A multi-configuration electrical connector for use in making electrical connections between an external defibrillator and defibrillation electrodes applied to a patient. The multi-configuration connector comprises a connector body; at least first and second pairs of electrical terminal elements supported in the connector body; and a pair of electrical conductors within the connector body, each conductor of the pair being configured to be electrically connected to one of the electrical terminal elements in each of the first and second pairs of electrical terminal elements, wherein the connector body and first and second pairs of electrical terminal elements are configured so that the multi-configuration connector is able to mate alternatively with first and second mating defibrillation electrode connectors, with the first pair of electrical terminal elements in electrical contact with mating electrical elements of the first mating defibrillation connector when the multi-configuration connector is mated with the first mating defibrillation connector, and with the second pair of electrical terminal elements in electrical contact with mating electrical elements of the second mating defibrillation connector when the multi-configuration connector is mated with the second mating defibrillation connector.
|
1. A multi-configuration electrical connector for use in making electrical connections between an external defibrillator and defibrillation electrodes applied to a patient, the multi-configuration connector comprising:
a connector body;
at least first and second pairs of electrical terminal elements supported in the connector body; and
a pair of electrical conductors within the connector body, each conductor of the pair being configured to be electrically connected to one of the electrical terminal elements in each of the first and second pairs of electrical terminal elements,
wherein the connector body and first and second pairs of electrical terminal elements are configured so that the multi-configuration connector is able to mate alternatively with first and second mating defibrillation electrode connectors, with the first pair of electrical terminal elements in electrical contact with mating electrical elements of the first mating defibrillation connector when the multi-configuration connector is mated with the first mating defibrillation connector, and with the second pair of electrical terminal elements in electrical contact with mating electrical elements of the second mating defibrillation connector when the multi-configuration connector is mated with the second mating defibrillation connector.
2. The multi-configuration electrical connector of
3. The multi-configuration electrical connector of
4. The multi-configuration electrical connector of
5. The multi-configuration electrical connector of
6. The multi-configuration electrical connector of
7. The multi-configuration electrical connector of
8. The multi-configuration electrical connector of
9. The multi-configuration electrical connector of
10. The multi-configuration electrical connector of
11. The multi-configuration electrical connector of
|
This invention relates to connectors for connecting external defibrillation electrodes to defibrillators.
An external defibrillator delivers a defibrillation pulse to a patient through a pair of chest electrodes (FIGS. 1 and 2). The electrodes are connected to the defibrillator by a cable, which is typically divided into two parts, a patient cable, with a wire extending from each electrode to a patient connector, and a defibrillator cable extending from the defibrillator to a defibrillator connector that mates with the patient connector. Typically, each defibrillator manufacturer uses electrical connectors with configurations unique to that manufacturer, with the result that one manufacturer's electrodes cannot typically be connected to another manufacturer's defibrillator.
We have discovered that a practical solution to the problem of incompatible defibrillation connectors is to provide a multi-configuration electrical connector capable of mating with connectors of different configurations. The invention avoids the use of adapters, which can be misplaced. The resulting connector, although larger than a conventional single-configuration connector, can be surprisingly compact.
In general, the invention features a multi-configuration electrical connector for use in making electrical connections between an external defibrillator and defibrillation electrodes applied to a patient. The multi-configuration connector comprises a connector body; at least first and second pairs of electrical terminal elements supported in the connector body; and a pair of electrical conductors within the connector body, each conductor of the pair being configured to be electrically connected to one of the electrical terminal elements in each of the first and second pairs of electrical terminal elements, wherein the connector body and first and second pairs of electrical terminal elements are configured so that the multi-configuration connector is able to mate alternatively with first and second mating defibrillation electrode connectors, with the first pair of electrical terminal elements in electrical contact with mating electrical elements of the first mating defibrillation connector when the multi-configuration connector is mated with the first mating defibrillation connector, and with the second pair of electrical terminal elements in electrical contact with mating electrical elements of the second mating defibrillation connector when the multi-configuration connector is mated with the second mating defibrillation connector.
In another aspect, the invention features a multi-configuration electrical connector for use in making electrical connections between an external defibrillator and defibrillation electrodes applied to a patient. The multi-configuration connector comprising a connector body; at least first and second defibrillation electrode connectors integral with the connector body; wherein the connector body and first and second defibrillation electrode connectors are configured so that the multi-configuration connector is able to mate alternatively with at least a first and second mating defibrillation electrode connector.
Preferred implementations of the invention may incorporate one or more of the following. Each of the first and second incompatible defibrillation electrode connectors may comprise a pair of electrical terminal elements and the pair of electrical terminal elements may be configured to be in electrical contact with a pair of mating electrical elements in one of the mating defibrillation electrode connectors. The electrical terminal elements may comprise electrical pins. The multi-configuration electrical connector may further comprise a third pair of electrical terminal elements supported in the connector body, and each conductor of the pair of conductors may be configured to be electrically connected to one of the electrical terminal elements in each of the first, second, and third pairs of electrical terminal elements, and the connector body and the first, second, and third pairs of electrical terminal elements may be configured so that the multi-configuration connector is able to mate alternatively with first, second, and third mating defibrillation electrode connectors, with the third pair of electrical terminal elements in electrical contact with mating electrical elements of the first mating defibrillation connector when the multi-configuration connector is mated with the third mating defibrillation connector. The multi-configuration electrical connector may further comprise a third defibrillation electrode connector integral with the connector body, and the connector body and the first, second, and third defibrillation electrode connectors may be configured so that the multi-configuration connector is able to mate alternatively with a first, second, and third mating defibrillation electrode connector. The conductors of the pair of conductors may be configured to be electrically connected to only the pair of electrical terminal elements that is mated with a mating defibrillation connector, with the other electrical terminal elements electrically isolated from the pair of conductors. The multi-configuration connector may be configured so that only the defibrillation electrode connector that is mated with a mating defibrillation electrode connector is electrically live and the other defibrillation electrode connectors are electrically isolated. An associated pair of the electrical terminal elements may move into electrical contact with the conductors in response to the multi-function electrical connector being mated with a mating defibrillation connector. The multi-configuration electrical connector may further comprise one or more spring elements configured to return the electrical terminal elements to a position in which they are electrically isolated when not mated with a mating electrical connector. The multi-configuration electrical connector may be connected to a cable that is connected to a pair of defibrillation electrodes, whereby the same pair of defibrillation electrodes can be electrically connected to defibrillators with different mating electrical connectors. The multi-configuration electrical connector may be connected to a cable that is connected to a pair of defibrillation electrodes, whereby the same pair of defibrillation electrodes can be electrically connected to defibrillators with different mating electrical connectors. The multi-configuration electrical connector may further comprise one or more latch elements for retaining a mating defibrillation connector. The plurality of pairs of electrical terminal elements may be positioned so that all of the electrical terminal elements lie approximately in the same plane. The plurality of pairs of electrical terminal elements may be positioned so that each pair of electrical terminal elements is stacked on top of another pair of electrical terminal element.
The invention has many advantages (some of which may be achieved only in some implementations). For example, the multi-configuration connector can be configured so that unused electrical terminal elements are electrically isolated, thus avoiding harmful arcing that might occur between such elements.
Other features and advantages of the invention will be apparent from the detailed description, drawings, and claims.
There are a great many possible implementations of the invention, too many to describe herein. Some possible implementations that are presently preferred are described below. It cannot be emphasized too strongly, however, that these are descriptions of implementations of the invention, and not descriptions of the invention, which is not limited to the detailed implementations described in this section but is described in broader terms in the claims.
The descriptions below are more than sufficient for one skilled in the art to construct the disclosed implementations. Unless otherwise mentioned, the processes and manufacturing methods referred to are ones known by those working in the art
As shown diagrammatically in
A typical patient connector 22 is shown in FIG. 3. The connector has a molded polymer body 27, into which wires 20 from the electrodes extend. Internally within the molded body the wires 20 are electrically connected to electrical pins 28 (one of which is shown in the partially cross-sectioned portion of the drawings). Each of the electrical pins protrudes into an elongated bore 30 of one of the protrusions 32. Each of the bores 30 is sized to receive a mating electrical pin or terminal (not shown) on the defibrillator connector. Each of the mating pins or terminals in the defibrillator connector engages one of pins 28 to complete the electrical circuit between the defibrillator and the electrodes. The polymer protrusions 32 are received in mating polymer cavities in the defibrillator connector. A latch element 34 positively engages a mating element on the defibrillator connector to prevent the two connectors from inadvertently pulling apart once they have been engaged.
The connector shown in
One implementation of the invention is shown in
Connector 150 (including electrical pins 128, elongated bores, 130, protrusions 132, and latch element 134) resembles the standalone ZOLL Medical patient connector discussed above, and is configured to mate with a ZOLL Medical defibrillator connector.
Connector 152 resembles a standard Medtronic Physio-Control patient connector. The two electrical pins 128 are located in the outboard protrusions 160 (one of which is partially cross sectioned). The center two protrusions 162 are not used in the implementation shown, but could provide additional electrical connections to the electrodes.
Connector 154 resembles a standard Philips patient connector. The two electrical pins 128 are located in bores 164, which receive mating protrusions in a standard Philips defibrillator connector.
Many other implementations of the invention other than those described above are within the invention, which is defined by the following claims. A small number of the possible variations include the following. Many other configurations of cables and connectors are possible.
Instead of locating the multiple connectors on the patient connector (so that they are part of the electrode, and enable an electrode to be connected to any of a plurality of defibrillators), the multiple connectors could be located on the defibrillator connector (so that they are part of the defibrillator, and enable a defibrillator to be connected to any of a plurality of electrodes).
The patient cable could be eliminated by having the defibrillator connector plug into a patient connector located at the electrode, or the defibrillator cable could be eliminated by locating the defibrillator connector directly on the defibrillator and having the patient cable run all the way from the electrode to the defibrillator.
Different numbers of connectors could be combined. E.g., two connectors instead of three would provide some of the benefits of the invention.
The connectors could be arranged differently than the inline arrangement shown in
Many other arrangements could be provided for achieving electrical isolation of the unused connectors. E.g., instead of providing movable pins (so that the pins move upon insertion of a mating defibrillator connector, and unused pins remain spaced away from the bus bars), the pins could be stationary, and the other elements of the connector could move to achieve connection in the active connector and isolation in the unused connector.
While there are safety advantages to having the unused connector pins isolated electrically, some benefits of the invention could be had even if such electrical isolation was not provided (e.g., if wires 20 were permanently connected to the pins 128 of all three connectors in the implementation of FIGS. 4-5).
Latch elements such as elements 134, while preferable, are not necessary.
Patent | Priority | Assignee | Title |
10632301, | Sep 30 2016 | ZOLL Medical Corporation | Medical device connector for coupling electrodes |
10682511, | Aug 05 2016 | Defibrillator for minimally invasive surgical procedures | |
10859295, | Apr 13 2016 | ZeoThermal Technologies, LLC | Cooling and heating platform |
11089989, | Sep 14 2018 | Avive Solutions, Inc.; AVIVE SOLUTIONS, INC | Shockable heart rhythm classifier for defibrillators |
11903741, | Sep 14 2018 | Avive Solutions, Inc. | Shockable heart rhythm classifier for defibrillators |
7689278, | Sep 30 2003 | Koninklijke Philips Electronics N V | Identification system for defibrillator electrode package |
8452393, | Nov 07 2005 | Defibrillation paddle structure and its associated method of use |
Patent | Priority | Assignee | Title |
5411528, | Nov 19 1992 | Pacesetter, Inc | Electrically programmable polarity connector for an implantable body tissue stimulator |
20040034393, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 27 2003 | ZOLL Medical Corporation | (assignment on the face of the patent) | / | |||
Aug 18 2003 | DUPELLE, MICHAEL R | ZMD Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014626 | /0108 | |
Nov 20 2003 | ZMD Corporation | ZOLL Medical Corporation | OWNERSHIP AND MERGER | 015127 | /0153 |
Date | Maintenance Fee Events |
May 01 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 02 2009 | ASPN: Payor Number Assigned. |
Sep 02 2009 | RMPN: Payer Number De-assigned. |
Mar 14 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 09 2017 | REM: Maintenance Fee Reminder Mailed. |
Nov 27 2017 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 01 2008 | 4 years fee payment window open |
May 01 2009 | 6 months grace period start (w surcharge) |
Nov 01 2009 | patent expiry (for year 4) |
Nov 01 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 01 2012 | 8 years fee payment window open |
May 01 2013 | 6 months grace period start (w surcharge) |
Nov 01 2013 | patent expiry (for year 8) |
Nov 01 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 01 2016 | 12 years fee payment window open |
May 01 2017 | 6 months grace period start (w surcharge) |
Nov 01 2017 | patent expiry (for year 12) |
Nov 01 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |