A wavelength stabilization module having a light-receiving element array and a method of manufacturing the same are disclosed. The wavelength stabilization module having a laser diode which irradiates a laser beam at the front side and the rear side thereof comprises a collimator for paralleling the laser beam irradiated at the rear side; a beam splitter for splitting the laser beam passed through the collimator into the two directional laser beams; a light-receiving element for receiving one of the split laser beams; a filter for transmitting a specific wavelength of the other of the split laser beams; a light-receiving element array for receiving the laser beam passed through the filter; and a controller for controlling the output wavelength of the laser diode by using the signals output from the light-receiving element and the light-receiving element array, and the filter and the light-receiving element array are tilted at a predetermined angle with respect to the laser beam and lock the wavelength by using an incident angle dependency of the laser beam passed through the filter.
|
8. A method of manufacturing a wavelength stabilization module, the method comprising:
assembling a laser diode, a collimator, a beam splitter, and a light-receiving element on a TEC;
mounting the TEC on a butterfly package;
applying an input signal to the laser diode to operate; and
mounting a sub-mount mounted with the filter and a light-receiving element array at a predetermined angle and a predetermined distance, while monitoring the wavelength of the beam of the laser diode, under the temperature controlled by the TEC,
wherein the light-receiving element array comprises a plurality of elements that detect different wavelengths.
1. A wavelength stabilization module having a laser diode which irradiates a laser beam at the front side and the rear side thereof, the module comprising:
a collimator for paralleling the laser beam irradiated at the rear side;
a beam splitter for splitting the laser beam passing through the collimator into two directional laser beams;
a light-receiving element for receiving one of the split laser beams;
a filter for transmitting a specific wavelength of an other of the split laser beams;
a light-receiving element array for receiving the laser beam passing through the filter; and
a controller for controlling the output wavelength of the laser diode using the signals output from the light-receiving element and the light-receiving element array,
wherein the filter and the light-receiving element array are tilted at a predetermined angle with respect to the laser beam and lock the wavelength using an incident angle dependency of the laser beam passing through the filter, and
the light-receiving element array comprises a plurality of elements that detect different wavelengths.
2. The wavelength stabilization module according to
3. The wavelength stabilization module according to
4. The wavelength stabilization module according to
5. The wavelength stabilization module according to
6. The wavelength stabilization module according to
7. The wavelength stabilization module according to
9. The method according to
10. The method according to
|
1. Field of the Invention
The present invention relates to a wavelength stabilization apparatus in a WDM or analog optical communication system, and more particularly, to a wavelength stabilization module having a light-receiving element array which has the dependency of incident angle of a transmission light passing through a F-P filter, to stabilize the wavelength of light output from a laser diode, and a method of manufacturing the same.
2. Description of the Prior Art
In Wavelength Division Multiplexing (WDM) light source module, a multi-functional device has been a world's trend, and the wavelength stabilization function becomes more important in the channel interval of 100 GHz or less. According to this trend, the transceiver module for stabilizing the wavelength becomes one of the most important components in point of view that the structure of the system is simplified so as to increase an economical efficiency and reliability.
Conventionally, to stabilize the wavelength of the transmitted laser beam, various methods such as using a reference absorption gas, a grating, a fiber grating, or a Fabry-Perot (F-P) filter have been used. Among them, efficient and economical means capable of receiving a wide wavelength range in dense WDM (DWDM) having at least several tens of channels is obtained using the F-P filter. The wavelength control precision of wavelength stabilization module developed until recently is approximately 20–50 pm. With this numerical value of the wavelength control precision, the wavelength stabilization module is applicable to the WDM system having channel interval of 100 GHz. However, since most of the modules are external type modules, they have problems in that the systems thereof are complex.
The wavelength stabilization system using the F-P filter has been mainly used in stabilizing the wavelength of a Distributed Feed-Back (DFB) laser diode. As a tuning method for locking the wavelength of the laser diode to the wavelength of an International Telecommunication Union-Telecommunication (ITU-T) grid, several ways have been developed such as the tilting of the angle of an etalon filter, the change of the cavity's length according to the temperature change of the etalon filter, or the change of the mechanical cavity's length according to piezoelectric actuation.
In general, the wavelength of the DFB laser diode is varied by the second method using lie temperature change of the wavelength stabilization module including the etalon filter on a Thermo-Electric Cooler (TEC). The degree of wavelength variation is approximately 0.1 nm/° C., and temperature for stabilizing the wavelength is about 10° C. in 100 GHz-FSR (Free Spectral Range) system. However, when the wavelength tuning function due to the temperature's change is performed in the wavelength stabilization system, the operation condition of the laser diode may be affected, and thus the driving condition of the element becomes very restricted.
In addition, the method of stabilizing the wavelength by tilting the angle of the etalon filter has very high sensitivity in the fine-tilting of the angle. Theoretically, if the wavelength stabilization module is tilted by about 0.01° in an initial state with a rotation of 8° to decrease the reflectivity noise, the wavelength change of about 0.05 nm can be obtained. However, it is difficult for the wavelength stabilization system to be aligned with an accuracy like that, in practical realization, and the yield thereof may be low and the cost thereof is very high.
Thus, the object of the present invention is to provide a wavelength stabilization module having a light-receiving element array and a method of manufacturing the same which can decrease the reflection noise and can stabilize the wavelength by tilting a filter and a photodiode, while uniformly maintaining the temperature of the system.
In order to accomplish the above-mentioned object of the present invention, a wavelength stabilization module having a laser diode which irradiates a laser beam at the front side and the rear side thereof comprises a collimator for paralleling the laser beam irradiated at the rear side; a beam splitter for splitting the laser beam passed through the collimator into the two directional laser beams; a light-receiving element for receiving one of the split laser beams; a filter for transmitting a specific wavelength of the other of the split laser beams; a light-receiving element array for receiving the laser beam passed through the filter; and a controller for controlling the output wavelength of the laser diode by using the signals output from the light-receiving element and the light-receiving element array, and the filter and the light-receiving element array are tilted at a predetermined angle with respect to the laser beam and lock the wavelength by using an incident angle dependency of the laser beam passed through the filter.
In order to accomplish the above-mentioned object of the present invention, a method of manufacturing the wavelength stabilization module comprises the steps of assembling the laser diode, the collimator, the beam splitter, and the light-receiving element on a TEC; mounting the TEC on a butterfly package; applying an input signal to the laser diode to operate the laser diode; and mounting a sub-mount mounted with the filter and the light-receiving element array at a predetermined angle and a predetermined distance, while monitoring the wavelength of the beam of the laser diode, under controlling the temperature by the TEC.
The present invention relates to a wavelength detection and stabilization apparatus used in a WDM optical communication system or an analog optical communication system, and provides a new module structure and package for stabilizing the wavelength of a multi-channel wavelength variation light source device. In the structure of the wavelength stabilization apparatus, the conventional problems can be overcome by arranging a plurality of light-receiving elements at an appropriate location in a light-receiving section for receiving the light passed through the filter and by using the dependency of incident angle between the light receiving elements. This light-receiving element may be a photodiode, and the filter is preferably an F-P (Fabry-Perot filter).
In the module having the beam splitter, the collimator for collimating a beam, the F-P filter, the monitor photodiode, and the photodiode array at the rear side thereof, the wavelength stabilization function can be implemented in the whole wavelength range by a method of aligning the angles of the F-P filter and the photodiode array block. In case of using the photodiode array, a method of combining and using the outputs of a plurality of photodiodes or one photodiode among a plurality of the photodiodes is used to lock the laser beam with a target frequency. Particularly, F-P filter and a photodiode array are fixed on a sub-mount to be blocked, the wavelength stabilization function satisfying the wavelength interval of the multi-channel WDM communication standard can be provided by using the dependency of incident angle of the transmission light passed through the F-P filter and the photodiode in the photodiode array.
Hereinafter, embodiments of the present invention will be explained with reference to the accompanying drawings. However, the embodiment of the present invention can be changed into a various type, and it should be not understood that the scope of the present invention is limitted to the following embodiments. The embodiments of the present invention are provided to explain the present invention to those skilled in the art.
The components such as the laser diode 100, the collimator 110, the coupler 108, and the beam splitter 112 are positioned on a TEC 104 to maintain the operation temperature of the element to be constant. In order to allow the TEC 104 to maintain the predetermined temperature, the TEC 104 is operated with a thermistor 106. In order to reduce the reflection loss of the laser beam, the F-P filter 122 and the photodiode array 126 are tilted by a certain angle with respect to the propagation direction of the laser beam. Here, the more the angle is increased, the more it is difficult to implement them, and preferably, the tilting angle is in the range of 2° to 10°. Alternatively, if an isolator is used to reduce the reflection loss of the laser beam, the F-P filter 122 and the photodiode array 126 may be not tilted by the certain angle with respect to the propagation direction of the laser beam. While tilting, the tilting angle is preferably 8°, and a sub-mount 102 for the laser diode and a sub-mount 120 for the F-P filter and the photodiode array are used so as to easily perform the tilting operation. Also, a monitor photodiode 116 is may be mounted on the sub-mount 114. The mounted-module is finally connected to each of pad portions on the butterfly package 132 through wires 130.
The wavelength stabilization module according to the present invention can be manufactured by independently modularizing each sub-mount and then mounting the total modules. Alternatively, the wavelength stabilization module according to the present invention can be manufactured by mounting the components such as the laser diode 100, the collimator 110, the coupler 108, the beam splitter 112, and the photodiode array 126 on the total modules, respectively. In the former, a silicon substrate manufactured by a micro-machining process is used as the sub-mount. At this time, in order to easily mount each of the components on the silicon sub-mount, a pattern may be formed or a trench may be formed according to the size of the each component, and thereby the arrangement and the assembly thereof can be manually performed.
The approximate sequence of the total module assemble is as follows: First, the sub-mount 102 for the laser diode on which each of the components including the laser diode 100 is assembled is mounted on the TEC 104 and then the TEC 104 is mounted in the butterfly package 132. Then, an input signal is applied to the laser diode 100 to allow the laser diode to be operable. And, the photodiode array block is mounted and arranged, while monitoring the wavelength of the beam output from the rear side thereof under controlling an appropriate temperature. At this time, the photodiode array block is fixed at a desired location, with a certain angle and a certain arrangement distance. When the photodiode array block is mounted, it may be fixed by means of adhesive material such as epoxy, solder, laser welding, or the like.
A controller 500 monitors the output of the monitor photodiode 106 and the output of the photodiode array 126 and a control signal from the controller 500 is fed back to the input terminal of a laser diode driver 502 to stabilize the output wavelength of the laser diode 100. The controller 500 can be implemented with an operational amplifier, and function as converting the wavelength of the laser diode by calculating the input current due to the error of the output wavelength of the laser diode and inputting it to the laser diode driver.
According to the present invention, the wavelength stabilization module for a multi-channel variable wavelength light source, which can be used in a WDM application having a dense wavelength interval, can be manufactured. It is accomplished through the fine wavelength variation effect due to the fine change of the incident angle of the transmission light passing through the filter by using the photodiode array and the filter tilted by the certain angle with respect to the direction of the laser beam. In addition, the wavelength of the laser beam can be locked to a desired wavelength channel at a certain temperature by using the TEC, without changing the operation temperature of the laser diode, and low cost and high yield can be accomplished.
Although the present invention has been illustrated and described with respect to exemplary embodiments thereof, the present invention should not be understood as limited to a specific embodiment, and it should be understood by those skilled in the art that the foregoing and various other changes, omission and additions may be made therein and thereto, without departing from the spirit and scope of the present invention.
Lee, Jong Hyun, Moon, Jong Tae, Eom, Yong Sung, Choi, Kwang Seong, Park, Heung Woo, Yun, Ho Gyeong, Choi, Byung Seok
Patent | Priority | Assignee | Title |
10222624, | Nov 06 2015 | Electronics and Telecommunications Research Institute | Multi-channel optical module device |
11848541, | Dec 15 2020 | II-VI DELAWARE, INC. | Spectral beam combiner with independent wavelength stabilization |
Patent | Priority | Assignee | Title |
5359434, | Mar 26 1991 | Kabushiki Kaisha Toshiba | Scanning optical apparatus |
6275317, | Mar 10 1998 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Hybrid integration of a wavelength selectable laser source and optical amplifier/modulator |
6560253, | Jan 14 1999 | Lumentum Operations LLC | Method and apparatus for monitoring and control of laser emission wavelength |
KR200111932, | |||
KR200127330, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 22 2003 | CHOI, KWANG SEONG | Electronics and Telecommunications Research Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014445 | /0901 | |
Jul 22 2003 | PARK, HEUNG WOO | Electronics and Telecommunications Research Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014445 | /0901 | |
Jul 22 2003 | YUN, HO GYEONG | Electronics and Telecommunications Research Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014445 | /0901 | |
Jul 22 2003 | CHOI, BYUNG SEOK | Electronics and Telecommunications Research Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014445 | /0901 | |
Jul 22 2003 | EOM, YONG SUNG | Electronics and Telecommunications Research Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014445 | /0901 | |
Jul 22 2003 | LEE, JONG HYUN | Electronics and Telecommunications Research Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014445 | /0901 | |
Jul 22 2003 | MOON, JONG TAE | Electronics and Telecommunications Research Institute | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014445 | /0901 | |
Aug 27 2003 | Electronics and Telecommunications Research Institute | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jul 12 2006 | ASPN: Payor Number Assigned. |
Aug 12 2009 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Feb 24 2010 | RMPN: Payer Number De-assigned. |
Feb 25 2010 | ASPN: Payor Number Assigned. |
Mar 15 2013 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Oct 23 2017 | REM: Maintenance Fee Reminder Mailed. |
Apr 09 2018 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 14 2009 | 4 years fee payment window open |
Sep 14 2009 | 6 months grace period start (w surcharge) |
Mar 14 2010 | patent expiry (for year 4) |
Mar 14 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 14 2013 | 8 years fee payment window open |
Sep 14 2013 | 6 months grace period start (w surcharge) |
Mar 14 2014 | patent expiry (for year 8) |
Mar 14 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 14 2017 | 12 years fee payment window open |
Sep 14 2017 | 6 months grace period start (w surcharge) |
Mar 14 2018 | patent expiry (for year 12) |
Mar 14 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |