A refrigeration system for objects is disclosed. The system includes a refrigeration device and a defrost system. The refrigeration device provides a case or container defining a space for the objects, a first heat exchanger associated with the container for cooling a fluid communicating with the space to cool the objects and a second heat exchanger to receive a heat supply from an air source for warming the fluid. A system for cooling articles is also disclosed. The system includes a space configured to contain the articles, a first element to provide cooling of the articles within the space, a first coolant source to refrigerate the space by cooling the first element in a first state, and a second coolant source to elevate a temperature of the first element in a second state.
|
1. A system for refrigeration of objects, comprising:
a container defining a space adapted to receive the objects;
a first heat exchanger associated with the container for cooling a fluid communicating with the space to cool the objects;
at least one cooling element associated with the space and adapted to receive the fluid;
a second heat exchanger adapted to receive a heat supply from an air source for warming the fluid;
wherein the cooled fluid is circulated through the cooling element in a first state and the warmed fluid is circulated through the cooling element in a second state.
94. A method of installing a refrigeration system having a coolant adapted to circulate in a piping network with a flow rate to a cooling element, comprising:
configuring the piping network to include at least a first flow path for cooling the cooling element and a second flow path for defrosting the cooling element;
coupling the piping network to a coolant source;
configuring a control system to transmit the coolant through the first flow path to cool the cooling element and through the second flow path to defrost the cooling element;
providing a heat exchanger on the second flow path for receiving and warming the coolant with an ambient air source; and
balancing the flow rate of the coolant to the cooling element.
75. A method of operating a refrigeration device adapted to operate in a cooling mode and a defrost mode and with a coolant flowing through a cooling element of a type that may tend to accumulate frost comprising:
routing the coolant through a loop to a first heat exchanger configured to cool the coolant for circulation to a cooling element during the cooling mode;
routing the coolant through a branch line coupled to the loop and through a second heat exchanger for circulation to the cooling element to a cooling element at a flow rate during the defrost mode;
wherein the second heat exchanger elevates a temperature of the coolant using ambient air so that any frost on the cooling element can be at least partially removed when the coolant is routed to the cooling element.
54. A system for cooling articles in a display case, comprising:
a space within the case configured to contain the articles;
a first cooling surface adapted to provide cooling of the articles within the space;
a fluid supply system providing a first flow path and a second flow path for routing a fluid to the first cooling surface;
a first heat exchanger adapted to remove heat from the fluid on the first flow path for cooling the first cooling surface in a first state; and
a second heat exchanger adapted to elevate a temperature of the fluid on the second flow path for warming the first cooling surface in a second state by transferring heat from an air source to the fluid; and
a flow control device configured to direct flow of the fluid through the first flow path during the first state and to direct flow of the fluid through the second flow path during the second state.
16. A refrigeration device having a primary cooling system with a primary fluid in thermal communication with a first heat exchanger and a secondary cooling system with a secondary fluid in thermal communication with the first heat exchanger to cool the secondary fluid and in thermal communication with at least one cooling device adapted to provide cooling to a space to be cooled in a first mode of operation, the refrigeration device comprising:
a second heat exchanger in communication with the secondary cooling system and in communication with an ambient air heat source to warm the secondary fluid in a second mode of operation;
wherein the cooling device receives the secondary fluid in a cooled state from the first heat exchanger during the first mode of operation and the cooling device receives the secondary fluid in a warmed state from the second heat exchanger during the second mode of operation.
39. A method of defrosting a refrigeration device having a first loop with a refrigerant configured to remove heat from a coolant in a second loop, the method comprising:
providing a first cooling element and a second cooling element in the refrigeration device adapted to cool a space, each cooling element communicating with the second loop;
providing a heat exchanger communicating with the second loop and adapted to transfer heat from an air source to the coolant in a first mode; and
providing a control system operable to route the coolant in a first flow path when the cooling element is in the first mode and operable to route the coolant in a second flow path when the cooling element is in a second mode;
wherein the first flow path includes the heat exchanger and at least one of the first cooling element and the second cooling element, and the second flow path includes at least one of the first cooling element and the second cooling element and bypasses the heat exchanger.
25. A defrost system for a refrigeration device having a first cooling system having a first loop in thermal communication with a second cooling system having a cooling element and first flow path configured for flow of a coolant chilled by the first cooling system during a cooling mode, the defrost system comprising:
a second flow path coupled to the first flow path;
a heat exchanger coupled to the second flow path and in thermal communication with the coolant and adapted to transfer a quantity of heat from an air source to the coolant;
a control system operable to permit flow of the coolant through the second flow path to the heat exchanger for transferring heat from the air source to the coolant during a defrost mode and operable to substantially prevent flow through the second flow path and the heat exchanger during a cooling mode;
so that the cooling element receives a flow of warmed coolant from the second flow path during the defrost mode and receives a flow of chilled coolant from the first flow path during a cooling mode.
48. An ambient air defrost system for a temperature controlled display device of a type configured for use in a supermarket having a first loop adapted to circulate a refrigerant therein and a first heat exchanger configured to transfer heat from a second loop to the first loop, the second loop adapted to circulate a coolant therein and through at least one cooling element for cooling a space within the display device, the ambient air defrost system comprising:
a defrost line having a first end and a second end coupled to the second loop upstream of the cooling element;
at least one flow control device configured to permit flow through the defrost line during a defrost mode and configured to prevent flow through the defrost line during an operating mode;
a control system operable to control operation of the flow control device in the operating mode and the defrost mode;
a second heat exchanger communicating with the defrost line, the second heat exchanger adapted to transfer heat from an ambient air source to the coolant during the defrost mode;
so that the coolant can be warmed for defrosting the cooling element using an ambient air source that is substantially independent of a heat source from the first loop.
3. The system of
4. The system of
5. The system of
6. The system of
7. The system of
8. The system of
11. The system of
12. The system of
17. The refrigeration device of
18. The refrigeration device of
19. The refrigeration device of
21. The refrigeration device of
22. The refrigeration device of
23. The refrigeration system of
24. The refrigeration system of
26. The defrost system of
30. The defrost system of
31. The defrost system of
32. The defrost system of
34. The defrost system of
36. The defrost system of
37. The defrost mode of
38. The defrost system of
40. The method of
41. The method of
42. The method of
43. The method of
45. The method of
47. The method of
49. The ambient air defrost system of
50. The ambient air defrost system of
51. The ambient air defrost system of
52. The ambient air defrost system of
53. The ambient air defrost system of
56. The system of
57. The system of
58. The system of
59. The system of
60. The system of
61. The system of
62. The system of
63. The system of
64. The system of
65. The system of
72. The system of
73. The system of
76. The method of
77. The method of
78. The method of
79. The method of
80. The method of
81. The method of
82. The method of
83. The method of
84. The method of
85. The method of
86. The method of
87. The method of
88. The method of
89. The method of
90. The method of
91. The method of
92. The method of
95. The method of
96. The method of
97. The method of
98. The method of
99. The method of
100. The method of
101. The method of
|
The present application incorporates by reference and claims priority to the following patent applications: (a) U.S. Provisional Patent Application Ser. No. 60/351,265 titled “Refrigeration System” filed Jan. 23, 2002; and (b) U.S. Provisional Patent Application Ser. No. 60/314,196 titled “Service Case” filed on Aug. 22, 2001.
The present invention relates to a refrigeration system. The present invention more particularly relates to a refrigeration system of a type including a refrigeration device and a defrost system. The present invention also more particularly relates to a refrigeration system including one or more refrigeration devices in the form of temperature-controlled cases for objects and materials (such as foodstuffs).
It is well known to provide a refrigeration system including a refrigeration device such as a refrigerated case, refrigerator, freezer, etc. for use in commercial and industrial applications involving the storage and/or display of objects, products and materials. For example, it is known to provide a refrigeration system with one or more refrigerated cases for display and storage of frozen or refrigerated foods in a supermarket to maintain the foods at a suitable temperature (e.g. 32 to 35 deg F.). In such applications, such refrigeration systems often are expected to maintain the temperature of a space within the refrigerated case where the objects are contained within a particular range that is suitable for the particular objects, typically well below the room or ambient air temperature within the supermarket. Such known refrigeration systems will typically include a heat exchanger in the form of a cooling element within the refrigeration device and provide a flow of a fluid such as a coolant into the cooling element to refrigerate (i.e. remove heat from) the space within the refrigeration device. Such known refrigeration systems may also include sensors such as thermometers (or thermoswitches) and some type of control system (or timer) intended to provide for the regulation of the temperature within the refrigerated case. Various known configurations of refrigeration systems (e.g. direct expansion system and/or secondary system, etc.) are used to provide a desired temperature within a space in a refrigeration device such as a refrigerated case (e.g. by supply of coolant).
It is also well known that over time in the use of a refrigeration system, ice and/or “frost” may accumulate on the cooling surfaces of a cooling element within the refrigerated case as water vapor condenses and “freezes” on the cooling surfaces. As ice or frost form or accumulate on the cooling surfaces, the ability of the refrigeration system to provide control or regulation of the temperature within the refrigerated case may be impaired. The presence of ice or frost on the cooling surfaces typically reduces the efficiency of heat transfer from the cooling element to the air within the space of the refrigerated case. The accumulated ice or frost may act as an “insulator” on the cooling surfaces and therefore additional energy may be required to maintain the desired temperature within the refrigerated case. The amount of ice or frost that may accumulate on the cooling surfaces may be influenced by a wide variety of factors, such as the humidity level in the air (i.e. moisture), the type of objects within the refrigerated case, the design of the refrigerated case (e.g. open or enclosed by doors or the like), the nature or manner of use, the environment in which the refrigerated case is used, etc.
It is known to provide a defrost system for a refrigeration system. The general intent of such known defrost systems is to remove the accumulated ice or frost from the cooling surfaces, typically by elevating the temperature of the cooling surfaces above the ice-water freezing point (i.e. above 32 deg F.) so that any ice and frost that may have accumulated will melt. According to one known arrangement, the defrost system may simply involve temporarily turning off the refrigeration system (i.e. interrupting the flow of coolant to the cooling elements within the refrigerated case) for a designated time. This arrangement may not be able to achieve the objective of removal of the ice and frost within a suitable period of time; variations in the temperature within the refrigerated case may be unacceptable, requiring that the objects be removed from the refrigerated case. According to another known arrangement, the defrost system includes electric heating elements installed within the refrigerated case (near the cooling elements) and periodically energized to heat the cooling surfaces to melt the ice and frost. This arrangement may provide for the removal of ice and frost within a suitable period of time, but requires additional energy and may cause thermal shock or undue heating of objects within the refrigerated case; in addition, thermal cycling may accelerate fatigue and failure of materials within the refrigerated case. According to another known arrangement, the defrost system may be configured to periodically divert or route warm coolant (such as liquid refrigerant or hot gas) otherwise present within the refrigeration cycle of the refrigeration system through the cooling element within the refrigerated case in order to melt the accumulated ice and frost from the cooling surfaces. This arrangement is relatively complex to install and may also result in temperature variations and/or thermal cycling that could have an adverse effect on the refrigerated case or objects within the refrigerated case; this arrangement may also be relatively expensive to install and may create thermal stresses that may tend to increase the possibility of leaks. Such known arrangements for a defrost system typically do not provide for a cost-effective and controllable process for removing ice and frost from the cooling surfaces of the refrigerated case.
Accordingly, it would be advantageous to provide a refrigeration system of a type having at least one refrigeration device (such as a refrigerated case) with a defrost system that can be installed and operated in a relatively cost-efficient and energy-efficient manner. It would also be advantageous to provide for a defrost system that allows for relatively “tight” control of the temperature within the refrigerated case (and of objects within the refrigerated case). It would further be advantageous to provide a defrost system for a refrigeration system that operates relatively quickly to remove ice and frost from cooling surfaces within the refrigerated case but does not require or result in any potentially harmful variation of the temperature of objects within the refrigerated case. It would be further advantageous to provide a defrost system that has a relatively compact modular design that can be used with any of a wide variety of refrigeration systems and refrigerated cases. It would further be advantageous to provide a defrost system that is configured to use a source of heat that is conveniently and readily available within the environment where the refrigeration system is installed.
It would be advantageous to provide a refrigeration system with a defrost system having any one or more of these or other advantageous features.
The present invention relates to a system for refrigeration of objects and includes a container defining a space adapted to receive the objects, a first heat exchanger associated with the container for cooling a fluid communicating with the space to cool the objects, and a second heat exchanger adapted to receive a heat supply from an air source for warming the fluid.
The present invention also relates to a refrigeration device having a primary cooling system with a primary fluid in thermal communication with a first heat exchanger and a secondary cooling system with a secondary fluid in thermal communication with the first heat exchanger to cool the secondary fluid and in thermal communication with at least one cooling device adapted to provide cooling to a space to be cooled in a first mode of operation, the refrigeration device having a second heat exchanger in communication with the secondary cooling system and in communication with a heat source to warm the secondary fluid in a second mode of operation.
The present invention further relates to a defrost system for a refrigeration device having a primary cooling system having a first loop in thermal communication with a secondary cooling system configured for flow of a coolant therethrough, where the defrost system includes a heat exchanger in thermal communication with the coolant to transfer a quantity of heat from an air source to the coolant, and a control system operable to warm the coolant in the heat exchange device during a defrost mode and operable to cool the coolant during a cooling mode.
The present invention further relates to a method of defrosting a refrigeration device having a primary loop with a refrigerant configured to remove a first quantity of heat from a coolant in a secondary loop, where the method includes providing at least one cooling element in the refrigeration device to cool a space, where the cooling element communicates with the secondary loop, providing a heat exchanger communicating with the secondary loop to transfer a second quantity of heat from an air source to the coolant in a first mode, and providing a control system to route the coolant in a first flow path when the cooling element is in the first mode and operable to route the coolant in a second flow path when the cooling element is in a second mode.
The present invention further relates to an ambient air defrost system for a temperature controlled display device having a first loop circulating a refrigerant, a second loop circulating a coolant and communicating with at least one cooling element for cooling a space, and a first heat exchanger communicating between the first loop and the second loop, where the first heat exchanger transfers a first quantity of heat between the second loop and the first loop, and the ambient air defrost system includes a control system to control operation of the temperature controlled display device in an operating mode and a defrost mode, and a second heat exchanger communicating with the second loop to transfer a second quantity of heat between an ambient air source and the coolant during the defrost mode.
The present invention further relates to a system for cooling articles and includes a space configured to contain the articles, a first element adapted to provide cooling of the articles within the space, a first source of fluid adapted to refrigerate the space by cooling the first element in a first state, and a second source of fluid adapted to elevate a temperature of the first element in a second state.
The present invention further relates to a method of operating a refrigeration device adapted to operate in a defrost mode and with a coolant flowing through a cooling element of a type that may tend to accumulate frost. The method includes routing the coolant to a heat exchanger and routing the coolant to a cooling element at a flow rate, wherein the heat exchanger elevates a temperature of the coolant using ambient air so that any frost on the cooling element can be at least partially removed when the coolant is routed to the cooling element.
The present invention further relates to a method of installing a refrigeration system having a coolant adapted to circulate in a piping network with a flow rate to a cooling element and includes coupling the piping network to a coolant source. The method includes configuring a control system to transmit the coolant to a heat exchanger for warming the coolant with an ambient air source, and balancing the flow rate of the coolant to the cooling element.
Referring to
According to an exemplary embodiment shown in
As, shown according to the exemplary embodiment of
According to a preferred embodiment, the defrost system is normally bypassed during the standard or “cooling” mode of operation of the refrigeration device; the defrost system provides for a “defrost” mode of operation when it is determined (or otherwise scheduled or selected) to remove any possible build up of frost (shown schematically as frost layer F on cooling element 22 in
According to an exemplary embodiment shown in
As shown according to an exemplary embodiment in
Defrost system 50 may be configured for separate control to defrost each of the refrigeration devices (and/or specific cooling elements within each of the refrigeration devices) based on the particular configuration and/or demands and use conditions of each of the refrigeration devices. According to a preferred embodiment, each cooling element (or each set of cooling elements) within a refrigeration device will be configured (by control elements such as valves/headers) to be defrosted according to an individual and pre-determined routine; certain types of cooling elements (e.g. upper cooling elements 22 shown in
As shown in
Referring to
As shown in
According to a preferred embodiment shown in
In any exemplary embodiment, during initial installation and operation of the refrigeration system, the coolant system will be balanced (such as by adjusting valve 65 as shown in
Referring to
The operating parameters and capacity of the defrost system may be adapted to the requirements of the refrigeration system. According to a particularly preferred embodiment of the defrost system, the heat exchanger is a “fan-coil” type unit having a heat transfer surface including a coil formed from copper tubing and interconnected to a series of aluminum fins and a fan configured to move air through the coil. The heat exchanger is provided in a configuration to fit within a base of the refrigeration device to minimize the need for externally routed piping or tubing. According to a particularly preferred embodiment of a type shown in
According to a particularly preferred embodiment, the heat exchanger is of a type commonly referred to as a “unit cooler” as are typically used for refrigerating small rooms such as walk-in type coolers, etc. (According to a particularly preferred embodiment, the heat exchanger is of a “fan-coil” type commercially available from Cancoil USA, Inc. of Danville, Ill. as Model No. HFFC00101A; the valves are conventional solenoid valves suitable for refrigeration service and are of a type commercially available from Parker Hannifin Corporation of Broadview, Ill.) According to an alternative embodiment, the heat exchanger may not provide an associated fan and the coil of the unit may be sized and configured correspondingly larger to provide the necessary heat transfer capability (e.g. to allow or promote air flow, such as by gravity or natural convection). According to another alternative embodiment the heat exchanger for the defrost system may be provided in various other configurations (e.g. sizes, dimensions and shapes etc.) that are suitable to provide the desired heat transfer capability (e.g. flow rates and quantity of heat) to the coolant within the specific application or installation at any suitable location. The heat exchanger for the defrost system may include other heat transfer surfaces or other arrangements of heat transfer elements; for example, the heat transfer surface may be provided by heat transfer elements such as “microchannels” configured to provide the desired heat transfer capability within a heat exchanger having a smaller or more compact overall size and configuration for applications where less space is available or where concealment is desirable. According to other alternative embodiments of the heat exchanger for the defrost system, the heat transfer elements may provide microchannels either with or without additional heat transfer surfaces (e.g. fins, etc.). According to any alternative embodiment, heat transfer elements and/or surfaces may be selected and/or configured so that the overall size and configuration of the heat exchanger of the defrost system will satisfy performance and other physical design requirements for the refrigeration system and/or the refrigeration device.
According to a particularly preferred embodiment, in a gravity-type refrigeration device (e.g. a refrigerated case of a type as shown in
According to an exemplary embodiment, the defrost system may be configured (e.g. sized and located) to provide sufficient heat transfer capability to all or any portion of a network of circuits (e.g. flow paths having flow control elements such as valves for routing coolant to any one or more cooling elements) of the refrigeration devices in a facility. (The operating parameters and capacity of a centralized defrost system may be adapted to the requirements of the refrigeration system and/or the facility.) According to any preferred embodiment, the heat exchanger of the defrost system is sized to provide the maximum coolant temperature necessary for defrosting the largest circuit of the network within the desired defrost time period based upon the flow rates of the cooling system, and the control system is configured to provide defrosting of each or any circuit separately (e.g. selective defrosting of individual cooling elements or groups of cooling elements within a refrigeration device or case).
According to a particularly preferred embodiment of the defrost system shown in
According to any exemplary embodiment, for refrigeration systems having low-temperature type refrigeration devices (e.g. freezers, etc.) the heat exchanger of the defrost system may be supplemented with additional heating capability, such as in-line fluid heaters (e.g. immersion heating elements, external heating coils, or other suitable heating elements) provided on the coolant supply line. According to another alternative embodiment, supplemental heating capability may be provided by a heat source such as the primary refrigerant (e.g. in the appropriate state or temperature, i.e. hot gas, etc.) or other high temperature fluids that are available in the environment in which the refrigeration system is located or installed.
As shown in
During the defrost mode, the control system may also determine which of the cooling elements is to be defrosted (e.g. either of cooling elements 22 or 24 separately or both cooling elements 22 and 24 simultaneously). For example, sensor 114 may provide a signal representative of the temperature of the coolant returning from the cooling elements, or sensor 116 may provide a signal representative of the air temperature within space 16, or sensor 118 may provide a signal representative of the temperature of cooling element 24, or the timer 104 of control system 100 may provide a signal representative of time for establishing a frequency for defrosting one or both of cooling elements 22 and 24. When defrosting only cooling element 22, warmed coolant is directed through supply line 44 to defrost the cooling element 22; after leaving cooling element 22, the coolant is directed through valve 45 (with valve 43 closed) to coolant return line 48. If defrosting both cooling element 22 and cooling element 24, the warmed coolant is directed through supply line 44 to defrost the surface of cooling element 22; then through valve 43 (with valve 45 closed) to cooling element 24 to defrost the surface of cooling element 24. The coolant returns through line 48 to continue circulation. As the warmed coolant flows through cooling element 22 and cooling element 24 in the defrost mode, accumulated frost and/or ice (shown schematically in
Referring further to
Referring to
TABLE 1
TEMPERATURE
DESCRIPTION
Average space air
Calculated average air temperature
from three temperature sensors
within the refrigeration
device adjacent a
cooling element.
Defrost system inlet
Temperature of the coolant
entering the defrost system.
Defrost system outlet
Temperature of the coolant
leaving the defrost system.
Average product
Calculated average temperature
from nine temperature sensors
monitoring the temperature of
simulated products located within
the air space in the
refrigeration device.
Coolant return (to chiller)
Temperature of coolant returning
to the chiller.
Coolant supply (from chiller)
Temperature of the coolant leaving
the chiller.
Refrigerant superheat (from chiller)
Temperature of the refrigerant
(superheated vapor) leaving
the chiller.
Refrigerant saturation (from chiller)
Calculated temperature
corresponding to the measured
pressure of the refrigerant leaving
the chiller.
Coolant supply and return differential
Calculated difference in
temperatue between the supply and
return temperatures of the coolant.
During the cooling mode prior to operation of the defrost mode, the refrigeration device is typically expected to be operating in a relatively stable condition. As shown in
When the defrost mode is initiated, the cooling mode is interrupted by temporarily stopping circulation of the refrigerant to the chiller (resulting in the temperature of the coolant supply and coolant return to approach a common value as the heat transfer between the two locations is minimized). During the defrost mode, the flow of secondary coolant is diverted through the heat exchanger of the defrost system. Additionally, the fan on the heat exchanger turns on and moves air across the surface of the heat exchanger. The temperature of the coolant within the heat exchanger (e.g. retained from the last operation in defrost mode) rapidly drops from approximately ambient temperature to approximately the temperature of the coolant leaving the chiller as flow resumes. The coolant leaving the heat exchanger drops from approximately ambient temperature to a value of approximately 8 deg F. above the coolant temperature entering the heat exchanger due to heat exchanged through the heat exchanger from the ambient air as flow resumes. The temperature of the coolant (slowly) increases as the flow of coolant resumes through the heat exchanger of the defrost system (after transient conditions are overcome through the system).
According to an exemplary embodiment, the defrost mode is terminated when the temperature of coolant leaving the cooling elements reaches approximately 45 deg F. (i.e. based on a determination through empirical testing that when the temperature of the coolant leaving the cooling element is approximately 45 deg F., a sufficient amount of defrosting has occurred to remove the layer of frost or ice that would typically have formed on the surfaces of the cooling element). According to an exemplary embodiment for a refrigeration device (of a type shown in FIG. 5D), the duration of time for the defrost mode is approximately 5 minutes (as shown in FIGS. 7C and 7D). Following completion of the defrost mode, the fan of the defrost system is turned off and the coolant flow within the secondary system is temporarily stopped to begin a “drip” mode. During the specified time period that coolant flow is stopped, (the “drip” mode) remaining moisture on the surface of the cooling element is expected to drip into a drain or to evaporate. According to the exemplary embodiment shown, the duration of the time period for the drip mode is approximately 8 minutes. During the drip mode, the coolant is not flowing through the heat exchanger and the temperature of the coolant entering and the temperature of the coolant leaving the heat exchanger begin warming to a temperature value of approximately the temperature of the ambient air adjacent the heat exchanger.
When “drip mode” is completed, the cooling mode is resumed; the flow of secondary coolant resumes in a flow path that bypasses the defrost system, and the flow of refrigerant to the chiller resumes. The difference in temperature between the temperature of the coolant return to the chiller and coolant supply from the chiller is higher following restart of the cooling mode (approximately 10 deg F.) as the chiller returns the temperature of the coolant to the temperature required by the cooling mode following the defrost mode (typical of most refrigeration devices). The temperature of the superheated refrigerant vapor in the primary cooling system leaving the chiller varies (e.g. “hunts” or cycles, etc.) within a range of (e.g. approximately 2 to 14 deg F.), indicating adjustment of the primary cooling system in response to the changed thermal loading following restart of the cooling mode (e.g. the amplitude of this cycling decreases until a relatively stable equilibrium is reached, similar to that seen prior to the start of the defrost mode). The temperatures,of the coolant supply from the chiller and coolant return to the chiller slowly decrease toward the temperatures required by the cooling mode. As shown in
The cooling elements for providing cooling in the cooling devices may be provided as any suitable element for transferring heat from the space to be cooled to the coolant. For example, referring to
One embodiment of a cooling element 22 (shown schematically in
Referring further to
Referring to
Referring further to
A control system 100 for refrigeration system 10 having a defrost system 50 is shown according to an exemplary embodiment in FIG. 4. Control system 100 is adapted to receive various input signals (e.g. from sensors associated with the refrigerated case, defrost system, etc.) and to provide various output and control signals (e.g. for fans, valves, switches and other devices). In a particularly preferred embodiment, control system 100 is adapted to interface with sensors that provide signals representative of the temperatures of the coolant supply to the cooling elements, coolant return from the cooling elements, air space, the surfaces of the cooling elements, and indicators and switches representative of refrigeration system or defrost system operation. Control system 100 includes a control program and/or timer as well as memory; the control program may be implemented in any combination of hardware and software. Control system 100 also provides a user interface to provide status and other information (e.g. indicators or alarms or the like) to allow monitoring and/or control and adjustment of the operation of the refrigeration system and the defrost system. The user interface provides capability for the control system to be monitored and operational parameters (e.g. set points, temperature ranges, flow rates, defrosting durations, etc.) to be set or adjusted for the particular requirements of the refrigeration device and defrost system based on application-specific factors or such variable factors as seasonal air temperature and humidity changes, operating condition changes, changes in product loading requirements, operation of the refrigeration device as a separate unit or as one of multiple networked units, changes in coolant types or flow rates, objects (nature, type, quantity, mass or composition), etc.
According to a preferred embodiment, the control system includes a memory module and a programmable microprocessor-based device that may be programmed by a user to interact with the various sensors, input and change set points, establish or modify defrost times, vary other operational parameters, etc. According to a particularly preferred embodiment, the control system employs a programmable microprocessor-based device is of a type commercially available from Danfoss Inc. of Baltimore, Md., and marketed under the trade name “Degree Master” by Hill PHOENIX of Conyers, Ga. According to other alternative embodiments, any of a wide variety of other control systems and/or controllers suitable for the application and environment could be used to regulate the operation of the refrigeration device and/or the defrost system.
Referring further to
According to alternative embodiments, other sensors and/or combinations of sensors may be installed within the refrigeration devices, defrost system, or otherwise within the refrigeration system to obtain information that can be used in the monitoring, operation or adjustment of the cooling system and defrost system; the control system may control one or more individual systems or devices of the refrigeration system; additional or multiple control systems may be used (separately and/or networked in various combinations to share data and/or operational parameters or control criteria).
Referring further to
Referring further to
Referring to
Different types of cooling elements (such as a gravity coil, a panel, finned surfaces and non-finned surfaces) typically provide different defrosting time and/or temperature requirements based on the rate at which the surfaces of the cooling elements accumulate frost. Such different types of cooling elements may be included in the same refrigeration device and the control system is configured to control defrost operation of each cooling element separately or in combination. According to any exemplary embodiment, the exact frequency (or duty cycle for the defrost mode) is established empirically to determine the optimum frequency for a particular refrigeration system based on such factors, among others, as the range of temperature within which the objects must be maintained, the desired temperature of the space, the nature of the objects being stored or displayed, the humidity level, the temperature of the heat source associated with the defrost heat exchanger, the characteristics of the coolant, and other parameters relevant to the performance of the system.
In any exemplary embodiment, the frequency of defrost mode initiation and the duration of the defrost mode may be developed to suit the particular refrigeration device and intended service applications. For example, open-type cases (e.g. “reach-in” cases using an air curtain across the case opening but no physical barrier or door, etc.) that are more readily exposed to the humidity conditions of the surrounding air may be defrosted four times per day for a duration of 10 to 30 minutes. Closed-type cases (e.g. “reach-in cases” such as freezers having a door, etc.) that have limited exposure to the humidity in surrounding air may be defrosted once per day for a duration of 10 to 30 minutes. Control of the frequency and duration of defrosting may also be affected by seasonal or climatic conditions such as summer in contrast to winter (i.e. when the temperature and humidity conditions may differ substantially); the appropriate frequency and duration of the defrost mode may also be affected by geographical location of the refrigeration device. For example, applications in warm (e.g. tropical) locations may require more frequent defrosting than applications in locations having cooler and dryer climates.
According to an exemplary embodiment,
TABLE 2
TEMPERATURE
DESCRIPTION
Average space air
Calculated average, air temperature
within the refrigerated case adjacent a
cooling element.
Average product
Calculated average temperature for
simulated products located within the
space.
High product temperature
Indicates a maximum value of
temperature for simulated products
located in the space to be cooled.
Low product temperature
Indicates a minimum value of
temperature for simulated products
located in the space to be cooled.
Coolant return temperature
Indicates a value of the temperature of
the coolant leaving the cooling element.
Coolant supply temperature
Indicates a value of the temperature of
the coolant supplied to the cooling
element.
TABLE 3
TEMPERATURE
DESCRIPTION
High product temperature
Indicates a maximum value of
temperature for simulated products
located in the space.
Low product temperature
Indicates a minimum value of
temperature for simulated products
located in the space.
Average product
Calculated average temperature for
simulated products within the space.
Coolant supply temperature
Indicates a value of the temperature of
the coolant supplied to the cooling
element.
Referring further to
According to alternative embodiments, the operation of the defrost system may be controlled according to various other control criteria and parameters. For example, operation of the defrost system could be based upon monitoring of humidity and/or temperatures within the refrigeration device. The speed and/or efficacy of defrosting may be controlled by the flow rate of warmed coolant, the temperature of the coolant supply to the cooling elements, the configuration, size and shape (e.g. profile of the cooling elements), the frequency of defrosting, and environmental effects such as climate and location.
Although the defrost system is shown in operation according to exemplary embodiments with refrigeration systems employing secondary cooling, it should be noted that the defrost system could according to other exemplary embodiments be used with various other types of refrigeration systems.
According to a preferred embodiment, the duration of the defrosting mode, once initiated, is terminated by a signal from the control system when the signal from the coolant return temperature sensor indicates that a set point has been reached (e.g. an elevation in temperature to a predetermined point) correlating to an observation or empirical or other assessment that the surfaces of the cooling elements will have been sufficiently defrosted; normal operation of the primary cooling system in the cooling mode is resumed. In any preferred embodiment, the coolant return temperature provides a signal that can account for a variety of variables in the operation of the refrigeration system for determining when the defrost mode can be terminated. For example, the temperature of the coolant at the cooling element may be effected by a variety of parameters such as differences in heat transfer capacity of the heat exchanger of the defrost system, flow rates of the coolant system, the distance between the heat exchanger and the cooling elements (within the network of supply and return lines), the presence or absence of supplemental heating devices for the coolant, etc. Monitoring the discharge temperature of the coolant allows the duration of the defrost mode to be terminated at the proper time (e.g. shorter defrost period with higher temperature coolant or longer defrost period with lower temperature coolant, etc.) in a manner substantially independent of variations in the coolant supply temperature to the cooling element.
In one preferred embodiment for gravity-type refrigeration devices, the defrosting mode is terminated by a signal from control system 100 when the sensor 114 provides a signal indicating that the temperature of the coolant returned from the cooling element is approximately 45 deg F. (see FIGS. 7A AND 7B). According to an alternative embodiment, other temperatures of the coolant returned from the cooling elements may be used to signal the termination of the defrost mode according to the particular operating parameters of the system. According to another alternative embodiment, the defrost mode may be terminated by a signal from the control system in response to a signal from the timer, or may be controlled primarily by the temperature of the returned coolant with a timer providing a back-up signal intended to be used as a “default” to provide a “fail-safe” return to the cooling mode to minimize temperature variation of the objects in the event that the sensor monitoring the temperature of the returned coolant malfunctions. According to further alternative embodiments, other sensors may be used to control the operation of the defrost mode and cooling mode according to performance-based conditions such as product temperature, space temperature, coolant temperature, etc.
Referring further to
According to a particularly preferred embodiment, the initiation of the defrost mode at a particular frequency will tend to preserve the moisture to help maintain the humidity at desirable levels within the space (and tend to reduce variation in the temperature of the products within the refrigeration device). The melted ice or frost produced during the defrost mode maintains a relatively regular supply of moisture in the air of the space in the refrigeration device through evaporation. According to a particularly preferred embodiment for gravity type refrigeration devices, moisture may help to maintain the relative humidity of the air within the space during the air circulation process to minimize drying-out of the objects so that misters, humidifiers or other moisture-introducing apparatus (which may introduce bacteria or other contaminants to the space), will not need to be used; humidity at appropriate levels may help maintain the desirable appearance, quality and marketability of the objects.
According to a particularly preferred embodiment, the coolant is provided in a loop of a secondary cooling system (that communicates with the primary refrigerant in a primary cooling system through a heat exchanger (e.g. chiller)), and has sufficient properties for use in a cooled state for cooling operation and a warmed state for defrost operation, and may be an inhibited propylene glycol or any other suitable formulation such as a saline solution, etc.
According to any preferred embodiment, the refrigeration system provides a space formed by a base, side walls, etc. provided in the case and configured to contain articles. A first element of the system provides cooling of articles within the space and includes a heat exchanger. The first element may be a heat exchanger, such as a cooling element with a cooling surface and may further include tubes or channels. A first source of fluid is provided to refrigerate the space by cooling through the first element. A second source of fluid is provided to elevate the temperature of the first element so that the first element can be in a first (e.g. cold) state and a second (e.g. frost removal) state. The second source may further include a fan for use with an ambient air source. The first source and the second source may be coupled together.
According to the exemplary embodiment shown in
The primary cooling system (if included) may be located remotely at other suitable locations or external from the refrigeration device (such as when a common primary cooling system is used with multiple refrigeration devices). The secondary cooling system is coupled to the chiller and the primary cooling system (e.g. with field-run piping connected to suitable connections on the base).
According to a particularly preferred embodiment, the primary cooling system includes a conventional vapor-compression refrigerant in a closed-loop system having suitable equipment (shown schematically as equipment 33 in
According to other alternative embodiments, the refrigeration system may be a refrigerator, a freezer, a cold storage room, walk-in freezer, etc. In further alternative embodiments, the refrigeration system may be an open storage or display device such as “reach-in” type coolers that may have a fan or other device for creating an “air curtain” of cooled air that creates a boundary between warmer ambient air and the cooled space in which the objects are stored and/or displayed. According to other exemplary embodiments, the flow control elements (e.g. valves) and/or manifolds or headers (e.g. providing a supply to the cooling elements) for the system may be installed within a refrigeration device (e.g. structure) or may be external to the refrigeration device.
It is important to note that the construction and arrangement of the elements of the refrigeration system with a defrost system using ambient air provided herein are illustrative only. Although only a few exemplary embodiments of the present invention have been described in detail in this disclosure, those skilled in the art who review this disclosure will readily appreciate that many modifications are possible in these embodiments (such as variations in features such as components, formulations of coolant compositions, heat sources, orientation and configuration of the cooling elements, louvers, heat exchanger capacities and locations, the location of components and sensors of the cooling system and control system; variations in sizes, structures, shapes, dimensions and proportions of the components of the system, use of materials, colors, combinations of shapes, etc.) without materially departing from the novel teachings and advantages of the invention. For example, closed or open space refrigeration devices may be used having either horizontal or vertical access openings, and cooling elements may be provided in any number, size, orientation and arrangement to suit a particular refrigeration system; the defrost system may include a variable speed fan, under the control of the control system. Set points for the control system may be determined empirically or predetermined based on operating assumptions relating to the intended use or application of the refrigeration device. According to other alternative embodiments, the refrigeration system may be any device using a refrigerant or coolant, or a combination of a refrigerant and a coolant, for transferring heat from one space to be cooled to another space or source designed to receive the rejected heat and may include commercial, institutional or residential refrigeration systems. Further, it is readily apparent that variations of the ambient air defrost system for a refrigeration system and its components and elements may be provided in a wide variety of types, shapes, sizes and performance characteristics, or provided in locations external or partially external to the refrigeration system. Accordingly, all such modifications are intended to be within the scope of the inventions.
The order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments. In the claims, any means-plus-function clause is intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Other substitutions, modifications, changes and omissions may be made in the design, operating configuration and arrangement of the preferred and other exemplary embodiments without departing from the spirit of the inventions as expressed in the appended claims.
Arshansky, Yakov, Walker, Richard N., Hinde, David K., Lane, Mark
Patent | Priority | Assignee | Title |
10498585, | Oct 16 2015 | Walmart Apollo, LLC | Sensor data analytics and alarm management |
10732974, | May 05 2016 | Walmart Apollo, LLC | Engine agnostic event monitoring and predicting systems and methods |
10823447, | Oct 06 2011 | Lennox Industries Inc. | System and method for controlling a blower of an energy recovery ventilator in response to internal air pressure |
11085455, | Aug 11 2014 | DELTA T, LLC | System for regulating airflow associated with product for sale |
11116333, | May 07 2019 | Carrier Corporation | Refrigerated display cabinet including microchannel heat exchangers |
11294973, | Jan 21 2016 | Walmart Apollo, LLC | Codeless information service for abstract retrieval of disparate data |
11493260, | May 31 2018 | THERMO FISHER SCIENTIFIC ASHEVILLE LLC | Freezers and operating methods using adaptive defrost |
11559147, | May 07 2019 | Carrier Corporation | Refrigerated display cabinet utilizing a radial cross flow fan |
7158863, | Mar 18 2004 | Berner International Corporation | Programmable controller for condition air curtains |
7178346, | Dec 25 2003 | Industrial Technology Research Institute | Constant temperature refrigeration system for extensive temperature range application and control method thereof |
7849701, | Jun 03 2008 | DOVER SYSTEMS, INC | Refrigeration system with a charging loop |
8006407, | Dec 12 2007 | Drying system and method of using same | |
8011192, | Jun 23 2005 | Hill Phoenix, Inc | Method for defrosting an evaporator in a refrigeration circuit |
8020391, | Nov 28 2007 | Hill Phoenix, Inc | Refrigeration device control system |
8185246, | Dec 29 2006 | Carrier Corporation | Air-conditioning control algorithm employing air and fluid inputs |
8297069, | Mar 19 2009 | Vette Technology, LLC | Modular scalable coolant distribution unit |
8516838, | Feb 19 2010 | Refrigeration system and associated method | |
8631666, | Aug 07 2008 | DOVER SYSTEMS, INC | Modular CO2 refrigeration system |
8863541, | Jun 10 2009 | Hill Phoenix, Inc. | Air distribution system for temperature-controlled case |
8973379, | Jul 25 2008 | Hill Phoenix, Inc | Refrigeration control systems and methods for modular compact chiller units |
8973385, | Mar 02 2007 | DOVER SYSTEMS, INC | Refrigeration system |
8983283, | Jan 27 2006 | Emerson Electric Co | Method and apparatus for operating an electric water heater using adjustable temperature setpoints |
9032747, | Oct 27 2009 | Mitsubishi Electric Corporation | Multi-mode air conditioner with refrigerant cycle and heat medium cycle |
9037302, | Feb 15 2010 | Carrier Corporation | Model based system and method for estimating parameters and states in temperature controlled spaces |
9526354, | Sep 11 2008 | Hill Phoenix, Inc. | Air distribution system for temperature-controlled case |
9541311, | Nov 17 2010 | Hill Phoenix, Inc. | Cascade refrigeration system with modular ammonia chiller units |
9605872, | Jan 27 2006 | COPELAND COMFORT CONTROL LP | Smart energy controlled water heater |
9657977, | Nov 17 2010 | Hill Phoenix, Inc. | Cascade refrigeration system with modular ammonia chiller units |
9664424, | Nov 17 2010 | Hill Phoenix, Inc. | Cascade refrigeration system with modular ammonia chiller units |
9752798, | Jan 27 2006 | COPELAND COMFORT CONTROL LP | Water heater control using external temperature sensor |
Patent | Priority | Assignee | Title |
1863427, | |||
2181635, | |||
2181636, | |||
2181637, | |||
2209690, | |||
2225655, | |||
2279484, | |||
2328189, | |||
2379885, | |||
2382599, | |||
2425473, | |||
2444593, | |||
2495327, | |||
2513675, | |||
2607204, | |||
2660864, | |||
2663159, | |||
2690650, | |||
2732689, | |||
2932955, | |||
2973631, | |||
3230732, | |||
3360953, | |||
3561230, | |||
3730603, | |||
3848426, | |||
3850486, | |||
3898864, | |||
4135369, | Sep 19 1977 | WHITE CONSLIDATED INDUSTRIES, INC , 11770 BEREA ROAD, CLEVELAND, OH, A CORP OF DE | Dual temperature merchandiser |
4489995, | Aug 14 1981 | Tyler Refrigeration Corporation | Adjustable electrical outlet assembly |
4565070, | Jun 01 1983 | Carrier Corporation | Apparatus and method for defrosting a heat exchanger in a refrigeration circuit |
4633677, | Aug 13 1984 | SANDEN CORPORATION, 20 KOTOBUKI-CHO, ISESAKI-SHI, GUNMA, JAPAN, A CORP OF JAPAN | Refrigerated display case |
4750335, | Jun 03 1987 | DOVER SYSTEMS, INC | Anti-condensation means for glass front display cases |
4782666, | Dec 11 1985 | Costan S.p.A. | Refrigerated case with ventilated glazed frame |
4829776, | Feb 20 1987 | COSTAN S P A , VIA DEGLI ALPINI, 14 - 32020 LIMANA BELLUNO | Refrigerated cabinet with an improved control panel |
4949554, | Sep 08 1989 | Specialty Equipment Companies, Inc. | Single pane, curved glass lid, frozen food merchandiser |
4984435, | Jul 07 1989 | DAIREI CO , LTD , A CORP OF JAPAN | Brine refrigerating apparatus |
5042262, | May 08 1990 | PRAXAIR TECHNOLOGY, INC | Food freezer |
5046320, | Feb 09 1990 | NATIONAL REFRIGERATION PRODUCTS, A CORP OF PENNSYLVANIA | Liquid refrigerant transfer method and system |
5048303, | Jul 16 1990 | Delaware Capital Formation, Inc | Open front refrigerated display case with improved ambient air defrost means |
5217064, | Nov 05 1991 | Emertech Incorporated | Temperature controlled pharmaceutical storage device with alarm detection and indication means |
5293902, | Jun 07 1993 | TIF Instruments, Inc. | Quick-disconnect fluid coupling |
5315837, | Feb 04 1992 | M C INTERNATIONAL | Process for supplying cold to an open refrigerated enclosure for display and sale of fresh products in a supermarket |
5323621, | Feb 26 1993 | Tyler Refrigeration Corporation | Gas defrost system |
5335508, | Aug 19 1991 | Refrigeration system | |
5347827, | Jul 01 1992 | The Coca-Cola Company; COCA-COLA COMPANY, THE, A CORP OF DE | Modular refrigeration apparatus |
5351498, | Nov 06 1992 | Hitachi, Ltd.; Hitachi Microcomputer System Ltd. | Cooling system for electronic apparatus and control method therefor |
5357767, | May 07 1993 | Hussmann Corporation | Low temperature display merchandiser |
5502979, | Feb 12 1993 | Collapsible refrigerated cabinets | |
5598886, | Jun 15 1994 | Food display and preservation case | |
5626028, | Feb 15 1994 | ARCHITECTURAL STAINLESS, INC | Display case |
5649432, | Jun 14 1996 | Portable temperature-controlled unit with moveably attached insulation | |
5722254, | Jun 05 1996 | DeLau Innovations, Ltd.; DELAU INNOVATIONS, LTD | Refrigerated serving device |
5727393, | Apr 12 1996 | Hussmann Corporation | Multi-stage cooling system for commerical refrigeration |
5743098, | Mar 14 1995 | Hussmann Corporation | Refrigerated merchandiser with modular evaporator coils and EEPR control |
5819549, | Oct 16 1996 | Minnesota Mining and Manufacturing Company | Secondary loop refrigeration system |
5887440, | Sep 13 1996 | Refrigeration coil defrost system | |
5895111, | Apr 08 1992 | ANTHONY, INC | Display case with lens lighting system |
5911744, | Jun 23 1994 | Nihon Techno Co., Ltd. | Refrigerating method and apparatus for showcases and vending machines as well as open type showcases and vending machines utilizing said method and apparatus |
5921092, | Mar 16 1998 | Hussmann Corporation | Fluid defrost system and method for secondary refrigeration systems |
5921096, | Oct 09 1997 | WARREN ENTERPRISES LLC | Modular temperature maintaining food receptacle system |
5924297, | Nov 03 1997 | Hussmann Corporation | Refrigerated merchandiser with modular evaporator coils and "no defrost" product area |
5941083, | Jan 19 1995 | Tokyo Electron Limited | Cooling device and cooling method |
5964512, | May 03 1996 | Margaret Platt Borgen | Cooled display case |
5970734, | Sep 29 1995 | Method and system for creating and maintaining a frozen surface | |
6067482, | Jan 08 1999 | Hussmann Corporation | Load shifting control system for commercial refrigeration |
6067814, | Nov 14 1995 | Kvaerner ASA | Method for cooling containers and a cooling system for implementation of the method |
6094925, | Jan 29 1999 | Hill Phoenix, Inc | Crossover warm liquid defrost refrigeration system |
6112532, | Jan 08 1997 | Norild AS | Refrigeration system with closed circuit circulation |
6148634, | Apr 26 1999 | 3M Innovative Properties Company | Multistage rapid product refrigeration apparatus and method |
6155075, | Mar 18 1999 | Lennox Manufacturing Inc. | Evaporator with enhanced refrigerant distribution |
6170270, | Jan 29 1999 | Hill Phoenix, Inc | Refrigeration system using liquid-to-liquid heat transfer for warm liquid defrost |
6170272, | Apr 29 1999 | ZERO ZONE REFRIGERATION, LLC | Refrigeration system with inertial subcooling |
6182459, | Oct 09 1998 | Refrigerated case for food products | |
6196007, | Oct 06 1998 | Pentair Flow Services AG | Ice making machine with cool vapor defrost |
6202425, | Sep 26 1997 | TRANSFORM SR BRANDS LLC | Non-compression cascade refrigeration system for closed refrigerated spaces |
6351964, | Jun 28 2000 | BEVERAGE-AIR CORPORATION | Reach-in refrigerated cooler |
6412296, | Feb 19 1999 | ISA SpA | Device to distribute air in glass-fronted cabinets and display counters |
6427468, | Aug 15 2000 | Tyler Refrigeration Corporation | Frost shield for refrigerated cabinet |
6467294, | May 04 2001 | DELFIELD COMPANY, THE | Apparatus and method for controlling temperature for a self-service food display |
6508066, | Aug 25 2000 | CONSOLIDATED ENERGY SOLUTIONS, INC | Single coil dual path dehumidification system |
6539741, | Jun 12 1998 | Air curtain for open-fronted refrigerated showcase | |
6601398, | Mar 31 2000 | EMERSON CLIMATE TECHNOLOGIES RETAIL SOLUTIONS, INC | Method and apparatus for refrigeration system control having electronic evaporator pressure regulators |
6619052, | Feb 26 2002 | Hill Phoenix, Inc | Variable air curtain velocity control |
6629422, | Jun 07 2001 | Sequential defrosting of refrigerated display cases | |
6647735, | Mar 14 2000 | Hussmann Corporation | Distributed intelligence control for commercial refrigeration |
6672086, | Jul 06 2001 | Hussmann Corporation | Frosting cooler |
6672087, | Oct 30 2002 | Carrier Corporation | Humidity and temperature control in vapor compression system |
6684650, | Jan 24 2002 | Carrier Corporation | System and method for rapid defrost or heating in a mobile refrigeration unit |
6698234, | Mar 20 2002 | Carrier Corporation | Method for increasing efficiency of a vapor compression system by evaporator heating |
6705093, | Sep 27 2002 | Carrier Corporation | Humidity control method and scheme for vapor compression system with multiple circuits |
6711445, | Dec 17 1998 | DANFOSS INC | Refrigeration control apparatus and method |
6722149, | Jan 07 2003 | Hill Phoenix, Inc | Refrigerated display merchandiser |
6745588, | Jun 18 2002 | Hill Phoenix, Inc | Display device |
6755042, | Oct 04 2002 | HUMA THERAPEUTICS LIMITED | Display case air duct partitioned for individual fans |
20010023594, | |||
20010027663, | |||
20030140638, | |||
20040003601, | |||
20040067290, | |||
20040069002, | |||
20040088069, | |||
20040123613, | |||
CH427866, | |||
CH440349, | |||
DE2505390, | |||
EP602911, | |||
EP675331, | |||
EP701097, | |||
EP916291, | |||
EP1134514, | |||
EP1139041, | |||
GB2185561, | |||
JP11230663, | |||
JP2000274935, | |||
JP824092, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 17 2002 | Delaware Capital Formation, Inc. | (assignment on the face of the patent) | / | |||
Apr 03 2003 | HINDE, DAVID K | Delaware Capital Formation, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013971 | /0315 | |
Apr 03 2003 | WALKER, RICHARD N | Delaware Capital Formation, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013971 | /0315 | |
Apr 04 2003 | ARSHANSKY, YAKOV | Delaware Capital Formation, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013971 | /0315 | |
Sep 15 2004 | LANE, MARK | Delaware Capital Formation, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015241 | /0236 | |
Dec 31 2006 | Delaware Capital Formation, Inc | CLOVE PARK INSURANCE COMPANY | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019102 | /0323 | |
Dec 31 2006 | CLOVE PARK INSURANCE COMPANY | CP FORMATION LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019102 | /0331 | |
Jan 02 2007 | CP FORMATION LLC | DOVER SYSTEMS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019102 | /0344 | |
Feb 01 2008 | DOVER SYSTEMS, INC | Hill Phoenix, Inc | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 022288 | /0539 |
Date | Maintenance Fee Events |
Jul 02 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 05 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 22 2017 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 03 2009 | 4 years fee payment window open |
Jul 03 2009 | 6 months grace period start (w surcharge) |
Jan 03 2010 | patent expiry (for year 4) |
Jan 03 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 03 2013 | 8 years fee payment window open |
Jul 03 2013 | 6 months grace period start (w surcharge) |
Jan 03 2014 | patent expiry (for year 8) |
Jan 03 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 03 2017 | 12 years fee payment window open |
Jul 03 2017 | 6 months grace period start (w surcharge) |
Jan 03 2018 | patent expiry (for year 12) |
Jan 03 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |