A connector assembly includes a housing having a jack interface. The jack interface has a receptacle jack therein, and the receptacle jack is configured to receive a plug. A sensor bezel is removably attachable to the jack interface, and the sensor bezel comprises a cavity extending therethrough to allow passage of a plug when inserted into the receptacle jack. The sensor bezel includes a circuit board proximate the jack cavity. At least one sensor contact is aligned with, and configured to engage, a sensor probe associated with a plug insertable into the receptacle jack. An interchangeable output cassette provides an output signal through the front or the rear of the connector assembly.
|
17. A sensor bezel configured to be removably secured to a network connection component having a plurality of receptacle jacks formed therein, aligning with, and configured to engage sensor probes associated with plugs, each of which may be inserted into one of the receptacle jacks, said sensor bezel comprising:
a circuit board;
a bezel holding the circuit board;
at least one jack cavity proximate the circuit board;
a plurality of sensor contacts configured to be positioned proximate respective receptacle jacks; and
an interchangeable output cassette generating a signal dependant upon the connections to the receptacle jacks.
1. A connector assembly, comprising:
a housing comprising a jack interface, said jack interface having a receptacle jack therein, said receptacle jack being configured to receive a plug;
a sensor bezel removably attachable to said jack interface, said sensor bezel comprising a cavity extending therethrough to allow passage of a plug when inserted into said receptacle jack, said sensor bezel including a circuit board proximate said jack cavity, and at least one sensor contact aligned with, and configured to engage, a sensor probe associated with a plug insertable into said receptacle jack; and
an output cassette connected to said circuit board, said output cassette configured to generate an output signal through a front of said sensor bezel.
9. An interconnect cassette configured to electrically communicate with a network component and a sensing component, comprising:
a housing comprising a jack interface, said jack interface having a plurality of receptacles formed therein, each of said plurality of receptacles being configured to receive a plug of a patch cord;
a sensor bezel removably attachable to said jack interface, said sensor bezel configured to engage said jack interface and having at least one cavity extending therethrough to allow passage of a plug when inserted into one of said receptacles, said sensor bezel including a circuit board and a plurality of sensor contacts electrically connected to said circuit board, each of said sensor contacts being aligned with, and configured to engage, a sensor probe associated with a plug insertable into said receptacle; and
an interchangeable output cassette coupled to said circuit board, said output cassette adapted to provide a desired output signal to a sensing component.
4. The connector assembly of
5. The connector assembly of
7. The connector assembly of
8. The connector assembly of
11. The connector assembly of
12. The connector assembly of
14. The connector assembly of
15. The connector assembly of
16. The connector assembly of
18. The sensor bezel of
20. The sensor bezel of
|
This application claims the benefit of U.S. Provisional Application Ser. No. 60/453,801 filed Mar. 11, 2003, which is hereby incorporated by reference in its entirety, and this application is a continuation-in-part application of U.S. patent application Ser. No. 10/289,570 filed Nov. 7, 2002, which is also hereby incorporated by reference in its entirety.
The present invention generally relates to a connector that connects electronic components in a network and, more particularly, relates to an interconnect module or cassette that connects network components to a sensor component.
In order to better operate large electronic networks, sensor systems have been developed to monitor connections between components within the network. The sensor system typically includes an interconnect module that is retained in a patch panel, or any number of other network structures, and interconnects two separate network components. The interconnect module includes receptacle jacks, such as modular jacks, at a mating face. These jacks receive patch cords that in turn are connected to a first network component. Each patch cord includes an electrical cable comprised of signal wires connected to a plug at one end. The plug is received within a corresponding receptacle jack such that the signal wires in the electrical cable are electrically connected to signal contacts extending from a rear side of the interconnect module. The signal contacts are in turn connected to a second set of signal wires that extend to a second network component. Thus, the interconnect module electrically interconnects the first and second network components.
Conventional interconnect modules are joined with separate sensor configurations that enable the network to determine when a plug is joined with a receptacle jack.
Each plug includes a sensor probe connected to a sensor wire that carries signals between the sensor probe and an associated network component. When the plugs are fully inserted into the receptacle jacks the sensor probes contact and electrically engage the sensor contacts 604 on the FEC 602 to create a sensor circuit. The sensor component may then be used to monitor and record the connections of network components throughout the network. For example, if one network component is connected to the wrong server, a network shutdown or outage may occur which could be very costly. The sensor component determines where the faulty connection is located and determines how long it has existed in order that the outage may be quickly remedied. Additionally, the sensor component may be used to determine whether unauthorized parties are connected to a component within the network and thus improve network security.
However, the conventional interconnect module 600 suffers from several drawbacks. The FEC 602 is expensive and attaching the FEC 602 to the interconnect module 600 requires the use of adhesives and registration of the sensor contacts 604 proximate each receptacle jack 610. The process of installing the FEC 602 is thus time consuming and difficult, especially when the interconnect module 600 is located in a space-constrained network structure. Also, the first connector 612 is typically connected to the FEC 602 while the FEC 602 is attached to the interconnect module 600. The second connector hangs from the front side of the interconnect module 600 and is thus easily damaged during installation and use. Also, the second connector takes up a great deal of space which renders the interconnect module 600 difficult to install in space-constrained network structures. The interconnect module 600 requires cables and a second connector to connect the first connector 612 to the sensor component. The connectors and cables take up space and increase the risk of an unintentional disconnection and also limit the adaptability of the interconnect module 600 by presenting a more complicated structure of components to consider when adding or changing connections. In addition, the cables preferably should be selected at the time of installation of the FEC 602 to have a fixed length in order that loops of extra cable are not situated at the patch panel. Further, if any receptacle jack 610 needs to be removed or added, the entire FEC 602, which covers a portion of the receptacle jacks 610, has to be removed and replaced. Also, positioning the first connector 612 to extend to the rear side of the interconnect module 600 requires a difficult and expensive mechanical routing process that requires removal or modification of components already on the rear side of the interconnect module 600.
A need remains for an interconnect module that overcomes the above problems and addresses other concerns experienced in the prior art.
In accordance with an exemplary embodiment of the invention, a connector assembly is provided. The connector assembly comprises a housing comprising a jack interface. The jack interface has a receptacle jack therein, and the receptacle jack is configured to receive a plug. A sensor bezel is removably attachable to the jack interface, and the sensor bezel comprises a cavity extending therethrough to allow passage of a plug when inserted into the receptacle jack. The sensor bezel includes a circuit board proximate the jack cavity. At least one sensor contact is aligned with, and configured to engage, a sensor probe associated with a plug insertable into the receptacle jack.
In accordance with another exemplary embodiment of the invention, an interconnect cassette is provided. The interconnect cassette is configured to electrically communicate with a network component and a sensing component, and the interconnect cassette comprises a housing comprising a jack interface. The jack interface has a plurality of receptacles formed therein, and each of the plurality of receptacles is configured to receive a plug of a patch cord. A sensor bezel is removably attachable to the jack interface, and the sensor bezel is configured to engage the jack interface and have at least one cavity extending therethrough to allow passage of a plug when inserted into one of the receptacles. The sensor bezel includes a circuit board and a plurality of sensor contacts electrically connected to the circuit board. Each of the sensor contacts are aligned with, and are configured to engage, a sensor probe associated with a plug insertable into the receptacle.
In accordance with another exemplary embodiment of the invention, a sensor bezel is provided. The sensor bezel is configured to be removably secured to a network connection component having a plurality of receptacle jacks formed therein, aligning with, and configured to engage sensor probes associated with plugs which may be inserted into one of the receptacle jacks. The sensor bezel comprises a circuit board, a bezel holding the circuit board, at least one jack cavity proximate the circuit board, a plurality of sensor contacts configured to be positioned proximate respective receptacle jacks, and an interchangeable output cassette generating a signal dependant upon the connections to the receptacle jacks.
The output cassette may be configured to generate an output signal through the front of the sensor bezel, or from the rear of the network component as desired. The circuit board includes a card edge connector for convenient connection to interchangeable output cassettes as desired. The sensor contacts in an exemplary embodiment are metallic plates located between the sensor bezel and a jack interface of the network component to facilitate accurate and reliable sensing of connections.
The foregoing summary, as well as the following detailed description of certain embodiments of the present invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings, certain embodiments. It should be understood, however, that the present invention is not limited to the arrangements and instrumentalities shown in the attached drawings.
Referring again to
The interconnect cassette 300 may be connected to a network connection component such as a patch panel, a wall mounted box, a floor box, or any number of other network connection structures (not shown). Mounting features, such as fastener holes 343, are provided in the jack interface 314 to allow the interconnect cassette 300 to be mounted into a rack unit (not shown) or other such organizational and support structure. The interconnect cassette 300 connects the receptacle jacks 370 to corresponding wires, a printed circuit board, a flexible circuit, a lead frame, or the like within the housing of the interconnect cassette 300 as opposed to directly connecting each receptacle jack 370 to a corresponding structure within another network connection. The wires electrically connected to the receptacle jacks 370 may be bundled inside the interconnect cassette 300 and electrically connected to a signal input/output (I/O) interface 320 (as shown below with respect to
As illustrated in
The strip pins 342 extend outwardly from the cassette interface surface 332 and may optionally be formed on one of the horizontal frame members 326 (as a row) or on the other vertical frame member 328. Also, optionally, strip pins 342 may be positioned on more than one of the vertical and horizontal frame member 328 and 326 (so long as they correspond to strip pin receptacles formed within the interconnect cassette 300). A sensor strip 334, attached to each vertical frame member, spans longitudinally across the sensor bezel 302 in a parallel relationship with the horizontal frame members 326. The sensor bezel 302 may be molded with, stamped onto, or otherwise integrally formed with the frame 324. Alternatively, the horizontal frame members 328 may include slots configured to receive and retain support tabs formed as terminal ends of the sensor strip. That is, the sensor strip 334 may be removable from the frame 324. Two open jack cavities 336 are defined between the horizontal frame members 326 and the sensor strip 334 and are configured to allow plugs 18 to pass therethrough. The jack cavities 336 allow plugs 18 of the patch cords 10 to mate with the receptacle jacks 370 as described below.
As shown in
The sensor bezel 302 is received and retained by the interconnect cassette 300. The interconnect cassette 300 includes features that allow the strip assembly 350 to snapably, latchably or otherwise securably mount to the jack interface 314 of the interconnect cassette 300. The sensor bezel 302 is mounted to the interconnect cassette 300 without the use of glue or other such adhesives. The sensor bezel 302 may be quickly and efficiently mounted to (and removed from) the interconnect cassette 300 through snapable, latchable or other such matable engagement between the jack interface 314 and the cassette interface surface 332. Also, the strip pins 342 may be securably retained by the strip pin receptacles 316 so that the strip assembly 350 is securably positioned on the jack interface 314 of the interconnect cassette 300. As the sensor bezel 302 is mounted to the jack interface 314 in the direction of the dashed lines, the strip pins 342 are received and retained by the strip pin receptacles 316. The strip pins 342 are then electrically connected to contacts (not shown) within the strip pin receptacles 316, which are in turn electrically connected to a sensor input/output (I/O) interface 318 or insulated displacement contact (DC) assembly 322 (as discussed below with respect to
When the sensor bezel 302 is securably mounted to, and consequently in operative connection with, the interconnect cassette 300, the receptacle jacks 370 may receive the plugs 18 of the patch cords 10 such that the flexible prongs 38 are retained in the channels 386 and biased toward the bottom surface 36 of the plugs 18. The resistance of the flexible prongs 38 against the channels 386 retains the plugs 18 within the receptacle jacks 370. Optionally, the flexible prongs 38 may include a latch feature that joins a corresponding latch feature in the channel 386. When the plugs 18 are fully received in the receptacle jacks 370, the probe heads 98 contact and electrically engage corresponding sensor contacts 340. When the plugs 18 are inserted into corresponding receptacle jacks 370, the sensor probes 30 align with and engage corresponding sensor contacts 340 on the sensor strip 334, thereby enabling sensor signals to pass in either direction between the plug 18 and interconnect cassette 300.
Optionally, instead of a pin and socket configuration, the sensor bezel 302 may be compressibly connected to the interconnect cassette 300. For example, instead of the pins 342 and the receptacles 316, the sensor bezel 302 may include an array of insulators and conductors. The insulators may be longer or higher than the conductors. When the array is sandwiched between the sensor bezel 302 and interconnect cassette 300, however, the insulators may be compressed to the length or height of the conductors.
When the sensor strip 334 is operatively connected to the interconnect cassette 300, a pin or other such element, such as the sensor probe 30, on the plug 18 or patch cord 10 contacts the sensor strip 334 if the plug 18 is fully mated into a corresponding receptacle jack 370. In particular, the sensor probe 30 of the plug 18 contacts a sensor contact 340 when the plug is fully mated into the receptacle jack 370. Upon full mating of the plug 18 into the receptacle jack 370, an electrical circuit is formed between the plug 18 and the sensor contact 340 by virtue of the sensor probe 30 contacting the sensor contact 340. The sensing component 317 detects this electrical circuit as a connection between the plug 18 and its corresponding receptacle jack 370. If, however, the plug 18 becomes dislodged from its corresponding receptacle jack 370, the sensor probe 30 no longer contacts the sensor contact 340. Thus, the electrical circuit is broken and the sensing component 317 senses that a connection is not present between the plug 18 and its corresponding receptacle jack 370. The information regarding connections is relayed to a processing unit (not shown), which in turn may display connection information to an operator or overseer.
United States patent application entitled Receptacle and Plug Interconnect Module With Integral Sensor Contacts, filed Jun. 18, 2002, attorney docket 17862US 1 (MHM No. 13761US01), listing Pepe et al. as inventors (the Pepe application), discloses a connector assembly having sensor contacts integrally formed with a housing of the connector assembly. The Pepe application is incorporated by reference herein in its entirety. The Pepe application discloses an interconnect module having a plurality of sensor contacts integrally formed thereon. The sensor strip 334 shown above with respect to
In an alternative embodiment of the present invention, the sensor strip 334 and the sensor I/O interface 318 or the DC assembly 322 may be connected together by a printed circuit board that extends through the housing 304 of the interconnect cassette 300. The printed circuit board has electronic traces that extend along the length thereof and that are connected to the sensor strip receptacles 316. The printed circuit board may include signal conditioning circuits, an identification code unique to each receptacle jack 370, and/or processing components that analyze and identify the type of plug inserted.
The interconnect cassette 300 and separate sensor bezel 302 confer several benefits. First, the interconnect cassette 300 utilizes individual sensor contacts 340 positioned proximate each receptacle jack 370. The sensor contacts 340 are retained individually within the front face of the sensor bezel 302 and are connected to the sensor pins 342 through traces 341, or the like. Thus, the sensor contacts 340 directly connect to the sensor probes of the plugs 18. The sensor contacts 340 are separate and discrete from one another thereby allowing easy removal and replacement of the plugs 18 from the receptacle jacks 370 without disconnecting other plugs 18 from receptacle jacks 370 that are not being replaced/removed. That is, only the sensor strip 334 needs to be removed, while the sensor bezel 302 and the plugs remain in place. Also, if sensor contacts 34 are faulty, only the sensor bezel 302 needs to be replaced (as opposed to the entire interconnect cassette 300). Further, the sensor strip 334 of the sensor bezel 302 may be removable so that only the sensor strip 334 or individual sensor contacts 340 needs to be replaced. Finally, the sensor contacts eliminate the need for fixed lengths of cable and multiple connectors to connect sensor pads to the sensor wires, thus saving time and space.
Embodiments of the present invention may be used with various applications including modular jacks. For example, the present invention may be used to electrically or fiber optically connect components.
A sensor bezel 414 is coupled to the jack interface 405 of the interconnect cassette 402 and provides sensing capability for monitoring connections thereto. The sensor bezel 414 in an exemplary embodiment is fabricated from a known plastic material and includes an overmolded sensor strip 416 extending longitudinally beneath an open jack cavity 418 formed into the sensor bezel 414. In an illustrative embodiment, the sensor strip 416 is a printed circuit board having electronic traces that extend along the length thereof and that are connected to sensor contacts 420. The printed circuit board 416 may include signal conditioning circuits, an identification code unique to each receptacle jack 404, processing components that analyze and identify the type of plug inserted into the interconnect cassette 402, and the like as those in the art will appreciate. In alternative embodiments, it is appreciated that the sensor strip 416 may include a flexible circuit familiar to those in the art in lieu of a printed circuit board. It is appreciated that the sensor strip 416 may be otherwise mounted to the bezel 414 in lieu of overmolding as described above.
In the illustrated embodiment, the sensor contacts 420 are separately provided metallic plates that are inserted in the sensor bezel 414 in electrical contact with one of the electronic traces on the printed circuit board 416. It is appreciated, however, that other conductive members of various shapes, sizes, and configurations may be employed in alternative embodiments of the invention. Additionally, the sensor contacts 420 may be overmolded or otherwise provided in a unitary or integral arrangement with sensor bezel 414. In still another alternative embodiment, sensor contacts 420 may be coupled to or otherwise provided upon the jack interface 405 of the interconnect cassette 402.
When the sensor bezel 414 is attached to the jack interface 405 of the interconnect cassette 402, the open cavity 418 of the sensor bezel 414 is substantially aligned with and surrounds the open front faces of the receptacle jacks 404. The sensor contacts 420 are located between the printed circuit board 416 of the sensor bezel 414 and the jack interface 405 of the interconnect cassette 402 with each sensor contact 420 located adjacent one of the receptacle jacks 404. When a patch cord, such as patch cord 10 described above, is connected to a receptacle jack 404 through the open cavity 418, a sensor probe 30 contacts a respective one of the sensor contacts 420 corresponding to the connected jack receptacle 404 and enables signals to pass in either direction between the patch cord 10 and the printed circuit board 416 of the sensor bezel 414. The sensor bezel 414 may be coupled or secured to the jack interface 405 of the interconnect cassette 402 via known attachment methods, including but not limited to connection with known fasteners that are extended through openings 422 in the sensor bezel 414 and the jack interface 405 of the interconnect cassette 402. Electrical insulation may be employed as desired or as necessary to avoid short circuits.
As illustrated in
To provide a sensor output for monitoring and analysis of networked connections, an output cassette 424 is provided in communication with the printed circuit board 416 of the sensor bezel 414. In the illustrated embodiment, the interchangeable output cassette 424 includes a printed circuit board 426 and a number of connectors 428 mechanically and electrically coupled to electronic traces on the printed circuit board 426. The printed circuit board 426 of the output cassette 424 is connected to the printed circuit board 416 of the sensor bezel 414, which, in turn, is electrically connected to the sensor contacts 420. In an exemplary embodiment, the printed circuit board 416 of the sensor bezel 414 includes a known card edge connector 430 which receives the printed circuit board 426 of the output cassette 424.
In one embodiment, the card edge connector 430 is extended through a slot 432 in the jack interface 405 of the interconnect cassette 402 when the sensor bezel 414 is installed, and the output cassette 424 is located behind the jack interface 405 in connection with the edge card connector 430. In an alternative embodiment, other known connection schemes may be employed, including but not limited to the above-described strip pins.
In one embodiment, the output cassette 424 includes an output connector 434 (shown in
The output cassette 424 is adapted for a desired signal output for connection to a desired network component. For different applications or for connection to different types of equipment, the output cassette 424 may be interchanged with another differently configured output cassette that is better suited or more desirable for a particular application. That is, a given output cassette may be removed and replaced with another output cassette which is better suited or more desirable for a selected application. By providing a number of interchangeable output cassettes 424 that are differently configured, a variety of output signals may be generated to sense, monitor, and analyze network connections with a single sensor bezel 414. In other words, the interchangeable output cassettes provide a variety of output signals without modification of the bezel or the sensor components (i.e., the printed circuit board 416 or the contacts 420). Additionally, by providing front and rear output signal capability, the cassette assembly 400 provides flexibility and versatility in connecting the cassette assembly 400 to another network component or components, such as a sensing component and an analyzing component. Still further, the sensor bezel 414 and sensor contacts 420 provide reliable and secure electrical and mechanical connection to the printed circuit board 416 of the sensor bezel 414 for accurate sensing of network connections.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
Pepe, Paul John, Martin, Ralph Sykes, Navarro, Jordi Gatnau, Olle′, Antoni Puell
Patent | Priority | Assignee | Title |
10012813, | Feb 05 2013 | CommScope Technologies LLC | Optical assemblies with managed connectivity |
10088636, | Feb 12 2010 | CommScope Technologies LLC | Managed fiber connectivity systems |
10123444, | Feb 02 2010 | CommScope Technologies LLC | Communications bladed panel systems |
10126516, | Jun 23 2010 | CommScope Technologies LLC | Telecommunications assembly |
10129179, | Feb 13 2009 | CommScope EMEA Limited; CommScope Technologies LLC | Managed connectivity devices, systems, and methods |
10153954, | Aug 14 2013 | COMMSCOPE CONNECTIVITY UK LIMITED | Inferring physical layer connection status of generic cables from planned single-end connection events |
10177514, | Oct 19 2009 | CommScope Technologies LLC | Managed electrical connectivity systems |
10205519, | Sep 24 2013 | CommScope Technologies LLC | Pluggable active optical module with managed connectivity support and simulated memory table |
10234648, | Aug 06 2007 | CommScope Technologies LLC | Fiber optic enclosure with internal cable spool |
10247897, | Aug 06 2007 | CommScope Technologies LLC | Fiber optic enclosure with internal cable spool |
10268000, | Feb 05 2013 | CommScope Technologies LLC; COMMSCOPE CONNECTIVITY UK LIMITED | Optical assemblies with managed connectivity |
10268014, | Jun 23 2010 | CommScope Technologies LLC | Telecommunications assembly |
10371914, | Jun 24 2011 | CommScope Technologies LLC | Fiber termination enclosure with modular plate assemblies |
10470320, | Oct 16 2009 | CommScope Technologies LLC | Managed connectivity in electrical systems and methods thereof |
10473864, | Feb 12 2010 | CommScope Technologies LLC | Managed fiber connectivity systems |
10495836, | Aug 06 2007 | CommScope Technologies LLC | Fiber optic payout assembly including cable spool |
10502916, | Jun 24 2011 | CommScope Technologies LLC | Fiber termination enclosure with modular plate assemblies |
10509177, | Mar 26 2014 | CommScope Technologies LLC | Optical adapter module with managed connectivity |
10545305, | Dec 19 2012 | CommScope Connectivity Belgium BVBA | Distribution device with incrementally added splitters |
10554582, | Feb 13 2009 | CommScope Technolgies LLC | System including management system to determine configuration for inter-networking device based on physical layer information of a network |
10566739, | Dec 22 2011 | CommScope Connectivity Spain, S.L. | High density multichannel twisted pair communication system |
10571641, | Feb 05 2013 | CommScope Technologies LLC | Optical assemblies with managed connectivity |
10574008, | Oct 19 2009 | CommScope Technologies LLC | Managed electrical connectivity systems |
10606015, | Aug 06 2007 | CommScope Technologies LLC | Fiber optic payout assembly including cable spool |
10606017, | Aug 06 2007 | CommScope Technologies LLC | Fiber optic payout assembly including cable spool |
10627592, | May 07 2007 | CommScope Technologies LLC | Fiber optic assembly with cable spool |
10627593, | Jun 23 2010 | CommScope Technologies LLC | Telecommunications assembly |
10678001, | Oct 16 2009 | CommScope Technologies LLC | Managed connectivity in fiber optic systems and methods thereof |
10700778, | Sep 24 2013 | CommScope Technologies LLC | Pluggable active optical module with managed connectivity support and simulated memory table |
10712518, | Aug 06 2007 | CommScope Technologies LLC | Fiber optic enclosure with lockable internal cable spool |
10746943, | Feb 05 2013 | CommScope Technologies LLC; COMMSCOPE CONNECTIVITY UK LIMITED | Optical assemblies with managed connectivity |
10788642, | May 07 2007 | CommScope Technologies LLC | Fiber optic assembly with cable storage arrangement |
10819602, | Aug 14 2013 | CommScope Technologies LLC; COMMSCOPE CONNECTIVITY UK LIMITED | Inferring physical layer connection status of generic cables from planned single-end connection events |
10884211, | Jun 23 2010 | CommScope Technologies LLC | Telecommunications assembly |
10895705, | Aug 06 2007 | CommScope Technologies LLC | Fiber optic enclosure with internal cable spool |
10935744, | Jun 24 2011 | CommScope Technologies LLC | Fiber termination enclosure with modular plate assemblies |
10958024, | Oct 19 2009 | CommScope Technologies LLC | Managed electrical connectivity systems |
10983285, | Feb 12 2010 | CommScope Technologies LLC | Managed fiber connectivity systems |
10996417, | Aug 06 2007 | CommScope Technologies LLC | Fiber optic enclosure with internal cable spool and movable cover |
10996418, | Aug 06 2007 | CommScope Technologies LLC | Connecting subscribers to a fiber optic network using a cable spool |
11009671, | May 07 2007 | CommScope Technologies LLC | Fiber optic assembly with cable storage arrangement |
11113642, | Sep 27 2012 | COMMSCOPE CONNECTIVITY UK LIMITED | Mobile application for assisting a technician in carrying out an electronic work order |
11143833, | Feb 05 2013 | CommScope Technologies LLC | Optical assemblies with managed connectivity |
11191173, | Oct 16 2009 | APEX BRANDS, INC | Managed connectivity in electrical systems and methods thereof |
11231555, | Oct 16 2009 | CommScope Technologies LLC | Managed connectivity in fiber optic systems and methods thereof |
11327248, | Feb 05 2013 | CommScope Technologies LLC | Optical assemblies with managed connectivity |
11327262, | Jun 24 2011 | CommScope Technologies LLC | Fiber termination enclosure with modular plate assemblies |
11378755, | Feb 12 2010 | CommScope Technologies LLC | Managed fiber connectivity systems |
11402595, | Jun 23 2010 | CommScope Technologies LLC | Telecommunications assembly |
11469560, | Oct 19 2009 | CommScope Technologies LLC | Managed electrical connectivity systems |
11573390, | Aug 06 2007 | CommScope Technologies LLC | Fiber optic enclosure with internal cable spool |
11624884, | Jun 24 2011 | CommScope Technologies LLC | Fiber termination enclosure with modular plate assemblies |
11630269, | Oct 16 2009 | CommScope Technologies LLC | Managed connectivity in fiber optic systems and methods thereof |
11714246, | Feb 05 2013 | CommScope Technologies LLC | Optical assemblies with contoured base |
11789226, | Jun 23 2010 | CommScope Technologies LLC | Telecommunications assembly |
11862912, | Oct 19 2009 | CommScope Technologies LLC | Managed electrical connectivity systems |
11867952, | Feb 05 2013 | CommScope Technologies LLC; COMMSCOPE CONNECTIVITY UK LIMITED | Optical assemblies with managed connectivity |
11899246, | Feb 12 2010 | CommScope Technologies LLC | Managed fiber connectivity systems |
11988883, | Jun 24 2011 | CommScope Technologies LLC | Fiber termination enclosure with modular plate assemblies |
7641513, | Oct 10 2006 | CommScope EMEA Limited; CommScope Technologies LLC | Upgradeable telecommunications patch panel and method of upgrading same |
7695309, | Aug 26 2008 | CommScope EMEA Limited; CommScope Technologies LLC | Sensor strip for a connectivity management system |
7811123, | Oct 10 2006 | CommScope EMEA Limited; CommScope Technologies LLC | Upgradeable telecommunications patch panel and method of upgrading same |
7854624, | Jul 23 2009 | CommScope EMEA Limited; CommScope Technologies LLC | Panel assembly for a connectivity management system |
7869426, | Mar 22 2006 | CommScope EMEA Limited; CommScope Technologies LLC | Intelligent patching system and method |
7878824, | Feb 27 2009 | CommScope EMEA Limited; CommScope Technologies LLC | Shielded cassette for a cable interconnect system |
7907537, | Nov 17 1997 | CommScope EMEA Limited; CommScope Technologies LLC | System and method for electronically identifying connections of a cross-connect system |
7909619, | Feb 27 2009 | CommScope EMEA Limited; CommScope Technologies LLC | Cassette with locking feature |
7909622, | Feb 27 2009 | CommScope EMEA Limited; CommScope Technologies LLC | Shielded cassette for a cable interconnect system |
7909643, | Feb 27 2009 | CommScope EMEA Limited; CommScope Technologies LLC | Cassette for a cable interconnect system |
7914324, | Feb 27 2009 | CommScope EMEA Limited; CommScope Technologies LLC | Cassette for use within a connectivity management system |
7977559, | Oct 19 2005 | Yamaha Corporation | Tone generation system controlling the music system |
8062049, | Jan 15 2010 | BISON PATENT LICENSING, LLC | Latch assembly for a connector assembly |
8096833, | Jan 15 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Plug assembly |
8142221, | Apr 19 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Plug assembly for a connectivity management system |
8152560, | Apr 19 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Connectivity sensing assembly |
8337238, | Jul 19 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Cable clip for a connector assembly |
8565572, | Jun 23 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Telecommunications assembly |
8596882, | Oct 16 2009 | CommScope EMEA Limited; CommScope Technologies LLC | Managed connectivity in fiber optic systems and methods thereof |
8696369, | Sep 09 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Electrical plug with main contacts and retractable secondary contacts |
8715012, | Apr 15 2011 | CommScope EMEA Limited; CommScope Technologies LLC | Managed electrical connectivity systems |
8753142, | Mar 09 2009 | COMMSCOPE, INC OF NORTH CAROLINA | Methods of converting patching system to intelligent patching system and related shelf units |
8804540, | Nov 17 1997 | CommScope EMEA Limited; CommScope Technologies LLC | System and method for electronically identifying connections of a cross-connect system |
8832503, | Mar 25 2011 | CommScope EMEA Limited; CommScope Technologies LLC | Dynamically detecting a defective connector at a port |
8874814, | Jun 11 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Switch-state information aggregation |
8897637, | Apr 22 2009 | CommScope EMEA Limited; CommScope Technologies LLC | Method and arrangement for identifying at least one object |
8923013, | Feb 12 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Communications bladed panel systems |
8934252, | Feb 12 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Communications bladed panel systems |
8934253, | Feb 12 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Communications bladed panel systems |
8944856, | Apr 15 2011 | CommScope EMEA Limited; CommScope Technologies LLC | Managed electrical connectivity systems |
8949496, | Mar 25 2011 | CommScope EMEA Limited; CommScope Technologies LLC | Double-buffer insertion count stored in a device attached to a physical layer medium |
8982715, | Feb 13 2009 | CommScope EMEA Limited; CommScope Technologies LLC | Inter-networking devices for use with physical layer information |
8992260, | Oct 16 2009 | CommScope EMEA Limited; CommScope Technologies LLC | Managed connectivity in electrical systems and methods thereof |
8992261, | Oct 22 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Single-piece plug nose with multiple contact sets |
9020319, | Feb 12 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Communications bladed panel systems |
9038141, | Dec 07 2011 | CommScope EMEA Limited; CommScope Technologies LLC | Systems and methods for using active optical cable segments |
9054440, | Oct 19 2009 | CommScope EMEA Limited; CommScope Technologies LLC | Managed electrical connectivity systems |
9064022, | May 17 2011 | CommScope Connectivity Belgium BVBA | Component identification and tracking system for telecommunication networks |
9081537, | Mar 25 2011 | CommScope EMEA Limited; CommScope Technologies LLC | Identifier encoding scheme for use with multi-path connectors |
9093796, | Jul 06 2012 | CommScope EMEA Limited; CommScope Technologies LLC | Managed electrical connectivity systems |
9140859, | Feb 12 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Managed fiber connectivity systems |
9147983, | Apr 15 2011 | CommScope EMEA Limited; CommScope Technologies LLC | Managed electrical connectivity systems |
9170392, | Jun 23 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Telecommunications assembly |
9176294, | Oct 16 2009 | CommScope EMEA Limited; CommScope Technologies LLC | Managed connectivity in fiber optic systems and methods thereof |
9198320, | Feb 12 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Communications bladed panel systems |
9203198, | Sep 28 2012 | ADC Telecommunications, Inc | Low profile faceplate having managed connectivity |
9207417, | Jun 25 2012 | CommScope EMEA Limited; CommScope Technologies LLC | Physical layer management for an active optical module |
9213363, | Feb 12 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Communications bladed panel systems |
9223105, | Feb 12 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Communications bladed panel systems |
9265172, | Feb 12 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Communications bladed panel systems |
9285552, | Feb 05 2013 | COMMSCOPE CONNECTIVITY UK LIMITED | Optical assemblies with managed connectivity |
9341802, | Jun 23 2010 | CommScope Technologies LLC | Telecommunications assembly |
9379501, | Feb 05 2013 | COMMSCOPE CONNECTIVITY UK LIMITED | Optical assemblies with managed connectivity |
9380874, | Jul 11 2012 | CommScope EMEA Limited; CommScope Technologies LLC | Cable including a secure physical layer management (PLM) whereby an aggregation point can be associated with a plurality of inputs |
9397450, | Jun 12 2015 | Amphenol Corporation | Electrical connector with port light indicator |
9401552, | Oct 16 2009 | CommScope EMEA Limited; CommScope Technologies LLC | Managed connectivity in electrical systems and methods thereof |
9407510, | Sep 04 2013 | CommScope EMEA Limited; CommScope Technologies LLC | Physical layer system with support for multiple active work orders and/or multiple active technicians |
9417399, | Feb 12 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Managed fiber connectivity systems |
9423570, | Feb 05 2013 | COMMSCOPE CONNECTIVITY UK LIMITED | Optical assemblies with managed connectivity |
9437990, | Jul 06 2012 | CommScope EMEA Limited; CommScope Technologies LLC | Managed electrical connectivity systems |
9470742, | Aug 03 2012 | CommScope EMEA Limited; CommScope Technologies LLC | Managed fiber connectivity systems |
9473361, | Jul 11 2012 | CommScope EMEA Limited; CommScope Technologies LLC | Physical layer management at a wall plate device |
9491119, | Feb 13 2009 | CommScope EMEA Limited; CommScope Technologies LLC | Network management systems for use with physical layer information |
9497098, | Mar 25 2011 | CommScope EMEA Limited; CommScope Technologies LLC | Event-monitoring in a system for automatically obtaining and managing physical layer information using a reliable packet-based communication protocol |
9500814, | Mar 26 2014 | CommScope Technologies LLC | Optical adapter module with managed connectivity |
9502843, | Apr 15 2011 | CommScope Technologies LLC | Managed electrical connectivity systems |
9525255, | Sep 28 2012 | CommScope Technologies LLC | Low profile faceplate having managed connectivity |
9532481, | Feb 12 2010 | CommScope Technologies LLC | Communications bladed panel systems |
9532482, | Feb 12 2010 | CommScope Technologies LLC | Communications bladed panel systems |
9544058, | Sep 24 2013 | CommScope EMEA Limited; CommScope Technologies LLC | Pluggable active optical module with managed connectivity support and simulated memory table |
9549484, | Feb 12 2010 | CommScope Technologies LLC | Communications bladed panel systems |
9595797, | Oct 19 2009 | CommScope EMEA Limited; CommScope Technologies LLC | Managed electrical connectivity systems |
9601847, | Dec 22 2011 | COMMSCOPE CONNECTIVITY SPAIN, S L | High density multichannel twisted pair communication system |
9602897, | Jun 25 2012 | CommScope Technologies LLC | Physical layer management for an active optical module |
9632255, | Feb 12 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Managed fiber connectivity systems |
9667566, | Feb 13 2009 | CommScope EMEA Limited; CommScope Technologies LLC | Inter-networking devices for use with physical layer information |
9674115, | Feb 13 2009 | CommScope EMEA Limited; CommScope Technologies LLC | Aggregation of physical layer information related to a network |
9678296, | Jun 23 2010 | CommScope Technologies LLC | Telecommunications assembly |
9684134, | Feb 12 2010 | CommScope Technologies LLC | Managed fiber connectivity systems |
9735523, | Feb 05 2013 | COMMSCOPE CONNECTIVITY UK LIMITED; CommScope Technologies LLC | Optical assemblies with managed connectivity |
9742633, | Nov 17 1997 | CommScope EMEA Limited; CommScope Technologies LLC | System and method for electronically identifying connections of a system used to make connections |
9742696, | Feb 13 2009 | CommScope EMEA Limited; CommScope Technologies LLC | Network management systems for use with physical layer information |
9742704, | Jul 11 2012 | CommScope Technologies LLC | Physical layer management at a wall plate device |
9769939, | Oct 16 2009 | CommScope Technologies LLC | Managed connectivity in electrical systems and methods thereof |
9778424, | Feb 05 2013 | CommScope Technologies LLC; COMMSCOPE CONNECTIVITY UK LIMITED | Optical assemblies with managed connectivity |
9804337, | Feb 12 2010 | CommScope EMEA Limited; CommScope Technologies LLC | Managed fiber connectivity systems |
9810860, | Oct 16 2009 | CommScope Technologies LLC | Managed connectivity in fiber optic systems and methods thereof |
9905089, | Sep 04 2013 | CommScope Technologies LLC | Physical layer system with support for multiple active work orders and/or multiple active technicians |
9967983, | Oct 16 2009 | CommScope Technologies LLC | Managed connectivity in electrical systems and methods thereof |
9995883, | Mar 26 2014 | CommScope Technologies LLC | Optical adapter module with managed connectivity |
9995898, | Jun 23 2010 | CommScope Technologies LLC | Telecommunications assembly |
ER8525, | |||
RE47365, | Dec 07 2011 | CommScope Technologies LLC | Systems and methods for using active optical cable segments |
Patent | Priority | Assignee | Title |
4237386, | Jun 29 1976 | E-Comm Australia Pty. Ltd. | Plug-in module for touch control switching |
5178554, | Oct 26 1990 | SIEMON COMPANY, A CORP OF CT | Modular jack patching device |
5347095, | Jul 05 1991 | STAJER CORPORATION | Electrical receptacle for use with annunciator apparatus for monitoring electrical connections |
5434558, | Jul 05 1991 | STAJER CORPORATION | Annunciator apparatus for monitoring electrical connections |
5483467, | Jun 10 1992 | RIT Technologies Ltd | Patching panel scanner |
5870626, | Apr 08 1994 | Ishikawa Seisakusho; MITANI, TADAOKI | Device for the computer linking of apparatuses with heterogeneous communication systems, and key pertaining to such a device |
6626697, | Nov 07 2002 | CommScope EMEA Limited; CommScope Technologies LLC | Network connection sensing assembly |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 17 2003 | MARTIN, RALPH SYKES | Tyco Electronics Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014944 | /0673 | |
Dec 17 2003 | PEPE, PAUL JOHN | Tyco Electronics Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014944 | /0673 | |
Jan 14 2004 | NANARRO, JORDI GATNAU | Tyco Electronics Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014944 | /0673 | |
Jan 14 2004 | OLLE , ANTONI PUELL | Tyco Electronics Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014944 | /0673 | |
Jan 28 2004 | Tyco Electronics AMP Espana, S.A. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 22 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 14 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 20 2017 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 20 2008 | 4 years fee payment window open |
Jun 20 2009 | 6 months grace period start (w surcharge) |
Dec 20 2009 | patent expiry (for year 4) |
Dec 20 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 20 2012 | 8 years fee payment window open |
Jun 20 2013 | 6 months grace period start (w surcharge) |
Dec 20 2013 | patent expiry (for year 8) |
Dec 20 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 20 2016 | 12 years fee payment window open |
Jun 20 2017 | 6 months grace period start (w surcharge) |
Dec 20 2017 | patent expiry (for year 12) |
Dec 20 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |