Methods and systems of performing multiple reactions in a high throughput format by utilizing interfacial mixing of adjacently positioned reagent slugs in a fluid conduit. Preferred applications of the methods and systems are in performing biochemical analyses, including genotyping experiments for multiple different loci on multiple different patient samples. Microfluidic systems are provided that increase throughput, automation and integration of the overall reactions to be carried out.

Patent
   6977163
Priority
Jun 13 2001
Filed
Jun 04 2002
Issued
Dec 20 2005
Expiry
Sep 24 2022
Extension
112 days
Assg.orig
Entity
Large
100
59
all paid
4. A method of performing a plurality of reactions, comprising:
introducing a first volume of a first reagent into a fluid channel;
introducing a first volume of a second reagent into the first fluid channel, the first volume of the second reagent abutting the first volume of the first reagent;
introducing a first volume of a third reagent into the first fluid channel, the first volume of the third reagent abutting the first volume of the second reagent;
diffusing the first and second reagents to diffuse together to form a first reaction in the first fluid channel;
diffusing the second reagent and the third reagent together in the first fluid channel to form a second reaction mixture; and
separately detecting a first reaction product in the first reaction mixture and a second reaction product in the second reaction mixture.
1. A method of analyzing a plurality of reactions, comprising:
serially introducing plugs of first, second and third fluid borne reagents into a first fluid conduit under conditions suitable for performing the plurality of reactions whereby the plug of the first fluid borne reagent is abutted by the plug of the second fluid borne reagent at a first interface, and the plug of the second fluid borne reagent is abutted by the plug of the third fluid borne reagent at a second interface;
allowing sufficient time for diffusion of effective amounts of the first and second reagents across the first interface whereupon the first and second reagents mix and react in a first reaction;
allowing sufficient time for diffusion of effective amounts of the second and third reagents across the second interface, whereupon the second and third reagents react in a second reaction; and
analyzing results of the first and second reactions.
2. The method of claim 1, wherein the plugs of first, second and third fluid borne reagents are being transported through the first fluid conduit.
3. The method of claim 1, wherein the second reagent comprises a target nucleic acid sequence, the first reagent comprises amplification reagents that are specific for a first portion of the target nucleic acid sequence, and the third reagent comprises amplification reagents that are specific for a second portion of the target nucleic acid sequence.
5. The method of claim 4, further comprising:
introducing a second volume of the second reagent into the first fluid channel, the second volume abutting the first volume of the third reagent; and
introducing a first volume of a fourth reagent into the first fluid channel, the first volume of the fourth reagent abutting the second volume of the second reagent;
diffusing the fourth reagent and second reagent together to form a third reaction mixture; and
detecting a reaction product in the third reaction mixture.
6. The method of claim 4, wherein the first reagent comprises a first locus specific reagent, the third reagent comprises a second locus specific reagent and the second reagent comprises a first patient specific reagent.
7. The method of claim 4, wherein the first reagent comprises a first patient specific reagent, the third reagent comprises a second patient specific reagent and the second reagent comprises a first locus specific reagent.
8. The method of claim 4, wherein the first volumes of the first, second and third reagents are flowing through the first fluid channel during the diffusing steps.
9. The method of claim 4, wherein the first fluid channel comprises at least one microscale cross-sectional dimension.
10. The method of claim 4, wherein the first fluid channel is fluidly connected to at least a second fluid channel.
11. The method of claim 4, further comprising mixing the first and second reaction mixtures with at least one other reagent prior to the detecting step.

This application claims the benefit of U.S. Provisional Patent Application No. 60/298,058, filed Jun. 13, 2001, which is incorporated herein by reference in its entirety for all purposes.

Higher throughput experimentation is a consistent goal for high-technology industries that depend upon research and development for growth, e.g., pharmaceutical, biotechnology and chemical industries. In the case of biological and chemical research, microfluidic technology has attempted to address this need by miniaturizing, automating and multiplexing experiments so that more experiments can be carried out faster and in a less expensive fashion. However, even these advances have highlighted the need and/or desire for even higher throughput experimentation within these industries. In particular, as with every other type of fluid based experimentation, microfluidic technology is limited by the fact that analyzing a given reaction requires mixing the reagents together in isolation and analyzing the results. Typically, such analysis has required a separate reaction vessel into which the different reagents must be pipetted. Higher throughput has then been achieved by increasing the number of reaction vessels, e.g., through the use of multiwell plate formats, increasing the complexity of pipetting systems, or in some rare cases, by carrying out multiple reactions in a single mixture. As can be readily appreciated, when one wishes to perform a matrixed experiment, e.g., testing each of a first library of reagents against each of a second library of experiments, the number of different reactions can potentially be staggering.

One example of such a matrixed experiment that is of considerable interest is that involved in genotyping experiments, e.g., SNP genotyping. In particular, it has been hypothesized that there is a correlation between the genetic footprint of a patient, e.g., as represented by the pattern of different genetic markers, e.g., SNPs, and that patient's response to different pharmaceutical treatments, susceptibility to disease, etc. In order to identify such a pattern, a large number of different patients need to be genotyped as to a large number of different genetic marker loci, in order to identify such correlations, so that they can be later used as diagnostic or therapeutic aids.

Microfluidic systems have addressed the throughput need for analytical operations, including genetic analysis, by providing very small fluidic channels coupled to an external fluid sipping element, e.g., a sampling capillary, through which reagents are drawn into the fluidic channel, where different reactions are carried out (See commonly owned U.S. Pat. No. 5,942,443). By serially drawing different samples into flowing reagent streams, such systems are capable of analyzing large numbers of different reactions in a relatively short amount of time. Further, by providing multiple parallel sipping and channel systems, one can further increase the number of experiments that are carried out.

While these systems have proven highly effective, each channel network has typically only been used to perform a single assay against a battery of test compounds or reagents. For example, in a particular channel, a given enzyme or target system is screened against a large number of potential inhibitors or test compounds. In the case of a matrixed experiment, e.g., screening a large number of enzymes or targets against a large number of potential inhibitors or test compounds, this particular operation would amount to one column of the matrix. Different columns of the matrix would be performed by other channel systems that are either within the same body or device, or are alternatively, completely separate. For example, one channel may be used to screen compounds for an effect on one enzyme system, while another channel in the same device, would be used to screen those compounds for an effect on a different enzyme system.

By way of example, in previously described operations, a first reagent is resident within the microfluidic device and is continuously introduced into the channels of the device. A large number of different second reagents are then serially introduced into the channel system to be reacted with (or interrogated against) the first reagent. Other reaction channel networks in the same device then optionally include different first reagents to perform other columns of the matrix. However, complexities of fixed sampling element positioning in microfluidic devices make such experiments difficult to configure, as different channel systems would not visit all of the same external sample sources, e.g., certain channels would not be able to access all of the test sample wells in a multiwell plate.

The present invention addresses the needs of higher throughput, matrixed experimentation, while taking advantage of the benefits of microfluidic technology in miniaturization, integration and automation.

The present invention generally provides methods and systems that utilize interfacial mixing of adjacent fluid plugs within a fluid conduit to perform multiple different analytical reactions. In at least one aspect, the invention provides a method of analyzing a plurality of reactions. The method comprises serially introducing plugs of first, second and third fluid borne reagents into a first fluid conduit under conditions suitable for performing the plurality of reactions whereby the plug of the first fluid borne reagent is abutted by the plug of the second fluid borne reagent at a first interface, and the plug of the second fluid borne reagent is abutted by the plug of the third fluid borne reagent at a second interface. The reagents are allowed a sufficient time for diffusion of effective amounts of the first and second reagents across the first interface whereupon the first and second reagents mix and react in a first reaction mixture, as well as sufficient time for diffusion of effective amounts of the second and third reagents across the second interface, whereupon the second and third reagents react in a second reaction. The results of the first and second reactions are then analyzed.

FIG. 1 schematically illustrates interfacial matrixed reactions in accordance with the present invention.

FIG. 2 schematically illustrates the interactions at an interface between fluid slugs in a microfluidic channel.

FIG. 3 schematically illustrates a channel network for use in carrying out the methods of the invention.

FIG. 4 schematically illustrates an overall system for use in carrying out the interfacial reactions of the present invention.

FIG. 5 shows results of PCR amplification reactions that are carried out in an interfacial format, in accordance with the present invention.

The present invention provides methods of rapidly performing a large number of reactions on one or more different materials of interest in a single fluidic system, and with extremely small quantities of reagents. The methods of the invention are particularly suited to performing matrixed experiments, e.g., experiments that are performed using a range of first reactants separately reacted with each of a range of second reactants. In particular, the present invention takes advantage of interfacial diffusion/dispersion in reagent plugs that are serially introduced into a fluid conduit to process, in series, different columns of the matrixed reaction. This is illustrated in FIG. 1 for a matrixed reaction of a library of first reagents A, B and C (shown as hatched slugs-///) against a library of second reagents 1, 2 and 3 (shown as hatched slugs-\\\). Although described with reference to three-member reagent libraries, it will be appreciated that each library will range in size from, e.g., about 5 different reagent members to up to thousands of reagent members, e.g., 10,000, 100,000 or more, and typically, from about 10 to about 5000 different reagent library members.

As shown in FIGS. 1A–C a conduit is provided. A reagent from the first reagent library, e.g., reagent A, is introduced as a plug into the conduit followed by a plug of first reagent from the second library, e.g., reagent 1 (FIG. 1A). Another plug of reagent A is then introduced into the conduit following and adjoining or abutting the plug of reagent 1. A plug of a second reagent from the second library, e.g., reagent 2, is introduced following and abutting reagent A. Again, a plug of reagent A follows reagent 2, which is in turn followed by reagent 3. Subsequent to, and optionally abutting reagent 3, a plug of a second reagent from the first library is introduced into the conduit. This is then followed by reagent 1, reagent B and reagent 2, and optionally reagent B followed by reagent 3 (although this is not necessary, as reagent B already abuts reagent 3). This is further repeated with reagent C. The resulting conduit (as shown in FIG. 1C) includes all of the various reagents of the first library abutting each of the reagents in the second library at one or more fluid interfaces.

In the conduit, each of the different reagent plugs then diffuses and/or disperses into the adjoining reagent slugs. In each of these resulting reaction mixtures, the reactions of interest are carried out, and the results are determined/measured and recorded as the material moves through the conduit past a detection point. As can be seen, a simple organization of reagent plugs dictates the reactions that occur. As is also apparent from FIG. 1, the organization of the fluid plugs can result in certain reactions being duplicated, which in some cases, may not be desirable, e.g., where maximum throughput is desired, and where there is a substantial number of duplicated reactions, e.g., where the number of reagents in each library are similar. In such cases, algorithms may be used which minimize the duplication of reactions. By way of example, in the simple illustration shown in FIGS. 1A–C, one could rearrange the order in which reagents are introduced in order to eliminate any duplicated interfaces. FIG. 1D illustrates just such an arrangement. As shown, reagent one is followed by reagent A which is followed by reagent 2. To avoid duplication of the 2+B interface, reagent B is then introduced followed by reagent 3, and reagent C. This is then followed by reagent 1, followed by reagent B and reagent 3, which is followed by reagent A. In this fashion, all possible combinations of interfaces have been represented with only one duplicated reaction, as opposed to 3 in the previous example. For other types of reactions, e.g., where a large number of different first reagents are screened against a small number of second reagents, the effect of duplications on throughput is relatively minor and could be ignored in favor of simpler sampling strategies.

The specific interfacial interactions are schematically illustrated in FIGS. 2A and 2B. As shown, a first reagent plug 202 is introduced into the conduit 200. A second reagent 204 is introduced immediately adjacent to and bounded by the first reagent 202. A third reagent 206 is then introduced after and adjacent to the second reagent 204. The third reagent may be the same as or different from the first reagent 202. As shown in FIG. 2B, after a short period, the reagents 202, 204 and 206 diffuse and/or disperse into each other at their respective interfaces to form areas of reagent mixtures 208 and 210, respectively (illustrated by cross hatching). Thus, with the three reagent slugs 202, 204 and 206, potentially two different reactions are being carried out, e.g., within mixtures 208 and 210, if the first and third reagents represented two different reagents, or different concentrations of the same reagent. Further, as can be seen, the system includes a built in spacing fluid region in the form of the slug of the second reagent 204. By lining up slugs of different reagents, one can rapidly carry out a large number of different reactions, and particularly matrixed reactions, in a serial format.

The methods of the present invention are particularly useful in performing genotyping reactions on a relatively large number of patients with respect to a relatively large number of different genetic loci. By way of example, the first library of reagents consists of “patient specific” reagents, e.g., the genomic DNA from a number of different patients who are to be genotyped. The second library of reagents then consists of the “locus-specific” reagents, e.g., amplification primers for the subsequence that contains the particular locus of interest, as well as any other reagents specific to and necessary for discriminating the nature of the polymorphism at the locus, e.g., locus specific probes, i.e., nucleic acid or analog probes. Other reagents that are generic to the whole process are then included as part of one of the reagent libraries or are included in the system buffers, e.g., as part of each different library reagent plug, or are separately and continuously flowed into the conduit along with all of the different library reagents.

In the genotyping example, and with reference to FIG. 2, a first locus specific reagent mixture, e.g., primers and probes for amplifying a particular locus containing region of a patient's DNA, may be represented by reagent slug 202, while the template or patient DNA is contained in reagent slug 204. A second mixture of different locus specific reagents (specific for a different locus on the patient's DNA) would be represented by reagent slug 206. As each of the two different locus specific reagent mixtures diffuses and/or disperses into the patient specific reagent slug, e.g., containing the template DNA, the regions of overlap will be capable of supporting amplification of each of the two loci. Specifically, reagent mixture 208 would include the template DNA from slug 204, as well as the primers for amplifying the first locus containing region from slug 202, and any other locus specific reagents, e.g., locus specific probes that would be used for discrimination in certain processes. The second reagent mixture 210 would include the same template DNA, but primers (and optionally discrimination reagents, e.g., probes) that would be specific for the second locus. When the entire train of reagents, e.g., as shown in FIG. 2B is subjected to thermal cycling in the presence of a DNA polymerase and dNTPs, only the complete mixtures 208 and 210 would support amplification. Further, the amplified products would be distinguishable from each other by virtue of their physical isolation from each other.

Although described in terms of using discrimination reagents, e.g., nucleic acid probes that are specific for one variant or the other at a given locus, e.g., Molecular beacons or other signal generating probes, i.e., TaqMan probes, in certain preferred aspects, the discrimination is carried out by virtue of the use of an allele specific primer sequence used during amplification. A variety of different discrimination techniques are generally described in U.S. Patent Application No. 60/283,527, filed Apr. 12, 2001, the entire disclosure of which is incorporated herein by reference in its entirety for all purposes. Specifically, one of the primers is made to be sufficiently complementary to one variant of the polymorphic position in the template sequence, whereby the presence of the other variant will prevent hybridization and, consequently, amplification. In such case, no additional discrimination reagents are required, and detection is carried out by detecting whether amplification has occurred in the first instance. Such allele specific amplification is well known and is described in e.g., U.S. Pat. Nos. 5,525,494, 5,866,366, 6,090,552, and 6,117,635.

The interfacial mixing method allows all, or virtually all, of the reaction steps involved in performing the particular experiment, e.g., SNP genotyping, to be carried out in a single conduit for a large number of different patients and different loci. In particular, reagent mixing, amplification, discrimination and detection can all be carried out in this conduit while also including a built-in separation between the various experiments by virtue of the slugs of different reagents through which the other reagents have not completely diffused and/or dispersed. Stated in an alternative manner, one can screen an entire battery of reagents, e.g. locus specific reagents in a first reagent train where each of the locus specific reagent slugs is bounded by one patient specific reagent plug. The same battery can then be screened against another patient's DNA, by substituting a second patient specific reagent plug as the spacing reagent between the locus specific reagents.

The interfacial mixing methods of the present invention were demonstrated using two reagent slugs repeatedly and alternately introduced into a capillary channel. One of the reagent slugs included primers designed for amplification of a specific region of a template nucleic acid, a DNA polymerase, the four naturally occurring dNTPs, and a TaqMan probe that gave increasing fluorescence upon amplification of the specific region of the template. The other fluid contained the template nucleic acid. The contents of the capillary were subjected to thermal cycling through a temperature profile that supported melting of the template, annealing of the primers to the template and extension of those primers along the template.

FIG. 3 schematically illustrates a microfluidic channel network useful in carrying out the methods of the invention. As shown, the channel network is disposed in a body structure of a microfluidic device 300. A sampling capillary (not shown) is attached to the body structure and used to sample reagents into the main channel 302 of the network, via port 304. The sampling capillary is placed into fluid communication with each of the different reagent source, in series, in order to serially introduce the different reagent slugs. Optional additional reagent sources 306 and 308 may be provided in the body structure 300, and in fluid communication with main channel 302, e.g., via channels 310 and 312, respectively. In the case of SNP genotyping experiments, it is generally desirable to include a heating zone 320 in main channel 302. The heating zone may be provided by placing an external or integral heating element, i.e., a resistive heater or peltier device, adjacent to or within the heating zone. Alternatively, electrical or “Joule heating” may be used to control the temperature of the heating zone 320. Controlled Joule heating is described in detail in U.S. Pat. No. 6,174,675. In the case of electrical heating, electrodes 322 and 324 are placed so as to be able to pass electrical current through the fluid in the heating zone 320 of main channel 302. As shown, such electrodes are placed in wells 326 and 328, respectively that are fluidly connected to main channel 302 at opposite ends of the heating zone 320. As will be appreciated, different applications may require multiple different heating zones, e.g., to heat to different temperatures, or for different uses, e.g., for generating thermal melting curves, etc. The electrodes are in turn, typically coupled to an appropriate electrical controller for providing current through the fluid in the heating zone in response to measured temperatures and desired temperature profiles. A detection zone 330 is also provided, which typically comprises a transparent region of the main channel 304, through which optical signals can be passed.

FIG. 4 schematically illustrates an overall system 400 for carrying out the methods of the invention. The system includes a microfluidic device 300 (shown as including external capillary element 350). The reagents are accessed through the capillary element 350 from source plates, e.g., multiwell plate 402. A flow controller 404 is also provided operably coupled to the microfluidic device 300, e.g., by a vacuum line, in the case of vacuum based flow, for driving fluid movement into and through the channels of device 300. Also shown is a temperature controller 406 operably coupled to the heating zone, for controlling and monitoring (either through an included sensor or via the monitoring of fluidic resistance, in the case of certain Joule heating embodiments) the temperature of the heating zone(s) in response to preprogrammed instructions from the user. As shown, the temperature controller is connected to the reservoirs of the device, as would be the case in Joule heating applications, although connection is similarly made to resistive heating elements attached to or disposed adjacent to the heating zone of the device. A detection system 408 is also typically included disposed within sensory communication of the main channel or channels of the microfluidic device, in order to detect the signal that is ultimately produced in the discrimination analysis. Typically, such detection systems include optical, and preferably, fluorescence detection systems that are well known in the art. In particular, in the case of genotyping experiments, a number of different discrimination techniques have been developed that produce a fluorescent signal that is indicative of one variant allele or the other, thus requiring fluorescence detection. Although illustrated as different units, it will be appreciated that the flow controller, temperature controller and detector may be integrated into a single instrument, for ease of use. A computer or other processor 410 is also typically included operably coupled to the various controllers and detectors of the system, in order to receive information from these system components, and instruct their operation in accordance with pre-programmed instructions.

FIG. 5 is a plot of the fluorescent signal received from the capillary as the reagent slugs passed the detection point. The areas of increased fluorescence result from the fluorescent signal of a TaqMan probe that indicates amplification. As can be seen, amplification occurs only in regular spaced intervals that correspond to the regions surrounding the interface of the slugs of the two different reagents that were repeatedly interspersed into the capillary. Notably, the regions indicating amplification are separated by regions where no apparent amplification is taking place.

Although the present invention has been described in some detail by way of illustration and example for purposes of clarity and understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. All publications and patent applications referenced herein are hereby incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Mehta, Tammy Burd

Patent Priority Assignee Title
10065185, Jul 13 2007 HandyLab, Inc. Microfluidic cartridge
10071376, Jul 13 2007 HandyLab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
10076754, Sep 30 2011 Becton, Dickinson and Company Unitized reagent strip
10100302, Jul 13 2007 HandyLab, Inc. Polynucleotide capture materials, and methods of using same
10139012, Jul 13 2007 HandyLab, Inc. Integrated heater and magnetic separator
10179910, Jul 13 2007 HandyLab, Inc. Rack for sample tubes and reagent holders
10234474, Jul 13 2007 HandyLab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
10351901, Mar 28 2001 HandyLab, Inc. Systems and methods for thermal actuation of microfluidic devices
10364456, May 03 2004 HandyLab, Inc. Method for processing polynucleotide-containing samples
10376891, Jun 23 2008 CANON U S A , INC System and method for temperature referencing for melt curve data collection
10443088, May 03 2004 HandyLab, Inc. Method for processing polynucleotide-containing samples
10494663, May 03 2004 HandyLab, Inc. Method for processing polynucleotide-containing samples
10590410, Jul 13 2007 HandyLab, Inc. Polynucleotide capture materials, and methods of using same
10604788, May 03 2004 HandyLab, Inc. System for processing polynucleotide-containing samples
10619191, Mar 28 2001 HandyLab, Inc. Systems and methods for thermal actuation of microfluidic devices
10625261, Jul 13 2007 HandyLab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
10625262, Jul 13 2007 HandyLab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
10632466, Jul 13 2007 HandyLab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
10695764, Mar 24 2006 HandyLab, Inc. Fluorescence detector for microfluidic diagnostic system
10710069, Nov 14 2006 HandyLab, Inc. Microfluidic valve and method of making same
10717085, Jul 13 2007 HandyLab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
10731201, Jul 31 2003 HandyLab, Inc. Processing particle-containing samples
10781482, Apr 15 2011 Becton, Dickinson and Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
10799862, Mar 24 2006 HandyLab, Inc. Integrated system for processing microfluidic samples, and method of using same
10821436, Mar 24 2006 HandyLab, Inc. Integrated system for processing microfluidic samples, and method of using the same
10821446, Mar 24 2006 HandyLab, Inc. Fluorescence detector for microfluidic diagnostic system
10822644, Feb 03 2012 Becton, Dickinson and Company External files for distribution of molecular diagnostic tests and determination of compatibility between tests
10843188, Mar 24 2006 HandyLab, Inc. Integrated system for processing microfluidic samples, and method of using the same
10844368, Jul 13 2007 HandyLab, Inc. Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly
10857535, Mar 24 2006 HandyLab, Inc. Integrated system for processing microfluidic samples, and method of using same
10865437, Jul 31 2003 HandyLab, Inc. Processing particle-containing samples
10875022, Jul 13 2007 HandyLab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
10900066, Mar 24 2006 HandyLab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
10913061, Mar 24 2006 HandyLab, Inc. Integrated system for processing microfluidic samples, and method of using the same
11060082, Jul 13 2007 HANDY LAB, INC. Polynucleotide capture materials, and systems using same
11078523, Jul 31 2003 HandyLab, Inc. Processing particle-containing samples
11085069, Mar 24 2006 HandyLab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
11141734, Mar 24 2006 HandyLab, Inc. Fluorescence detector for microfluidic diagnostic system
11142785, Mar 24 2006 HandyLab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
11254927, Jul 13 2007 HandyLab, Inc. Polynucleotide capture materials, and systems using same
11266987, Jul 13 2007 HandyLab, Inc. Microfluidic cartridge
11441171, May 03 2004 HandyLab, Inc. Method for processing polynucleotide-containing samples
11453906, Nov 04 2011 HANDYLAB, INC Multiplexed diagnostic detection apparatus and methods
11466263, Jul 13 2007 HandyLab, Inc. Diagnostic apparatus to extract nucleic acids including a magnetic assembly and a heater assembly
11549959, Jul 13 2007 HandyLab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
11666903, Mar 24 2006 HandyLab, Inc. Integrated system for processing microfluidic samples, and method of using same
11788127, Apr 15 2011 Becton, Dickinson and Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
11806718, Mar 24 2006 HandyLab, Inc. Fluorescence detector for microfluidic diagnostic system
11845081, Jul 13 2007 HandyLab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
8016260, Jul 19 2007 FORMULATRIX INTERNATIONAL HOLDING LTD Metering assembly and method of dispensing fluid
8058054, Jun 30 2006 CANON U S LIFE SCIENCES, INC Systems and methods for real-time PCR
8100293, Jan 23 2009 FORMULATRIX INTERNATIONAL HOLDING LTD Microfluidic dispensing assembly
8133671, Jul 13 2007 HANDYLAB, INC Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
8182763, Jul 13 2007 HANDYLAB, INC Rack for sample tubes and reagent holders
8216530, Jul 13 2007 HandyLab, Inc. Reagent tube
8287820, Jul 13 2007 HANDYLAB, INC Automated pipetting apparatus having a combined liquid pump and pipette head system
8323900, Mar 24 2006 HandyLab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
8324372, Jul 13 2007 HANDYLAB, INC Polynucleotide capture materials, and methods of using same
8415103, Jul 13 2007 HandyLab, Inc. Microfluidic cartridge
8420015, Mar 28 2001 HandyLab, Inc. Systems and methods for thermal actuation of microfluidic devices
8470586, May 03 2004 HANDYLAB, INC Processing polynucleotide-containing samples
8550298, Jan 23 2009 FORMULATRIX INTERNATIONAL HOLDING LTD Microfluidic dispensing assembly
8617905, Sep 15 1995 The Regents of the University of Michigan Thermal microvalves
8679831, Jul 31 2003 HandyLab, Inc. Processing particle-containing samples
8703069, Mar 28 2001 HandyLab, Inc. Moving microdroplets in a microfluidic device
8709787, Nov 14 2006 HANDYLAB, INC Microfluidic cartridge and method of using same
8710211, Jul 13 2007 HandyLab, Inc. Polynucleotide capture materials, and methods of using same
8765076, Nov 14 2006 HANDYLAB, INC Microfluidic valve and method of making same
8852862, May 03 2004 HANDYLAB, INC Method for processing polynucleotide-containing samples
8883490, Mar 24 2006 HANDYLAB, INC Fluorescence detector for microfluidic diagnostic system
8894947, Mar 28 2001 HandyLab, Inc. Systems and methods for thermal actuation of microfluidic devices
8895311, Mar 28 2001 HANDYLAB, INC Methods and systems for control of general purpose microfluidic devices
9040288, Mar 24 2006 HANDYLAB, INC Integrated system for processing microfluidic samples, and method of using the same
9051604, Feb 14 2001 HandyLab, Inc. Heat-reduction methods and systems related to microfluidic devices
9080207, Mar 24 2006 HandyLab, Inc. Microfluidic system for amplifying and detecting polynucleotides in parallel
9186677, Jul 13 2007 HANDYLAB, INC Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
9217143, Jul 13 2007 HandyLab, Inc. Polynucleotide capture materials, and methods of using same
9222954, Sep 30 2011 Becton, Dickinson and Company Unitized reagent strip
9238223, Jul 13 2007 HandyLab, Inc. Microfluidic cartridge
9259734, Jul 13 2007 HandyLab, Inc. Integrated apparatus for performing nucleic acid extraction and diagnostic testing on multiple biological samples
9278321, Sep 06 2006 Canon U.S. Life Sciences, Inc.; CANON U S LIFE SCIENCES, INC Chip and cartridge design configuration for performing micro-fluidic assays
9283563, Jun 30 2006 Canon U.S. Life Sciences, Inc. Systems and methods for real-time PCR
9347586, Jul 13 2007 HandyLab, Inc. Automated pipetting apparatus having a combined liquid pump and pipette head system
9393566, Jun 23 2008 CANON U S A , INC System and method for temperature referencing for melt curve data collection
9480983, Sep 30 2011 Becton, Dickinson and Company Unitized reagent strip
9528142, Feb 14 2001 HandyLab, Inc. Heat-reduction methods and systems related to microfluidic devices
9618139, Jul 13 2007 HANDYLAB, INC Integrated heater and magnetic separator
9670528, Jul 31 2003 HandyLab, Inc. Processing particle-containing samples
9677121, Mar 28 2001 HandyLab, Inc. Systems and methods for thermal actuation of microfluidic devices
9701957, Jul 13 2007 HANDYLAB, INC Reagent holder, and kits containing same
9765389, Apr 15 2011 Becton, Dickinson and Company Scanning real-time microfluidic thermocycler and methods for synchronized thermocycling and scanning optical detection
9802199, Mar 24 2006 HandyLab, Inc. Fluorescence detector for microfluidic diagnostic system
9815057, Nov 14 2006 HandyLab, Inc. Microfluidic cartridge and method of making same
D665095, Jul 11 2008 HandyLab, Inc. Reagent holder
D669191, Jul 14 2008 HandyLab, Inc. Microfluidic cartridge
D692162, Sep 30 2011 Becton, Dickinson and Company Single piece reagent holder
D742027, Sep 30 2011 Becton, Dickinson and Company Single piece reagent holder
D787087, Jul 14 2008 HandyLab, Inc. Housing
D831843, Sep 30 2011 Becton, Dickinson and Company Single piece reagent holder
D905269, Sep 30 2011 Becton, Dickinson and Company Single piece reagent holder
Patent Priority Assignee Title
4390403, Jul 24 1981 Method and apparatus for dielectrophoretic manipulation of chemical species
4908112, Jun 16 1988 DADE BEHRING INC ; BADE BEHRING INC Silicon semiconductor wafer for analyzing micronic biological samples
5126022, Feb 28 1990 ACLARA BIOSCIENCES, INC Method and device for moving molecules by the application of a plurality of electrical fields
5200313, Aug 05 1983 Miles Inc. Nucleic acid hybridization assay employing detectable anti-hybrid antibodies
5498392, May 01 1992 Trustees of the University of Pennsylvania Mesoscale polynucleotide amplification device and method
5525494, Sep 06 1989 AstraZeneca UK Limited Amplification processes
5571410, Oct 19 1994 Agilent Technologies Inc Fully integrated miniaturized planar liquid sample handling and analysis device
5585069, Nov 10 1994 ORCHID CELLMARK, INC Partitioned microelectronic and fluidic device array for clinical diagnostics and chemical synthesis
5593838, Nov 10 1994 Sarnoff Corporation Partitioned microelectronic device array
5603351, Jun 07 1995 Sarnoff Corporation Method and system for inhibiting cross-contamination in fluids of combinatorial chemistry device
5635358, May 01 1992 Trustees of the University of Pennsylvania Fluid handling methods for use in mesoscale analytical devices
5637469, May 01 1992 Trustees of the University of Pennsylvania Methods and apparatus for the detection of an analyte utilizing mesoscale flow systems
5699157, Jul 16 1996 Caliper Life Sciences, Inc Fourier detection of species migrating in a microchannel
5716852, Mar 29 1996 Washington, University of Microfabricated diffusion-based chemical sensor
5750015, Feb 28 1990 Monogram Biosciences, Inc Method and device for moving molecules by the application of a plurality of electrical fields
5800690, Jul 03 1996 Caliper Life Sciences, Inc Variable control of electroosmotic and/or electrophoretic forces within a fluid-containing structure via electrical forces
5811296, Dec 20 1996 Johnson & Johnson Clinical Diagnostics, Inc. Blocked compartments in a PCR reaction vessel
5858187, Sep 26 1996 LOCKHEED MARTIN ENERGY SYSTEMS, INC Apparatus and method for performing electrodynamic focusing on a microchip
5858195, Aug 01 1994 Lockheed Martin Energy Research Corporation Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis
5866366, Jul 01 1997 Smith Kline Beecham Corporation gidB
5869004, Jun 09 1997 Caliper Technologies Corp.; Caliper Technologies Corporation Methods and apparatus for in situ concentration and/or dilution of materials in microfluidic systems
5876675, Aug 05 1997 Caliper Technologies Corp.; Caliper Technologies Corporation Microfluidic devices and systems
5880071, Jun 28 1996 Caliper Technologies Corporation Electropipettor and compensation means for electrophoretic bias
5882465, Jun 18 1997 Caliper Technologies Corp.; Caliper Technologies Corporation Method of manufacturing microfluidic devices
5885470, Apr 14 1997 Caliper Technologies Corporation Controlled fluid transport in microfabricated polymeric substrates
5932100, Jun 16 1995 University of Washington Microfabricated differential extraction device and method
5942443, Jun 28 1996 Caliper Life Sciences, Inc High throughput screening assay systems in microscale fluidic devices
5948227, Dec 17 1997 Caliper Life Sciences, Inc Methods and systems for performing electrophoretic molecular separations
5955028, Aug 02 1996 Caliper Life Sciences, Inc Analytical system and method
5958694, Oct 16 1997 Caliper Technologies Corp. Apparatus and methods for sequencing nucleic acids in microfluidic systems
5959291, Jun 25 1998 Caliper Technologies Corporation Method and apparatus for measuring low power signals
5965410, Sep 02 1997 Caliper Technologies Corporation Electrical current for controlling fluid parameters in microchannels
5976336, Apr 25 1997 Caliper Technologies Corporation Microfluidic devices incorporating improved channel geometries
5989402, Aug 29 1997 Caliper Life Sciences, Inc Controller/detector interfaces for microfluidic systems
6001229, Aug 01 1994 MARTIN MARIETTA ENERGY SYSTEMS, INC Apparatus and method for performing microfluidic manipulations for chemical analysis
6001231, Jul 15 1997 Caliper Technologies Corp.; Caliper Technologies Corporation Methods and systems for monitoring and controlling fluid flow rates in microfluidic systems
6007775, Sep 26 1997 Washington, University of Multiple analyte diffusion based chemical sensor
6012902, Sep 25 1997 Caliper Technologies Corp.; Caliper Technologies Corporation Micropump
6042709, Jun 28 1996 Caliper Technologies Corp. Microfluidic sampling system and methods
6046056, Jun 28 1996 Caliper Technologies Corporation High throughput screening assay systems in microscale fluidic devices
6057149, Sep 15 1995 MICHIGAN, UNIVERSITY OF, THE Microscale devices and reactions in microscale devices
6062261, Dec 16 1998 UT-Battelle, LLC MicrofluIdic circuit designs for performing electrokinetic manipulations that reduce the number of voltage sources and fluid reservoirs
6074725, Dec 10 1997 Caliper Technologies Corporation; Caliper Life Sciences, Inc Fabrication of microfluidic circuits by printing techniques
6090552, Jul 16 1996 EMD Millipore Corporation Nucleic acid amplification oligonucleotides with molecular energy transfer labels and methods based thereon
6100541, Feb 24 1998 Caliper Technologies Corporation Microfluidic devices and systems incorporating integrated optical elements
6117635, Jul 16 1996 EMD Millipore Corporation Nucleic acid amplification oligonucleotides with molecular energy transfer labels and methods based thereon
6120666, Sep 26 1996 Lockheed Martin Energy Research Corporation Microfabricated device and method for multiplexed electrokinetic focusing of fluid streams and a transport cytometry method using same
6150180, Jun 28 1996 Caliper Technologies Corp. High throughput screening assay systems in microscale fluidic devices
6153073, Oct 03 1997 Caliper Technologies Corp. Microfluidic devices incorporating improved channel geometries
6174675, Sep 02 1997 CALIPER TECHNOLOGIES CORPORATION, A CORP OF DE Electrical current for controlling fluid parameters in microchannels
6221226, Jul 15 1997 Caliper Technologies Corp. Methods and systems for monitoring and controlling fluid flow rates in microfluidic systems
6235471, Apr 04 1997 Caliper Technologies Corporation; Caliper Life Sciences, Inc Closed-loop biochemical analyzers
6280589, Apr 15 1993 Zeptosens AG Method for controlling sample introduction in microcolumn separation techniques and sampling device
6451530, Dec 13 1996 The United States of America as represented by the Department of Health and Human Services Fluorescent nucleotide analog hairpin formation for detection of nucleic acid hybridization
6632641, Oct 08 1999 METRIGEN, INC Method and apparatus for performing large numbers of reactions using array assembly with releasable primers
20020031836,
20020110828,
WO9604547,
WO9702357,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 04 2002Caliper Life Sciences, Inc.(assignment on the face of the patent)
Aug 18 2002MEHTA, TAMMY BURDCALIPER TECHNOLOGIES CORP ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0136240691 pdf
Jan 23 2004CALIPER TECHNOLOGIES CORP Caliper Life Sciences, IncCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0143260407 pdf
Date Maintenance Fee Events
Jun 22 2009M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Jun 20 2013M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jun 20 2017M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Dec 20 20084 years fee payment window open
Jun 20 20096 months grace period start (w surcharge)
Dec 20 2009patent expiry (for year 4)
Dec 20 20112 years to revive unintentionally abandoned end. (for year 4)
Dec 20 20128 years fee payment window open
Jun 20 20136 months grace period start (w surcharge)
Dec 20 2013patent expiry (for year 8)
Dec 20 20152 years to revive unintentionally abandoned end. (for year 8)
Dec 20 201612 years fee payment window open
Jun 20 20176 months grace period start (w surcharge)
Dec 20 2017patent expiry (for year 12)
Dec 20 20192 years to revive unintentionally abandoned end. (for year 12)