An interleaving method and apparatus is disclosed for an in-band on-channel (IBOC) digital audio broadcasting (DAB) system. The disclosed interleaver method and apparatus utilize a convolutional interleaver having a row size equal to one ofdm symbol and a time span of arbitrary size. A structured memory block is utilized in the de-interleaver at the receiver having a row size of one ofdm symbol (the number of active sub-carriers in the applicable sub-band of the IBOC system). The self-synchronizing nature of the present invention permits a receiver in an ofdm-based IBOC system to sort the scrambled blocks and descramble the received symbols according to its own frame count, without regard to the frame count of the transmitter. The disclosed interleaver method and apparatus does not require interleaver synchronization between the transmitter and receiver. In one implementation, separate convolutional encoders and convolutional interleavers are applied to each sub-band in a multi-stream structure to provide independent error spreading for each sub-band.
|
1. A method of transmitting a digital signal in a digital audio broadcasting (DAB) system, comprising the steps of:
interleaving bits in said digital signal using a convolutional interleaver having a row size equal to a number of active sub-carriers in a sub-band of an in-band on-channel system;
mapping said interleaved bits to one or more symbols; and
transmitting said symbols to a receiver.
5. A method of receiving a digital signal in a digital audio broadcasting (DAB) system, comprising the steps of:
receiving transmitted symbols from a transmitter;
demodulating said symbols to generate interleaved bits; and
de-interleaving said interleaved bits using a convolutional de-interleaver having a row size equal to a number of active sub-carriers in a sub-band of an in-band on-channel system.
11. A transmitter in a digital audio broadcasting (DAB) system, comprising:
a convolutional interleaver for interleaving bits in said digital signal, said convolutional interleaver having a row size equal to a number of active sub-carriers in a sub-band of an in-band on-channel system;
a bit-to-symbol mapper for mapping said interleaved bits to one or more symbols; and
an ofdm modulator for transmitting said symbols to a receiver.
15. A receiver in a digital audio broadcasting (DAB) system, comprising:
an ofdm demodulator for receiving transmitted symbols from a transmitter;
a symbol-to-bit mapper for demodulating said symbols to generate interleaved bits; and
a convolutional de-interleaver for de-interleaving said interleaved bits, said convolutional interleaver having a row size equal to a number of active sub-carriers in a sub-band of an in-band on-channel system.
2. The method of
3. The method of
4. The method of
6. The method of
7. The method of
8. The method of
9. The method of
10. The method of
12. The transmitter of
13. The transmitter of
14. The transmitter of
16. The receiver of
17. The receiver of
18. The receiver of
19. The receiver of
20. The receiver of
|
The present invention relates generally to digital audio broadcasting (DAB) and other types of digital communication systems, and more particularly, to symbol interleavers for such DAB and other types of digital communication systems.
Proposed systems for providing DAB in the FM radio band are expected to provide near CD-quality audio, data services and more robust coverage than existing analog FM transmissions. However, until such time as a transition to all-digital DAB can be achieved, many broadcasters require an intermediate solution in which the analog and digital signals can be transmitted simultaneously within the same licensed band. Such systems are typically referred to as hybrid in-band on-channel (HIBOC) DAB systems, and are being developed for both the FM and AM radio bands.
In order to prevent significant distortion in conventional analog FM receivers, the digital signal in a typical FM HIBOC DAB system is, for example, transmitted in two side bands, one on either side of the analog FM host signal, using orthogonal frequency division multiplexing (OFDM) sub-carriers. In an OFDM communication system, the digital signal is modulated to a plurality of small sub-carrier frequencies that are then transmitted in parallel.
In the United States, the frequency plan established by current FCC regulations separates each transmitting station in a geographical area by 800 KHz. Any transmitting stations in adjacent geographical areas, however, can be separated from a local transmitting station by only 200 KHz. Thus, a particularly significant source of interference in such a system is known as first adjacent analog FM interference. This interference results when a portion of an FM host carrier in an adjacent geographic area overlaps in frequency with a portion of a digital signal side band. Although first adjacent analog FM interference, when present, typically affects only one of the two digital side bands, it nonetheless represents a limiting factor on the performance of DAB systems. The presence of a strong first adjacent interference signal will significantly degrade the performance of the digital signal transmissions, even when one of the two side bands is free from interference.
Symbol interleavers are employed in many communication systems. Interleaving scrambles a signal over a certain time interval. Typically, block interleavers are employed, where a signal is scrambled by writing the symbols into rows and reading them out in columns, in a known manner. Since the interleaver rearranges the ordering of the incoming data on a block-by-block basis, interleaver synchronization techniques are generally employed to allow the receiver to restore the original ordering.
Block interleavers have been utilized in OFDM-based systems due to the simplicity in implementation and data tracking. If block-coded symbols are interleaved over the duration of many blocks before transmission, symbols associated with a lost packet will be deinterleaved by the receiver and found among many different coded blocks. Thus, the number of symbol errors that may occur in each coded block is reduced, and the likelihood that a selected block code will correct all symbol errors in a transmitted signal is correspondingly increased.
Thus, in OFDM-based communication systems, and especially in the IBOC case, the de-interleaver at the receiver has to be synchronized to the interleaver. The required interleaver synchronization mechanism, however, results in delay, overhead information and additional processing. A need therefore exists for an interleaving method and apparatus for an OFDM-based communication system that does not require interleaver synchronization between the transmitter and receiver. A further need exists for an interleaving method and apparatus for an OFDM-based communication system that eliminates additional overhead information and reduces the complexity and processing for symbol interleaving.
Generally, interleaving methods and apparatus are disclosed for digital audio broadcasting (DAB) systems, such as in-band on-channel (IBOC) DAB systems using orthogonal frequency division multiplexing (OFDM). According to one aspect of the invention, the disclosed interleaver method and apparatus utilize a convolutional interleaver to interleave a signal over a particular time interval. The disclosed convolutional interleaver has a row size of one OFDM symbol (or the number of active sub-carriers in the applicable sub-band of the IBOC system) and a time span of arbitrary size.
The disclosed interleaving method provides the information necessary to decode a given frame to the receiver as of the time the given frame is received. Thus, the receiver can begin sorting and decoding the received symbol immediately, without waiting for the start of a new interleaver block. Thus, the self-synchronizing nature of the present invention permits a receiver in a DAB system to start sorting the scrambled block and descrambling the received symbols according to its own frame count, without regard to the frame count of the transmitter. In this manner, the disclosed interleaving method and apparatus does not require interleaver synchronization between the transmitter and receiver, while reducing the delay between the transmitter and receiver and memory requirements by fifty percent, relative to synchronized block interleaver implementations.
According to another aspect of the invention, separate convolutional encoders and convolutional interleavers can be applied to each sub-band in a multi-stream structure. Thus, the present invention provides independent error spreading for each sub-band.
A more complete understanding of the present invention, as well as further features and advantages of the present invention, will be obtained by reference to the following detailed description and drawings.
The interleaving method and apparatus of the present invention utilizes a convolutional interleaver. The disclosed convolutional interleaver is the size of one OFDM symbol and has a time span of arbitrary size. According to one feature of the present invention, the variable delay normally associated with convolutional interleavers is addressed using a structured memory block having a row size of one OFDM symbol. In other words, the row length corresponds to the number of active sub-carriers in the applicable sub-band of the IBOC system.
A convolutional interleaver provides the information necessary to decode a given frame to a receiver as of the time the given frame is received. Thus, unlike block interleavers, a receiver in the DAB system of the present invention can begin sorting and decoding the received symbol immediately, without waiting for the start of an interleaver block. The self-synchronizing nature of the present invention permits a receiver in an OFDM-based IBOC system to start sorting the scrambled block and descrambling the received symbols according to its own frame count, without regard to the frame count of the transmitter. The interleaving method and apparatus for an OFDM-based communication system thus does not require interleaver synchronization between the transmitter and receiver, while reducing the delay between the transmitter and receiver and memory requirements by fifty percent, relative to synchronized block interleaver implementations.
In the exemplary FM HIBOC DAB system of
The two streams S1 and S2 are then divided into two classes, class I (core) and class II (enhancement), using a bit stream classifier. Class I bits represent the more important audio bits, and may be provided with a higher level of error protection, for example, by associating them with innermost sub-bands B, C, i.e., the sub-bands which are less susceptible to first adjacent channel interference. Class II bits, which have been determined to be of lesser importance to reconstructed audio quality than the class I bits, are provided with a lower level of error protection, for example, by associating them with innermost sub-band A, D, i.e., the sub-bands which are more susceptible to first adjacent channel interference. Performance gains are obtained from this type of error protection by exploiting interference variations across the side bands. Other error protection techniques, such as providing a higher transmission power for sub-bands B and C than for sub-bands A and D may also be used.
The system in the illustrative embodiment, discussed further below, uses an outer cyclic redundancy code (CRC), and differential quadrature phase shift keyed (DQPSK)/OFDM modulation to encode sub-bands A, B, C, D. This arrangement results in a total of four different bitstreams 105-1 through 105-4. As discussed further below in conjunction with
The DQPSK modulation of transmitted symbols provides robustness to frequency-selective fading and oscillator phase drift. The differential encoding is performed in frequency between OFDM tones. The digital signal to be transmitted and the outer CRC block code are repeated in each of the side bands 102, 104. Each of the side bands can include N components (not shown) that may represent, for example, sets of orthogonal frequency division multiplexed (OFDM) sub-carriers.
Generally, a PAC audio coder 202 generates an encoded audio signal at a bit rate which may vary up to 128 kbps using the audio compression techniques described, for example, in D. Sinha, J. D. Johnston, S. Dorward and S. R. Quackenbush, “The Perceptual Audio Coder,” in Digital Audio, Section 42, pp. 42-1 to 42-18, CRC Press, 1998, incorporated by reference herein. The encoded audio bit stream is applied to a CRC encoder 204, which generates CRC bits in a conventional manner using a CRC error detecting block code. CRC is an example of one type of “outer code” that may be used in the system 200. Other possible outer codes include, for example, Reed-Solomon (RS) codes, Bose-Chadhuri-Hocquenghem (BCH) codes, and other block codes.
As shown in
As previously indicated, the present invention applies a separate convolutional encoder 220 and convolutional interleaver 222 to each of the four sub-bands A, B, C, D in the multi-stream structure. In this manner, the present invention provides independent error spreading for each sub-band. The convolutional interleavers 222 interleave the audio information over time, using information from the frequency domain, in a known manner.
It is to be understood that the embodiments and variations shown and described herein are merely illustrative of the principles of this invention and that various modifications may be implemented by those skilled in the art without departing from the scope and spirit of the invention.
Patent | Priority | Assignee | Title |
10057009, | May 23 2006 | LG Electronics Inc. | Digital television transmitting system and receiving system and method of processing broadcast data |
10070160, | Mar 26 2007 | LG Electronics Inc. | DTV receiving system and method of processing DTV signal |
10075188, | Jul 02 2007 | LG Electronics Inc. | Broadcasting receiver and broadcast signal processing method |
10097312, | Jun 26 2007 | LG Electronics Inc. | Digital broadcast system for transmitting/receiving digital broadcast data, and data processing method for use in the same |
10171848, | Sep 21 2007 | LG Electronics Inc. | Digital broadcasting receiver and method for controlling the same |
10244274, | Mar 26 2007 | LG Electronics Inc. | DTV receiving system and method of processing DTV signal |
10277255, | Feb 10 2006 | LG Electronics Inc. | Channel equalizer and method of processing broadcast signal in DTV receiving system |
10367534, | Sep 21 2007 | LG Electronics Inc. | Digital broadcasting system and data processing method |
10454616, | Oct 12 2006 | LG Electronics Inc. | Digital television transmitting system and receiving system and method of processing broadcasting data |
10784898, | Jul 02 2007 | LG Electronics Inc. | Broadcasting receiver and broadcast signal processing method |
11722154, | Mar 05 2021 | The Aerospace Corporation | High-throughput software-defined convolutional interleavers and de-interleavers |
7245669, | Apr 14 2003 | Millimetrix Broadband Networks Ltd. | Dual polarity coding system and method for a millimeter wave communication system |
7352817, | Sep 27 2002 | iBiquity Digital Corporation | Method and apparatus for interleaving signal bits in a digital audio broadcasting system |
7417946, | Oct 28 2004 | INTELLECTUAL DISCOVERY CO , LTD | OFDM transmission apparatus and method having minimal transmission delay |
7453951, | Jun 19 2001 | Thales | System and method for the transmission of an audio or speech signal |
7486735, | Feb 28 2003 | Microsoft Technology Licensing, LLC | Sub-carrier allocation for OFDM |
7646828, | Aug 24 2007 | LG Electronics Inc | Digital broadcasting system and method of processing data in digital broadcasting system |
7698621, | Sep 21 2007 | LG Electronics Inc | Digital broadcasting system and data processing method |
7739581, | Apr 29 2006 | LG Electronics Inc | DTV transmitting system and method of processing broadcast data |
7804860, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
7813310, | Sep 21 2007 | LG Electronics Inc | Digital broadcasting receiver and method for controlling the same |
7822134, | Mar 30 2007 | LG Electronics Inc | Digital broadcasting system and method of processing data |
7831885, | Jul 04 2007 | LG Electronics Inc | Digital broadcast receiver and method of processing data in digital broadcast receiver |
7840868, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
7873104, | Oct 12 2006 | LG Electronics Inc | Digital television transmitting system and receiving system and method of processing broadcasting data |
7876835, | Feb 10 2006 | LG Electronics Inc | Channel equalizer and method of processing broadcast signal in DTV receiving system |
7881408, | Mar 26 2007 | LG Electronics Inc | Digital broadcasting system and method of processing data |
7940855, | Mar 26 2007 | LG Electronics Inc | DTV receiving system and method of processing DTV signal |
7953157, | Jun 26 2007 | LG Electronics Inc | Digital broadcasting system and data processing method |
7965778, | Aug 24 2007 | LG Electronics Inc | Digital broadcasting system and method of processing data in digital broadcasting system |
7974255, | Aug 07 2003 | RPX Corporation | Method and apparatus for multi-stream transmission with time and frequency diversity in an orthogonal frequency division multiplexing (OFDM) communication system |
7995511, | Jul 02 2007 | LG Electronics Inc | Broadcasting receiver and broadcast signal processing method |
8005167, | Aug 24 2007 | LG Electronics Inc | Digital broadcasting system and method of processing data in digital broadcasting system |
8014332, | Jul 02 2007 | LG Electronics Inc | Broadcasting receiver and broadcast signal processing method |
8018976, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
8018977, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
8018978, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
8023047, | Mar 26 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data |
8023525, | Jul 02 2007 | LG Electronics Inc | Broadcasting receiver and broadcast signal processing method |
8042019, | Jul 04 2007 | LG Electronics Inc. | Broadcast transmitting/receiving system and method of processing broadcast data in a broadcast transmitting/receiving system |
8054891, | Feb 10 2006 | LG Electronics Inc. | Channel equalizer and method of processing broadcast signal in DTV receiving system |
8059627, | Jul 06 2007 | LG Electronics Inc | Digital broadcasting system and method of processing data |
8068561, | Mar 26 2007 | LG Electronics Inc. | DTV receiving system and method of processing DTV signal |
8074152, | Jul 02 2007 | LG Electronics Inc | Broadcasting receiver and broadcast signal processing method |
8085751, | Jul 02 2007 | LG Electronics Inc | Broadcasting receiver and broadcast signal processing method |
8098694, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
8098740, | Jul 02 2007 | LG Electronics Inc | Digital broadcasting system and data processing method |
8098741, | Jul 02 2007 | LG Electronics Inc | Digital broadcasting system and data processing method |
8099654, | Aug 25 2008 | LG Electronics Inc | Digital broadcasting system and method of processing data in the digital broadcasting system |
8102920, | Jul 04 2007 | LG Electronics Inc | Digital broadcasting system and data processing method |
8102921, | Jul 02 2007 | LG Electronics Inc | Digital broadcasting system and data processing method |
8135034, | Jun 26 2007 | LG Electronics Inc | Digital broadcast system for transmitting/receiving digital broadcast data, and data processing method for use in the same |
8135038, | Jun 26 2007 | LG Electronics Inc. | Digital broadcast system for transmitting/receiving digital broadcast data, and data processing method for use in the same |
8135077, | Jul 06 2007 | LG Electronics Inc | Broadcast receiver and method of processing data |
8136011, | Jul 06 2007 | LG Electronics Inc | Broadcast receiver and method of processing data |
8144790, | Jul 04 2007 | LG Electronics Inc | Broadcast receiver and method of processing data |
8160536, | Jul 06 2007 | LG Electronics Inc | Broadcast receiver and method of processing data |
8165244, | Aug 24 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data in digital broadcasting system |
8201050, | Jul 04 2007 | LG Electronics Inc. | Broadcast transmitting system and method of processing broadcast data in the broadcast transmitting system |
8204137, | Feb 10 2006 | LG Electronics Inc. | Channel equalizer and method of processing broadcast signal in DTV receiving system |
8213544, | Mar 30 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data |
8218675, | Mar 26 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing |
8223884, | Mar 26 2007 | LG Electronics Inc. | DTV transmitting system and method of processing DTV signal |
8225167, | Apr 29 2008 | LG Electronics Inc.; LG Electronics Inc | Receiving/transmitting system and data processing method in the receiving/transmitting system |
8265868, | Jul 06 2007 | LG Electronics Inc | Broadcast receiver and method of processing data |
8276177, | Apr 06 2007 | LG Electronics Inc | Method for controlling electronic program information and apparatus for receiving the electronic program information |
8335280, | Aug 24 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data in digital broadcasting system |
8351497, | May 23 2006 | LG Electronics Inc | Digital television transmitting system and receiving system and method of processing broadcast data |
8355451, | Feb 10 2006 | LG Electronics Inc. | Channel equalizer and method of processing broadcast signal in DTV receiving system |
8370707, | Aug 24 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data in the digital broadcasting system |
8370728, | Jul 28 2007 | LG Electronics Inc | Digital broadcasting system and method of processing data in digital broadcasting system |
8374249, | Jul 02 2007 | SUNVELOPE SOLAR, INC | Digital broadcasting system and data processing method |
8374252, | Jun 26 2007 | LG Electronics Inc. | Digital broadcasting system and data processing method |
8391404, | Aug 24 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data in digital broadcasting system |
8429504, | Apr 29 2006 | LG Electronics Inc. | DTV transmitting system and method of processing broadcast data |
8433973, | Jul 04 2007 | LG Electronics Inc | Digital broadcasting system and method of processing data |
8473807, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
8488717, | Mar 26 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data |
8495457, | Apr 29 2008 | LG Electronics Inc. | Receiving/transmitting system and data processing method in the receiving/transmitting system |
8526508, | Feb 10 2006 | LG Electronics Inc. | Channel equalizer and method of processing broadcast signal in DTV receiving system |
8532222, | Mar 30 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data |
8542709, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
8547987, | Jul 02 2007 | LG Electronics Inc. | Broadcasting receiver and broadcast signal processing method |
8576269, | Sep 17 2009 | VIDEO SOLUTIONS PTE LTD | Method and apparatus for communicating an image over a network with spatial scalability |
8589772, | Sep 21 2007 | LG Electronics Inc. | Digital broadcasting receiver and method for controlling the same |
8611731, | Oct 12 2006 | LG Electronics Inc. | Digital television transmitting system and receiving system and method of processing broadcast data |
8656262, | Jul 06 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data |
8670463, | Jun 26 2007 | LG Electronics Inc. | Digital broadcast system for transmitting/receiving digital broadcast data, and data processing method for use in the same |
8689086, | Apr 29 2006 | LG Electronics Inc. | DTV transmitting system and method of processing broadcast data |
8726121, | Mar 27 2007 | Qualcomm Incorporated | Circular buffer based rate matching |
8731100, | Mar 26 2007 | LG Electronics Inc. | DTV receiving system and method of processing DTV signal |
8762816, | Sep 21 2007 | LG Electronics Inc. | Digital broadcasting system and data processing method |
8804817, | May 23 2006 | LG Electronics Inc. | Digital television transmitting system and receiving system and method of processing broadcast data |
8880984, | Sep 21 2007 | LG Electronics Inc. | Digital broadcasting receiver and method for controlling the same |
8954829, | Jul 04 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data |
8964856, | Aug 24 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data in digital broadcasting system |
8982869, | Jul 02 2007 | LG Electronics Inc. | Broadcasting receiver and broadcast signal processing method |
8984381, | Apr 29 2006 | LG Electronics Inc. LLP | DTV transmitting system and method of processing broadcast data |
9094159, | Jul 04 2007 | LG Electronics Inc. | Broadcasting transmitting system and method of processing broadcast data in the broadcast transmitting system |
9106349, | Jul 02 2007 | LG Electronics Inc. | Broadcasting receiver and broadcast signal processing method |
9178536, | Apr 29 2006 | LG Electronics Inc. | DTV transmitting system and method of processing broadcast data |
9184770, | Jul 04 2007 | LG Electronics Inc. | Broadcast transmitter and method of processing broadcast service data for transmission |
9185413, | Feb 10 2006 | LG Electronics Inc. | Channel equalizer and method of processing broadcast signal in DTV receiving system |
9198005, | Mar 26 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data |
9240865, | Sep 21 2007 | LG Electronics Inc. | Digital broadcasting system and data processing method |
9241175, | Sep 21 2007 | LG Electronics Inc. | Digital broadcasting receiver and method for controlling the same |
9369154, | Aug 24 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data in digital broadcasting system |
9392281, | Oct 12 2006 | LG Electronics Inc. | Digital television transmitting system and receiving system and method of processing broadcasting data |
9419732, | Sep 28 2012 | Intel Corporation | Systems and methods for optimized decoding of in-band on-channel (IBOC) services |
9425827, | Apr 29 2006 | LG Electronics Inc. | DTV transmitting system and method of processing broadcast data |
9444579, | Jul 04 2007 | LG Electronics Inc. | Broadcast transmitter and method of processing broadcast service data for transmission |
9473794, | Sep 21 2007 | LG Electronics Inc. | Digital broadcasting receiver and method for controlling the same |
9490936, | Jun 26 2007 | LG Electronics Inc. | Digital broadcast system for transmitting/receiving digital broadcast data, and data processing method for use in the same |
9521441, | Mar 30 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data |
9564989, | May 23 2006 | LG Electronics Inc. | Digital television transmitting system and receiving system and method of processing broadcast data |
9584258, | Jul 02 2007 | LG Electronics Inc. | Broadcasting receiver and broadcast signal processing method |
9660764, | Jul 04 2007 | LG Electronics Inc. | Broadcast transmitter and method of processing broadcast service data for transmission |
9680506, | Apr 29 2006 | LG Electronics Inc. | DTV transmitting system and method of processing broadcast data |
9736508, | Mar 26 2007 | LG Electronics Inc. | DTV receiving system and method of processing DTV signal |
9755849, | Aug 24 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data in digital broadcasting system |
9831986, | Oct 12 2006 | LG Electronics Inc. | Digital television transmitting system and receiving system and method of processing broadcasting data |
9838038, | Sep 21 2007 | LG Electronics Inc. | Digital broadcasting system and data processing method |
9860016, | Jun 26 2007 | LG Electronics Inc. | Digital broadcast system for transmitting/receiving digital broadcast data, and data processing method for use in the same |
9912354, | Mar 26 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data |
9924206, | Mar 26 2007 | LG Electronics Inc. | DTV receiving system and method of processing DTV signal |
RE44232, | Oct 28 2004 | Electronics and Telecommunications Research Institute | OFDM transmission apparatus and method having minimal transmission delay |
RE46728, | Jun 26 2007 | LG Electronics Inc. | Digital broadcasting system and data processing method |
RE46891, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
RE47183, | Aug 24 2007 | LG Electronics Inc. | Digital broadcasting system and method of processing data in digital broadcasting system |
RE47294, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
RE48627, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
RE49757, | Oct 05 2005 | LG Electronics Inc. | Method of processing traffic information and digital broadcast system |
Patent | Priority | Assignee | Title |
5903546, | Aug 31 1994 | Sony Corporation | Means and method of improving multiplexed transmission and reception by coding and modulating divided digital signals |
5949796, | Jun 19 1996 | DIGITAL RADIO EXPRESS, INC | In-band on-channel digital broadcasting method and system |
6353637, | Mar 29 1999 | RPX Corporation | Multistream in-band on-channel systems |
EP800287, | |||
WO9821832, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 15 1999 | Lucent Technologies Inc. | (assignment on the face of the patent) | / | |||
Sep 15 1999 | MILBAR, MAREK | Lucent Technologies Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010252 | /0882 | |
Jan 30 2013 | Alcatel-Lucent USA Inc | CREDIT SUISSE AG | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 030510 | /0627 | |
Aug 19 2014 | CREDIT SUISSE AG | Alcatel-Lucent USA Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 033950 | /0261 |
Date | Maintenance Fee Events |
Jul 01 2005 | ASPN: Payor Number Assigned. |
Jun 13 2007 | ASPN: Payor Number Assigned. |
Jun 13 2007 | RMPN: Payer Number De-assigned. |
Jul 02 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 07 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jul 03 2017 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 10 2009 | 4 years fee payment window open |
Jul 10 2009 | 6 months grace period start (w surcharge) |
Jan 10 2010 | patent expiry (for year 4) |
Jan 10 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 10 2013 | 8 years fee payment window open |
Jul 10 2013 | 6 months grace period start (w surcharge) |
Jan 10 2014 | patent expiry (for year 8) |
Jan 10 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 10 2017 | 12 years fee payment window open |
Jul 10 2017 | 6 months grace period start (w surcharge) |
Jan 10 2018 | patent expiry (for year 12) |
Jan 10 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |