An auto-operated dip switching mechanism includes a strong-light detector, a strong-light signal circuit, and a switching control circuit. The strong-light detector is mounted to a front end of a car to detect light projected from an opposite coming car. The strong-light detector is induced when the light projected thereto has intensity exceeded a preset value, and causes the strong-light signal circuit to produce a strong-light signal, with which the switching control circuit is immediately enabled to switch headlights of the car from high beams to low beams. And, the switching control circuit automatically switches the car from low beams to high beams when the strong-light signal circuit stops sending the strong-light signal.
|
1. An auto-operated dip switching mechanism, comprising a strong-light detector, a strong-light signal circuit, and a switching control circuit; said strong-light detector being mounted to a front end of a car with a detecting side thereof facing forward to detect light projected from an opposite coming car; said strong-light detector being electrically connected to said strong-light signal circuit and said switching control circuit, while said switching control circuit being electrically connected to high and low beams of said car; said strong-light detector being induced when said light projected thereto has intensity exceeded a preset value, and causing said strong-light signal circuit to produce a strong-light signal, with which said switching control circuit is immediately enabled to switch headlights of said car from high beams to low beams; and said switching control circuit automatically switching said car from low beams to high beams when said strong-light signal circuit stops sending said strong-light signal.
2. The auto-operated dip switching mechanism as claimed in
3. The auto-operated dip switching mechanism as claimed in
4. The auto-operated dip switching mechanism as claimed in
5. The auto-operated dip switching mechanism as claimed in
6. The auto-operated dip switching mechanism as claimed in
|
The present invention relates to an auto-operated dip switching mechanism, and more particularly to an auto-operated dip switching mechanism including a strong-light detector mounted to a front end of a car and inducible by a light that is projected thereto from a front car and has intensity exceeded a preset value, whereby when the detector is induced, it enables a strong-light signal circuit and a switching control circuit to automatically switch headlights of the car from high beam to low beam, and when the strong light no longer exists, the headlights of the car automatically switches from low to high beam again to avoid a driver from inconvenience and confusion in manually operating a dip switch on the car.
The headlight for a car includes a high beam and a low beam, and a driver may select to use one of them or switch between them depending on actual road conditions. It is also known as a polite and safety measure in driving to switch high beam to low beam when meeting with an opposite coming car or getting close to a front car moving in the same direction. Generally, it is proper for a driver to switch from high beam to low beam when a distance from an opposite coming car is about 20 to 30 meters, or when a distance from a front car is about 1 to 3 meters, lest the driver of the opposite or the front car should be dangerously dazzled by the strong light projected toward him or a rearview mirror in the car, respectively. Up to date, most of the known dip switches are manually operated and a large number of drivers fail to timely operate the manual dip switch to effectively switch the headlight between high and low beams due to the driver's personal habit or negligence in driving. Moreover, repeated operation of the manual dip switch will inevitably bring inconvenience and confusion to the driver and even endanger the driver's safety in driving.
It is therefore a primary object of the present invention to provide an auto-operated dip switching mechanism to eliminate the drawbacks existed in manually operating the conventional dip switch.
To achieve the above object, the auto-operated dip switching mechanism of the present invention mainly includes a strong-light detector, a strong-light signal circuit, and a switching control circuit. The strong-light detector is mounted to a front end of a car to detect light projected thereto from a front side of the car. When the detected light has intensity exceeded a preset value, the auto-operated dip switching mechanism immediately switches headlights of the car from high beam to low beam; and when the strong light no longer exists, the headlights automatically switch from low beam to high beam again.
Another object of the present invention is to provide an auto-operated dip switching mechanism that may be incorporated with an existing dip switch control circuit on a car and provided with a control switch, so that a driver may selectively enable the auto-operated dip switching mechanism to substitute for the existing manually-operated dip switch.
The structure and the technical means adopted by the present invention to achieve the above and other objects can be best understood by referring to the following detailed description of the preferred embodiments and the accompanying drawings, wherein
Please refer to
For the present invention to be widely employed on different types of cars, the strong-light signal circuit 12 and the switching control circuit 13 of the auto-operated dip switching mechanism 1 of the present invention may include two types of designs. The first design is to directly incorporate the strong-light signal circuit 12 and the switching control circuit 13 with an existed dip switch control circuit (not shown) on the car 2, and the second design is to locate the strong-light signal circuit 12 and the switching control circuit 13 in a separated box 14, which is provided with a switch 15 to control on and off of the auto-operated dip switching mechanism 1, as shown in
As can be seen from
Please refer to
In the course of meeting, the strong-light detector 11 is continuously induced and the headlights are kept in the position of low beams. And, after the meeting of two cars, the strong-light detector 11 is no longer induced and the strong-light signal circuit 12 stops sending the strong-light signal, causing the switching control circuit 13 to automatically switch the headlights from low beams to high beams as soon as the strong-light signal is ceased or after a preset time, for example, from 1 to 3 seconds. That is, the headlights of the car 2 would automatically switch between high and low beams in response to the meeting with an opposite coming car, and the driver needs not to manually switch the headlights in the whole process of meeting. With the auto-operated dip switching mechanism 1 of the present invention, the driver may therefore politely and safely complete the meeting with other cars in the night particularly on a narrow road.
In addition to enable a car to automatically switch between high and low beams in response to a strong light projected from an opposite coming car, the strong-light detector 11 may also be induced by light of the high beams of the car 2 that is projected to and reflected from a tail of a front car, enabling the auto-operated dip switching mechanism 1 to timely automatically switch the high beams to the low beams. In this manner, the light from the high beams of the car 2 would not be projected on a rearview mirror of the front car to dangerously dazzle the car driver.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
2850673, | |||
3083294, | |||
4236099, | Mar 05 1979 | Automatic headlight system | |
6281632, | Sep 18 1998 | Gentex Corporation | Continuously variable headlamp control |
6403942, | Mar 20 2000 | Gentex Corporation | Automatic headlamp control system utilizing radar and an optical sensor |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Jun 21 2009 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Aug 09 2013 | REM: Maintenance Fee Reminder Mailed. |
Dec 27 2013 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Dec 27 2008 | 4 years fee payment window open |
Jun 27 2009 | 6 months grace period start (w surcharge) |
Dec 27 2009 | patent expiry (for year 4) |
Dec 27 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 27 2012 | 8 years fee payment window open |
Jun 27 2013 | 6 months grace period start (w surcharge) |
Dec 27 2013 | patent expiry (for year 8) |
Dec 27 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 27 2016 | 12 years fee payment window open |
Jun 27 2017 | 6 months grace period start (w surcharge) |
Dec 27 2017 | patent expiry (for year 12) |
Dec 27 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |