occlusion balloon 42 comprises distal taper 66 that is configured to provide a funnel-shaped transition into working lumen 58 so that blood flows in a non-turbulent fashion from a treated vessel into catheter 41. Additionally, distal edge 68 is configured to be in close proximity with an inner wall of a vessel to facilitate blood flow into catheter 41 and efficiently remove emboli.
Catheter 41 preferably comprises inner layer 60 of low-friction polymeric material, such as polytetrafluoroethylene (“PTFE”), covered with a layer of flat stainless steel wire braid 61 and polymer cover 62 (e.g., polyurethane, polyethylene, or PEBAX), as shown in FIG. 2B. Working lumen 58 is defined as a lumen within an interior surface of inner layer 60. Inflation lumen 63 preferably is disposed within polymer cover 62 so that the inflation lumen does not substantially increase the overall profile of catheter 41.
Apparatus 40 preferably further includes proximal hemostatic port 43, e.g., a Touhy-Borst connector, inflation port 44, and blood outlet port 48. Inflation port 44 is coupled to inflation lumen 63, which in turn is coupled to occlusion balloon 42. Proximal hemostatic port 43 and working lumen 58 of catheter 41 are sized to permit interventional devices, such as angioplasty balloon catheters, atherectomy devices and stent delivery systems to be advanced through the working lumen when a guidewire (not shown) is positioned within the working lumen.
Blood outlet port 48, which is in fluid communication with working lumen 58, may be coupled to an external aspiration device, e.g., a syringe, to cause blood flow distal of occlusion balloon 42 to flow into working lumen 58. Alternatively, in a preferred embodiment, blood outlet port 48 may be coupled to a venous return catheter to form an arterial-venous shunt suitable for providing retrograde flow in a treatment vessel. This aspiration embodiment comprising an arterial-venous shunt is described in detail in applicant's commonly-assigned, above-incorporated U.S. patent application Ser. No. 09/418,727.
Referring now to
In a preferred method of manufacture, distal end 50 of occlusion balloon 42 is positioned atop polymer cover 62 near the distal end of catheter 41 and just distal of opening 70 of polymer cover 62, as shown in FIG. 3A. Distal end 50 of occlusion balloon 42 then is affixed to polymer cover 62, preferably using a melt-bond or, alternatively, using a biocompatible glue. At this time, proximal end 52 of occlusion balloon 42 extends freely beyond the distal end of catheter 41, as shown in FIG. 3A. For purposes of clarifying terminology used herein, although proximal end 52 of occlusion balloon 42 appears situated distal of distal end 50 in
In a next manufacturing step, distal section 51 of occlusion balloon 42, which is situated just proximal of distal end 50, is melt-bonded to at least one polymeric layer of catheter 41. Specifically, in a preferred embodiment, distal section 51 of occlusion balloon 42 is melt-bonded to distalmost end 85 of inner layer 60 and, optionally, to distalmost end 87 of polymer cover 62 to form fusion joint 67, as shown in FIG. 3A. The melt-bonding of the plurality of polymeric materials at fusion joint 67 provides substantially seamless transition 72 between occlusion balloon 42 and inner layer 60. Additionally, because fusion joint 67 is formed from a plurality of compliant polymeric materials, fusion joint 67 is capable of achieving a flexible range of motion.
Proximal end 52 of occlusion balloon 42 then is everted so that it extends proximally and radially outward from catheter 41, as shown in
The fusion of occlusion balloon 42 to catheter 41 at fusion joint 67 and subsequent eversion of the balloon creates substantially seamless transition 72 into working lumen 58, as shown in FIG. 3B. In accordance with principles of the present invention, the provision of substantially seamless transition 72 may help reduce flow impedance into working lumen 58 and enhance flow within a treated vessel.
Referring now to
Distal edge 68 is defined as a section of occlusion balloon 42 that is formed between central section 75 and distal taper 66. In the deployed state, distal edge 68 is configured to be in close proximity with an inner wall of vessel V to facilitate blood flow into working lumen 58 and efficiently remove emboli.
Distal taper 66 provides a funnel-shaped flow transition from distal edge 68 into working lumen 58. Additionally, as described hereinabove, fusion joint 67 provides substantially seamless transition 72 from occlusion balloon 42 into working lumen 58 due to the melt-bond between balloon 42 and inner layer 60 of catheter 41.
Referring now to
Aspiration may be provided through working lumen 58 via blood outlet port 48 using an external aspiration device, e.g., a syringe, or alternatively using a venous return catheter to form an arterial-venous shunt, as described hereinabove.
An interventional instrument, such as conventional angioplasty balloon catheter 80 having balloon 82, may be loaded through hemostatic port 43 and working lumen 58 and positioned within stenosis S, preferably via guidewire 83. Hemostatic port 43 is closed and the angioplasty balloon is actuated to disrupt stenosis S. As seen in
Occlusion balloon 42 provides a substantially uniform funnel-shaped transition from an inner wall of vessel V into working lumen 58 of catheter 41. Distal edge 68, which is configured to be in close proximity with an inner wall of vessel V, facilitates flow into working lumen 58 and efficiently removes emboli. Additionally, the funnel-shaped transition provided by distal taper 66 and substantially seamless transition 72 into the working lumen via fusion joint 67 improves retrograde flow dynamics into working lumen 58.
Advantageously, because the present invention utilizes an occlusion balloon having a uniform thickness and relies on pre-molding of the occlusion balloon to obtain the desired deployed shape, a variable thickness occlusion balloon is not required. As noted hereinabove, use of an occlusion balloon having a uniform thickness provides several advantages, including enhanced manufacture, reduced cost and increased reliability.
While preferred illustrative embodiments of the invention are described above, it will be apparent to one skilled in the art that various changes and modifications may be made. The appended claims are intended to cover all such changes and modifications that fall within the true spirit and scope of the invention.
Betelia, Rainier, Vo, Hung Van
Patent | Priority | Assignee | Title |
10004531, | Nov 20 2012 | INARI MEDICAL, INC | Methods and apparatus for treating embolism |
10045790, | Sep 24 2012 | INARI MEDICAL, INC | Device and method for treating vascular occlusion |
10085765, | Aug 08 2008 | Incept, Inc. | Apparatus and methods for accessing and removing material from body lumens |
10098651, | Jan 10 2017 | INARI MEDICAL, INC | Devices and methods for treating vascular occlusion |
10238406, | Oct 21 2013 | INARI MEDICAL, INC | Methods and apparatus for treating embolism |
10335186, | Nov 20 2012 | INARI MEDICAL, INC | Methods and apparatus for treating embolism |
10342571, | Oct 23 2015 | INARI MEDICAL, INC | Intravascular treatment of vascular occlusion and associated devices, systems, and methods |
10349960, | Jun 09 2014 | INARI MEDICAL, INC | Retraction and aspiration device for treating embolism and associated systems and methods |
10524811, | Oct 23 2015 | INARI MEDICAL, INC | Intravascular treatment of vascular occlusion and associated devices, systems, and methods |
10588655, | Nov 20 2012 | INARI MEDICAL, INC | Methods and apparatus for treating embolism |
10668254, | Aug 25 2014 | Radius Medical LLC | Stabilizing and sealing catheter for use with a guiding catheter |
10709471, | Nov 20 2012 | INARI MEDICAL, INC | Methods and apparatus for treating embolism |
10744304, | Aug 28 2009 | Boston Scientific Medical Device Limited | Inverted balloon neck on catheter |
10849647, | Aug 08 2008 | Incept, Inc. | Apparatus and methods for accessing and removing material from body lumens |
10912577, | Jan 10 2017 | Inari Medical, Inc. | Devices and methods for treating vascular occlusion |
10926064, | Jun 15 2012 | W. L. Gore & Associates, Inc. | Vascular occlusion and drug delivery devices, systems, and methods |
11000682, | Sep 06 2017 | Inari Medical, Inc. | Hemostasis valves and methods of use |
11058445, | Oct 21 2013 | Inari Medical, Inc. | Methods and apparatus for treating embolism |
11058451, | Oct 23 2015 | Inari Medical, Inc. | Intravascular treatment of vascular occlusion and associated devices, systems, and methods |
11058848, | May 02 2019 | Covidien LP | Catheter including expandable member |
11147571, | Nov 20 2012 | Inari Medical, Inc. | Device and method for treating vascular occlusion |
11154314, | Jan 26 2018 | Inari Medical, Inc. | Single insertion delivery system for treating embolism and associated systems and methods |
11191556, | Mar 01 2018 | Covidien LP | Catheter including an expandable member |
11433218, | Dec 18 2015 | Inari Medical, Inc. | Catheter shaft and associated devices, systems, and methods |
11529158, | Mar 25 2004 | Inari Medical, Inc. | Method for treating vascular occlusion |
11547836, | Aug 25 2014 | Radius Medical LLC | Stabilizing and sealing catheter for use with a guiding catheter |
11554005, | Aug 13 2018 | INARI MEDICAL, INC | System for treating embolism and associated devices and methods |
11559382, | Aug 13 2018 | INARI MEDICAL, INC | System for treating embolism and associated devices and methods |
11589880, | Dec 20 2007 | AngioDynamics, Inc. | System and methods for removing undesirable material within a circulatory system utilizing during a surgical procedure |
11642209, | Aug 13 2018 | INARI MEDICAL, INC | System for treating embolism and associated devices and methods |
11648020, | Feb 07 2020 | AngioDynamics, Inc.; AngioDynamics, Inc | Device and method for manual aspiration and removal of an undesirable material |
11648028, | Nov 20 2012 | Inari Medical, Inc. | Methods and apparatus for treating embolism |
11690639, | Mar 01 2018 | Covidien LP | Catheter including an expandable member |
11697011, | Sep 06 2017 | Inari Medical, Inc. | Hemostasis valves and methods of use |
11697012, | Sep 06 2017 | Inari Medical, Inc. | Hemostasis valves and methods of use |
11730515, | Apr 23 2010 | Mark D. Wieczorek, PC | Transseptal access device and method of use |
11744691, | Aug 13 2018 | Inari Medical, Inc. | System for treating embolism and associated devices and methods |
11806033, | Jan 10 2017 | Inari Medical, Inc. | Devices and methods for treating vascular occlusion |
11832837, | Mar 25 2004 | INARI MEDICAL, INC | Method for treating vascular occlusion |
11832838, | Mar 25 2004 | Inari Medical, Inc. | Method for treating vascular occlusion |
11833023, | Aug 13 2018 | Inari Medical, Inc. | System for treating embolism and associated devices and methods |
11839393, | Mar 25 2004 | Inari Medical, Inc. | Method for treating vascular occlusion |
11844921, | Sep 06 2017 | Inari Medical, Inc. | Hemostasis valves and methods of use |
11849963, | Jan 26 2018 | Inari Medical, Inc. | Single insertion delivery system for treating embolism and associated systems and methods |
11864779, | Oct 16 2019 | Inari Medical, Inc. | Systems, devices, and methods for treating vascular occlusions |
11865276, | Jun 15 2012 | W. L. Gore & Associates, Inc. | Vascular occlusion and drug delivery devices, systems, and methods |
11865291, | Sep 06 2017 | Inari Medical, Inc. | Hemostasis valves and methods of use |
11890180, | Aug 13 2018 | Inari Medical, Inc. | System for treating embolism and associated devices and methods |
11896246, | Dec 20 2007 | AngioDynamics, Inc. | Systems and methods for removing undesirable material within a circulatory system utilizing a balloon catheter |
7343875, | Oct 24 2003 | PATHWAY TECHNOLOGIES, LLC NEVADA | Method and apparatus for creating a pathway in an animal |
7647891, | Oct 24 2003 | Pathway Technologies, LLC | Method and apparatus for creating a pathway in an animal |
7654264, | Jul 18 2006 | Covidien LP | Medical tube including an inflatable cuff having a notched collar |
7959644, | May 16 2008 | Hemostatic guiding catheter | |
7971553, | Apr 03 2002 | Pathway Technologies, LLC | Method and apparatus for creating a pathway in an animal |
8075510, | Dec 20 2007 | AngioDynamics, Inc | Systems and methods for removing undesirable material within a circulatory system |
8096299, | Jul 18 2006 | Covidien LP | Medical tube including an inflatable cuff having a notched collar |
8109985, | Jul 23 2008 | Boston Scientific Scimed, Inc | Occlusion crossing device and method |
8136483, | Oct 24 2003 | Pathway Technologies, LLC | Method and apparatus for creating a pathway in an animal |
8206347, | Jun 06 2005 | C. R. Bard, Inc. | Feeding device including balloon tip and method of manufacture |
8257382, | Mar 29 2007 | Boston Scientific Medical Device Limited | Lumen reentry devices and methods |
8257383, | Mar 29 2007 | Boston Scientific Medical Device Limited | Lumen reentry devices and methods |
8506512, | Dec 20 2007 | AngioDynamics, Inc | Systems and methods for removing undesirable material within a circulatory system utilizing a balloon catheter |
8551043, | Apr 21 2006 | C R BARD, INC | Feeding device and bolster apparatus and method for making the same |
8613717, | Dec 20 2007 | AngioDynamics, Inc | Systems and methods for removing and fragmenting undesirable material within a circulatory system |
8702744, | May 09 2005 | NEXEON MEDSYSTEMS, INC | Apparatus and methods for renal stenting |
8715244, | Jul 07 2009 | C R BARD, INC | Extensible internal bolster for a medical device |
8721675, | Mar 29 2007 | Boston Scientific Medical Device Limited | Lumen reentry devices and methods |
8734374, | Dec 20 2007 | AngioDynamics, Inc | Systems and methods for removing undesirable material within a circulatory system during a surgical procedure |
8858533, | Jun 29 2004 | C R BARD, INC | Methods and systems for providing fluid communication with a gastrostomy tube |
9126015, | Aug 08 2008 | INCEPT, INC | Apparatus and methods for accessing and removing material from body lumens |
9381326, | Jun 15 2012 | W L GORE & ASSOCIATES, INC | Vascular occlusion and drug delivery devices, systems, and methods |
9427557, | Jul 23 2008 | Boston Scientific Scimed, Inc. | Occlusion crossing device and method |
9555215, | May 05 2010 | Cook Medical Technologies LLC | Treatment fluid delivery method, and turbulator for promoting uptake of a treatment agent |
9572751, | Jul 07 2009 | C. R. Bard, Inc. | Extensible internal bolster for a medical device |
9682224, | Jun 29 2004 | C. R. Bard, Inc. | Method and systems for providing fluid communication with a gastrostomy tube |
9700332, | Oct 23 2015 | INARI MEDICAL, INC | Intravascular treatment of vascular occlusion and associated devices, systems, and methods |
9844387, | Oct 23 2015 | INARI MEDICAL, INC | Intravascular treatment of vascular occlusion and associated devices, systems, and methods |
9878132, | Jun 15 2012 | W L GORE & ASSOCIATES, INC | Vascular occlusion and drug delivery devices, systems, and methods |
D744639, | Aug 06 2008 | AngioDynamics, Inc. | Cannula tip |
D916280, | Oct 17 2016 | AngioDynamics, Inc. | Reinforcement arms and collar for a cannula tip |
D916281, | Oct 17 2016 | AngioDynamics, Inc. | Reinforcement arms and collar for a cannula tip |
D931447, | Oct 17 2016 | AngioDynamics, Inc. | Reinforcement arms and collar for a cannula tip |
D972723, | Mar 17 2021 | AngioDynamics, Inc.; AngioDynamics, Inc | Reinforcement arms and collar for an expandable cannula tip |
Patent | Priority | Assignee | Title |
3831587, | |||
4571240, | Aug 12 1983 | Advanced Cardiovascular Systems, Inc.; ADVANCED CARDIOVASCULAR SYSTEMS INC , A CA CORP | Catheter having encapsulated tip marker |
4575371, | Apr 16 1981 | ESTATE OF PERCY NORDQVIST | Urinary catheter |
4781681, | Sep 15 1987 | GV Medical, Inc. | Inflatable tip for laser catheterization |
4794928, | Jun 10 1987 | Angioplasty device and method of using the same | |
4820270, | Oct 08 1982 | Balloon catheter and process for the manufacture thereof | |
4921478, | Feb 23 1988 | SAUNDERS, MYLES L , M D | Cerebral balloon angioplasty system |
5074845, | Jul 18 1989 | Advanced Cardiovascular Systems, INC | Catheter with heat-fused balloon with waist |
5102415, | Sep 06 1989 | Apparatus for removing blood clots from arteries and veins | |
5171305, | Oct 17 1991 | CREDIT SUISSE FIRST BOSTON MANAGEMENT CORPORATION | Linear eversion catheter with reinforced inner body extension |
5441485, | Feb 24 1994 | THINQ TANQ, INC | Bladder catheter |
5601581, | May 19 1995 | General Surgical Innovations, Inc | Methods and devices for blood vessel harvesting |
5833650, | Jun 05 1995 | KARDIAMETRICS, LLC | Catheter apparatus and method for treating occluded vessels |
5997503, | Feb 12 1998 | CITIBANK, N A | Catheter with distally distending balloon |
6221042, | Sep 17 1999 | Boston Scientific Scimed, Inc | Balloon with reversed cones |
6238412, | Nov 12 1997 | Genesis Technologies LLC | Biological passageway occlusion removal |
6264631, | Feb 12 1998 | CITIBANK, N A | Catheter with distally distending balloon |
6423032, | Mar 13 1998 | W L GORE & ASSOCIATES, INC | Apparatus and methods for reducing embolization during treatment of carotid artery disease |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 27 2002 | Gore Enterprise Holdins, Inc. | (assignment on the face of the patent) | / | |||
Aug 16 2002 | VAN VO, HUNG | ARTERIA MEDICAL SCIENCE, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013394 | /0216 | |
Oct 09 2002 | BETELIA, RAINIER | ARTERIA MEDICAL SCIENCE, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013394 | /0216 | |
Nov 18 2004 | ARTERIA MEDICAL SCIENCE, INC | Gore Enterprise Holdings, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016526 | /0319 | |
Jan 30 2012 | Gore Enterprise Holdings, Inc | W L GORE & ASSOCIATES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027906 | /0508 |
Date | Maintenance Fee Events |
May 01 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 01 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 09 2017 | REM: Maintenance Fee Reminder Mailed. |
Nov 27 2017 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 01 2008 | 4 years fee payment window open |
May 01 2009 | 6 months grace period start (w surcharge) |
Nov 01 2009 | patent expiry (for year 4) |
Nov 01 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 01 2012 | 8 years fee payment window open |
May 01 2013 | 6 months grace period start (w surcharge) |
Nov 01 2013 | patent expiry (for year 8) |
Nov 01 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 01 2016 | 12 years fee payment window open |
May 01 2017 | 6 months grace period start (w surcharge) |
Nov 01 2017 | patent expiry (for year 12) |
Nov 01 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |