An electric motor car controller includes a voltage detector for detecting the voltage across a filter capacitor, an energy amount calculator for calculating the amount of energy of the filter capacitor from the output of the voltage detector, a frequency band component detector for extracting a given frequency band component included in the amount of energy, a frequency band component coefficient unit for multiplying the frequency band component by a coefficient and outputting a q-axis current command correcting value, and a q-axis current command correcting value adder for adding a q-axis current command correcting value to the q-axis current command value to correct the q-axis current command value.
|
1. An electric motor car controller for smoothing DC power collected from an overhead wire via a filter reactor and a filter capacitor, converting the DC power into AC power with a power converter, driving a vehicle-driving AC motor, and calculating a voltage command to be applied the power converter based on a d-axis current command value and a q-axis current command value commanded by a voltage coordinate converter, the electric motor car controller comprising:
a voltage detector for detecting a voltage across the filter capacitor;
an energy amount calculator for calculating an amount of energy of the filter capacitor from the voltage detected by the voltage detector;
a frequency band component detector for extracting a given frequency band component contained in the amount of energy;
a frequency band component coefficient unit for multiplying the frequency band component by a given coefficient and outputting a q-axis current command correcting value; and
a q-axis current command correcting value adder for correcting the q-axis current command value by adding the q-axis current command correcting value to the q-axis current command value.
5. An electric motor car controller for smoothing DC power collected from an overhead wire means of via a filter reactor and a filter capacitor, converting the power into AC power with a power converter, driving a vehicle-driving AC motor, and calculating a voltage command to be applied to the power converter based on a d-axis current command value and a q-axis current command value commanded by a voltage coordinate converter, the electric motor car controller comprising:
a current detector for detecting an electrical current passing through the filter reactor;
an energy amount calculator for calculating an amount of energy of the filter reactor from the current detected by the current detector;
a frequency band component detector for extracting a given frequency band component included in the amount of energy;
a phase compensator for multiplying the frequency band component by a given coefficient, providing phase compensation of the component, and outputting a q-axis current command correcting value; and
a q-axis current command correcting value adder for correcting the q-axis current command value by adding the q-axis current command correcting value to the q-axis current command value.
2. The electric motor car controller as in
a rotational speed detector for detecting rotational speed of the AC motor;
a rotational speed coefficient unit for outputting a rotational speed coefficient inversely proportional to the rotational speed; and
a rotational speed multiplier for correcting the q-axis current command correcting value according to the rotational speed by multiplying the q-axis current command correcting value by the rotational speed coefficient.
3. The electric motor car controller as in
a direction command coefficient unit for receiving a motion direction command for forward motion or rearward motion of an electric motor car and outputting a direction coefficient responsive to the motion direction in response to a motion direction command; and
a direction command multiplier for multiplying the q-axis current command correcting value and said by the direction command coefficient and correcting the q-axis command current correcting value according to the motion direction.
4. The electric motor car controller as in
6. The electric motor car controller as in
a rotational speed detector for detecting a rotational speed of the AC motor;
a rotational speed coefficient unit for outputting a rotational speed coefficient inversely proportional to the rotational speed; and a rotational speed multiplier for correcting the q-axis current command correcting value according to the rotational speed by multiplying the q-axis current command correcting value by the rotational speed coefficient.
7. The electric motor car controller as in
a direction command coefficient unit for receiving a motion direction command for forward motion or rearward motion of an electric motor car and outputting a direction coefficient responsive to the motion direction in response to a motion direction command; and
a direction command multiplier for multiplying the q-axis current command correcting value by the direction command coefficient and correcting the q-axis command current correcting value according to the motion direction.
8. The electric motor car controller as in
|
1. Field of the Invention
This invention relates to an electric motor car controller for converting DC power collected from an overhead wire to AC power by a power converter and driving an AC motor.
2. Description of the Related Art
In the related art electric motor car controller, in order to remove impeding current contained in return current, first q-axis current iq1 is controlled by applying correcting amount dvq1 to q-axis voltage command vq1 based on voltage oscillation of a filter capacitor. A d-axis current id and the first q-axis current iq1 are found by rotational coordinate conversion based on the phase of the detected motor current.
It can be seen from a voltage equation (not described) on an AC motor in a d-q-axes-rotational coordinate system that d-axis and q-axis currents and magnetic fluxes are interrelated. That is, if only frequency ω1 is operated, the first q-axis current iq1 is controlled. In addition, d-axis current id, d-axis magnetic flux φd, and q-axis magnetic flux φq vary, producing interference. Accordingly, when the first q-axis current iq1 is controlled, variations in the d-axis current id and q-axis magnetic flux φq are suppressed by controlling the first q-axis current iq1 by the q-axis voltage vq, controlling the q-axis magnetic flux φq by the frequency ω1, and controlling the d-axis current id by the d-axis voltage vd (see, for example, JP-A-2002-238298 (page 5, page 7, and FIG. 6)).
In the related art electric motor car controller, a means for suppressing interference between d-axis and q-axis currents and magnetic fluxes is necessary. Therefore, there is the problem that the structure is made complex.
This invention has been made to solve the foregoing problem. The invention provides an electric motor car controller capable of reducing the harmonic components of return current by reducing the harmonic components contained in the amount of energy such that the amount of energy of a filter capacitor or filter reactor is treated as a subject of control.
An electric motor car controller associated with this invention is an electric motor car controller for smoothing DC power collected from an overhead wire by means of a filter reactor and a filter capacitor, converting the power into AC power with a power converter, driving a vehicle-driving AC motor, and calculating a voltage command to be applied to the power converter based on a commanded d-axis current command value and q-axis current command value by a voltage coordinate converter. The electric motor car controller comprises: a voltage detector for detecting the voltage across the filter capacitor; an energy amount calculator for calculating the amount of energy of the filter capacitor from output of the voltage detector; a band-frequency component detector for extracting a given band frequency component contained in the amount of energy; a band-frequency component coefficient unit for multiplying the band frequency component by a given coefficient and outputting a q-axis current command correcting value; and a q-axis current command correcting value adder for correcting the q-axis current command value by adding the q-axis current command correcting value to the q-axis current command value.
This invention reduces the frequency components in a given band contained in the amount of energy of the capacitor by correcting the q-axis current command value. Therefore, harmonic components which are the frequency components in the given band in the return current of the track circuit can be reduced. Consequently, obstacle to safety equipment attached to the track circuit can be prevented.
DC power is inputted from the overhead wire 1 via the current collector 2. The DC voltage is smoothed by the filter reactor 3 and filter capacitor 4. Then, the DC power is converted into arbitrary AC power by the power converter 5, driving the induction motor 6 for driving the vehicle.
Furthermore, a current detector 7 detects the current (three-phase current; iu, iv, and iw) through the induction motor 6 to control the induction motor 6 to arbitrary speed. In addition, a rotational speed detector 8 detects the rotational speed ωr of the induction motor 6.
The voltage Efc across the filter capacitor 4 is detected at a voltage detector 9. The voltage Efc is applied to a multiplier 10, where the square of the Efc is computed. The result of calculation of the multiplier 10 is multiplied by 0.5×C(C is the capacitance of the filter capacitor 4) by means of an energy amount calculator 11. The amount of energy Wc of the filter capacitor 4 is outputted from the energy amount calculator 11. Frequency components dWc in a given band are extracted from the amount of energy Wc by a band-frequency component detector 12 and multiplied by a factor of K by means of a band-frequency component coefficient unit 31. Thus, a q-axis current command correcting value diq* is calculated.
In a subtractor 14, d-axis current value id of the induction motor 6 obtained by the current detector 7 and current coordinate converter 15 is subtracted from the d-axis current command value id* corresponding to the magnetic flux axis of the induction motor 6. A d-axis current control unit 16 provides proportional control or proportional-plus-integral control, for example, of the result of the subtraction, outputting a d-axis voltage correcting signal value vd2.
Also, in a q-axis current command correcting value adder 17, q-axis current command value iq* corresponding to the torqued shaft of the induction motor 6 and the q-axis current command correcting value diq* are added up. A corrected q-axis current command value iq2* is outputted. In a subtractor 18, the q-axis current value iq of the induction motor 6 obtained by the current coordinate converter 15 is subtracted from the corrected q-axis current command value iq2*. A q-axis current control unit 19 provides proportional control or proportional-plus-integral control, for example, of the result of subtraction, outputting a q-axis voltage correcting signal value vq2.
A slip control unit 20 calculates a slip frequency command value ωs* from the d-axis current command value id* and from the q-axis current command value iq*. In an adder 21, the rotational speed ωr of the induction motor 6 delivered from the rotational speed detector 8 and the slip frequency command value ωs* are added up, outputting a power converter frequency command ω1. This corresponds to the frequency outputted from the power converter 5. The ω1 is inputted into an integrator 22, obtaining phase θ.
Additionally, the d-axis current command value id*, q-axis current command value iq*, and ω1 are inputted into a voltage compensator 23 and non-interference control terms vd1 and vq1 on the d- and q-axes are calculated. In an adder 24, the d-axis voltage value vd* produced by the power converter 5 is calculated. The q-axis voltage value vq* produced by the power converter is calculated by an adder 25. The d-axis voltage value vd* and q-axis voltage value vq* are inputted into a voltage coordinate converter 26. A voltage command signal (vu*, vv*, and vw*) to be produced finally by the power converter 5 is computed.
Taking notice of the control system including the q-axis current command correcting value diq* results in a block diagram as shown in
The q-axis current control system 28 consists of the subtractor 18, q-axis current control unit 19, adder 25, voltage coordinate converter 26, and power converter 5. This forms a control system which makes the q-axis current value of the induction motor 6 equal to diq according to the q-axis current command correcting value diq*. With respect to the control system of the iq* that is an input signal, the q-axis current command correcting value adder 17 is omitted in
In the transfer block 29, transfer characteristics from q-axis current to torque are shown. Torque produced by the induction motor 6 due to the q-axis current iq is shown. Since there is a relation, torque (dτ)×number of revolutions (or)=power (dp), the multiplier 30 shows power dp produced by the induction motor 6. The power produced by the induction motor 6 flows to the electricity-receiving means 32 through the power converter 5 and becomes energy Wc of the filter capacitor 4.
With DC overhead wiring, the voltage Efc across the filter capacitor 4 has a DC component and so if the Wc is calculated from the Efc, the amount of energy Wc includes energy of the DC component. Since the DC component is not a component to be suppressed, a given AC component of the amount of energy Wc of the filter capacitor 4 in the electricity-receiving means 32 is extracted as given band frequency component dWc by the band-frequency component detector 12. A feedback loop is so constructed that the band frequency component dWc becomes null. An error is calculated by the subtractor 27 in response to a command value of zero. The q-axis current command correcting value diq* is calculated via the coefficient unit 31. As mentioned above, the q-axis current control system is a control system including the q-axis current control unit 19. Here, the current follows the q-axis current command correcting value diq* with sufficiently high responsiveness. “diq” substantially coincident with diq* is obtained.
On the premise that control is provided on the d- and q-axes of the induction motor 6 by the current coordinate converter 15, the relation between the q-axis current iq and torque τ in the induction motor is generally given by Equation (1). Accordingly, the relation between diq and dτ can be expressed similarly to Equation (1). The transfer block 29 from diq to dτ is obtained. Pm is the number of pair poles. M is the mutual inductance. Lr is the secondary inductance. φdr is d-axis magnetic flux.
Furthermore, since the product of the torque dτ and the rotational speed ωr of the induction motor 6 becomes power dp, the power dp can be expressed using the multiplier 30 in
Here, the subject of control becomes the AC component dWc of the given band frequency component included in the amount of energy Wc of the filter capacitor 4. Its command value is zero. Variations in the energy of the filter capacitor 4 are reduced by the feedback loop of
Then, the transfer function from the power dp to the amount of energy Wc in the electricity-receiving means 32 is described. Since only the AC component is treated, if the DC component (DC voltage source of the overhead wire) in the electricity-receiving means 32 is neglected, the electricity-receiving means 32 is only made up of the filter reactor 3 and filter capacitor 4. Let P be the power from the induction motor 6 to the electricity-receiving means 32. The relation between the P and Wc is given by Equation (2). That is, the amount of energy of the filter capacitor 4 can be controlled by the power of the induction motor 6. In Equation (2), L is the inductance value of the filter reactor 3. C is the capacitance of the filter capacitor 4. R is the resistive component value of the filter reactor 3. s is the complex parameter in an s-function obtained by Laplace-transforming a time function.
An example of an open-loop Bode diagram owing to the block diagram of
The relation between the amount of energy Wc of the filter capacitor 4 and the current (return current Is) through the filter reactor 3 is next described. If the Efc is separated into DC component vdc and AC component vac, the amount of energy Wc is as given by Equation (3). The AC component Wcac of the amount of energy Wc is as given by Equation (4).
For example, where the DC voltage of the electricity-receiving means 32 is 1500 V, it follows that vac<<2vdc (=3000 V). Therefore, Equation (5) holds. Consequently, suppressing the AC component of the amount of energy Wc is equivalent to suppressing the vac. As a result, this is equivalent to suppressing the return current Is.
According to this configuration, the amount of energy Wc of the filter capacitor 4 is detected. Feedback control is provided such that the given band frequency component of the energy amount Wc becomes zero. The AC component of the energy amount Wc decreases. Therefore, the AC component of the frequencies in the given band of the return current in the track circuit can be attenuated. Obstacle to the track circuit can be circumvented.
Furthermore, it is only necessary to modify the q-axis current command value to realize the feedback control. A simple structure can be accomplished.
In addition, the feedback control can be linearized by taking the amount of energy Wc of the filter capacitor 4 as a subject of control. In consequence, the amount by which the AC component of the return current decreases can be accurately designed by means of a design using a simple open-loop Bode diagram.
Electric current Is through the filter reactor 3 is detected by a current detector 33. The current Is is inputted into a multiplier 34, where the square of the current Is is calculated. Furthermore, the result of the multiplier 34 is multiplied by 0.5×L (L is the inductance value of the filter reactor 3) by means of an energy amount calculator 35. As the output from the energy amount calculator 35, energy amount WL of the filter reactor 3 is calculated. The energy amount WL of the filter reactor 3 is outputted from the energy amount calculator 35. Given band frequency component dWL is extracted from the energy amount WL by means of a band-frequency component detector 36. Band frequency component dWL is multiplied by a factor of K by a coefficient unit 37a of a phase comparator 37, calculating q-axis current command correcting value diq*. Furthermore, the phase compensator 37 is assumed to have transfer characteristics G(s) as given by Equation (6), for example. Constants are so selected that the feedback control system becomes stable. In Equation (6), T1 and T2 are time constants.
Taking notice of the control system including the q-axis current command correcting value diq* results in a block diagram as shown in
Of the energy amount WL of the filter reactor 3 in the electricity-receiving means 32, the AC component of the given frequency band is extracted as given band frequency component dWL by means of the band-frequency component detector 36. The feedback loop is so constructed that the band frequency component dWL becomes null. The subtracter 38 calculates the error in response to a command value of zero, and diq* is calculated as q-axis current command correcting value via the phase compensator 37. The q-axis current control system is a control system including the q-axis current control unit 19. The current follows the q-axis current command correcting value diq* with sufficiently high responsiveness. “diq” substantially coincident with the q-axis current command correcting value diq* is obtained.
Then, the transfer function from the power dp to the amount of energy WL in the electricity-receiving means 32 is described. Since only the AC component is treated, if the DC component (DC voltage source of the overhead wire) in the electricity-receiving means 32 is neglected, the electricity-receiving means 32 is only made up of the filter reactor 3 and filter capacitor 4. Let P be the power from the induction motor 6 to the electricity-receiving means 32. The relation between the P and amount of energy WL is given by Equation (7). That is, the amount of energy of the filter reactor 3 can be controlled by the power of the induction motor 6. In Equation (7), L is the inductance value of the filter reactor 3. C is the capacitance of the filter capacitor 4. R is the resistive component value of the filter reactor.
An example of an open-loop Bode diagram owing to the block diagram of
According to this configuration, the amount of energy WL of the filter reactor 3 is detected. Feedback control is provided such that the given band frequency component of the energy amount WL becomes zero. Consequently, the AC component of the energy amount WL decreases. Obstacle to the track circuit can be circumvented by attenuating the AC components of the frequencies in the given band of the return current.
Furthermore, feedback control can be accomplished simply by changing the q-axis current command value. A simple structure can be achieved.
In addition, the feedback control can be linearized by using the amount of energy WL of the filter reactor 3 as a subject of control. In consequence, the amount by which the AC component of the return current decreases can be accurately designed by means of a design using a simple open-loop Bode diagram.
Furthermore, the capacitances of the filter reactor 3 and filter capacitor 4 for suppressing the AC component of the return current can be reduced. Therefore, the whole construction can be reduced in size and weight.
The q-axis current command correcting value diq* outputted from the band-frequency component coefficient unit 13 is entered into the rotational speed multiplier 39. Also, the rotational speed ωr outputted by the rotational speed detector 8 is set to a rotational speed coefficient K2 by a rotational speed coefficient unit 40.
As shown in the block diagrams of
Accordingly, if the rotational speed ωr is low, the gain in the open-loop Bode diagram is prevented from decreasing by the rotational speed coefficient K2. Because of the block diagrams of
K2=50/(ωr/2π) (8)
According to this configuration, a constant open-loop gain can be gained at all times irrespective of the rotational speed ωr of the induction motor 6 by means of design. Therefore, even at low rotational speed ωr, the AC component in the filter capacitor 4 can be reduced.
In the above description of mode of practice 3, the energy of the filter capacitor 4 is a subject of control. Similar effects can be expected where the energy of the filter reactor 3 as shown in
Furthermore, in the above description of mode of practice 3, the input to the rotational speed coefficient unit 40 is the rotational speed ωr of the induction motor 6. In a case where the value of the output ωs* from the slip control unit 20 is sufficiently small compared with the rotational speed ωr, similar effects can be expected even if the power converter frequency instruction ω1 is taken as the input to the rotational speed coefficient unit 40.
According to this configuration, the q-axis current is controlled on the d- and q-axes coincident with the induction motor 6. Therefore, the AC component in the amount of energy of the filter capacitor 4 can be reduced more accurately.
In mode of practice 4, the energy of the filter capacitor 4 is a subject of control. Similar effects can be expected even if the amount of energy of the filter reactor 3 is taken as a subject of control.
The q-axis current command iq* should reverse in sign between forward and rearward motions. Therefore, as shown in
According to this configuration, the AC component of the energy in the filter capacitor 4 can be effectively reduced irrespective of whether the motor rotates forwardly or rearwardly by varying the sign like the q-axis command correcting signal diq** depending on forward and rearward motions.
In mode of practice 5, the energy of the filter capacitor 4 is taken as a subject of control. Similar effects can be expected even if the energy of the filter reactor 3 is taken as a subject of control.
Furthermore, in the above description of mode of practice 1 through mode of practice 5, the rotational speed ωr of the induction motor 6 is detected by the rotational speed detector 8. Similar effects can be expected if the rotational speed estimation value ωr is estimated from the q-axis current command value iq* or the like.
Additionally, in the above description of mode of practice through mode of practice 5, the induction motor 6 is driven the output of the power converter 5. Similar effects can expected even about an AC motor such as a synchronous motor.
Azuma, Satoshi, Maruyama, Takafumi
Patent | Priority | Assignee | Title |
10074134, | Jan 21 2000 | Tradecapture OTC Corp. | System and method for trading commodities and the like |
10192267, | Jan 21 2000 | Tradecapture OTC Corp. | System for trading commodities and the like |
10402905, | Jan 21 2000 | Tradecapture OTC Corp. | System for trading commodities and the like |
11790442, | Jan 21 2000 | Tradecapture OTC Corp. | System and method for trading commodities and the like |
11790443, | Jan 21 2000 | Tradecapture OTC Corp. | Display system |
7728537, | Sep 11 2006 | Sanyo Electric Co., Ltd. | Motor control device and current detecting unit |
8106620, | Aug 29 2006 | Mitsubishi Electric Corporation | Vector control device for alternating-current electric motor |
Patent | Priority | Assignee | Title |
4327313, | Mar 05 1979 | Hitachi, Ltd. | Control apparatus for electric car |
4788485, | Mar 24 1986 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for controlling electric motor |
5184057, | Sep 14 1989 | Hitachi, Ltd. | Control method and device for AC motor |
5218520, | Nov 27 1991 | SUNDSTRAND CORPORATION, A CORPORATION OF DE | VSCF system with reduced DC link ripple |
5231339, | Mar 16 1990 | Hitachi, Ltd.; Hitachi Techno Engineering Co., Ltd. | Control device for induction motor |
5373223, | Jul 27 1989 | Seiko Epson Corporation | Power converter/inverter system with instantaneous real power feedback control |
5532569, | Jun 02 1988 | Hitachi, LTD | Inverter control apparatus |
5959430, | Mar 07 1997 | Kabushiki Kaisha Toshiba | Power conversion system |
6166514, | Mar 19 1997 | Hitachi, Ltd. | Apparatus and method for controlling induction motor |
6242895, | Mar 31 2000 | Mitsubishi Denki Kabushiki Kaisha | Controller of adjustable DC voltage for a transformerless reactive series compensator |
6335605, | Dec 08 1999 | Mitsubishi Denki Kabushiki Kaisha | Vector controller for induction motor |
6479971, | Jan 30 1998 | Method for regulating a three-phase machine without a mechanical rotary transducer | |
6556460, | Aug 29 2001 | Hitachi, Ltd. | Method for controlling a vehicle provided with an electric power converter |
6633495, | Aug 29 2001 | Hitachi, Ltd. | DC apparatus and vehicle using the same |
6642689, | Feb 13 2001 | Hitachi, Ltd. | Control apparatus for power converter |
6653812, | Jan 31 2002 | Analog Devices, Inc. | Space vector modulation methods and structures for electric-motor control |
20030062870, | |||
20030169015, | |||
20040124807, | |||
20040217728, | |||
20040232876, | |||
20050002210, | |||
20050057212, | |||
20050073280, | |||
20050110450, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 14 2005 | AZUMA, SATOSHI | Mitsubishi Denki Kabushiki Kaisha | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016271 | /0114 | |
Jan 17 2005 | MARUYAMA, TAKAFUMI | Mitsubishi Denki Kabushiki Kaisha | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016271 | /0114 | |
Feb 07 2005 | Mitsubishi Denki Kabushiki Kaisha | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 29 2006 | ASPN: Payor Number Assigned. |
Jul 08 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 13 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jul 27 2017 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Feb 07 2009 | 4 years fee payment window open |
Aug 07 2009 | 6 months grace period start (w surcharge) |
Feb 07 2010 | patent expiry (for year 4) |
Feb 07 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 07 2013 | 8 years fee payment window open |
Aug 07 2013 | 6 months grace period start (w surcharge) |
Feb 07 2014 | patent expiry (for year 8) |
Feb 07 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 07 2017 | 12 years fee payment window open |
Aug 07 2017 | 6 months grace period start (w surcharge) |
Feb 07 2018 | patent expiry (for year 12) |
Feb 07 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |