An assembly and process for identifying and tracking assets, particularly tubulars, equipment, tools and/or devices. An antenna is electrically connected to a responding device, such as a radio frequency identification device, and this assembly is connected to an asset. The antenna may be positioned about the exterior and/or the interior of the asset and significantly increases the range of signals that may be received and/or broadcast by the responding device. A transceiver may accordingly be positioned a greater distance from the asset without regard to the orientation of the asset and still permit communication between the transceiver and the responding device. In this manner, information that specifically identifies the asset may be compiled in a data base so as to maintain an accurate history of the usage of such assets as tubulars, equipment, tool and/or devices.

Patent
   7014100
Priority
Apr 27 2001
Filed
Apr 27 2001
Issued
Mar 21 2006
Expiry
Apr 27 2021
Assg.orig
Entity
Large
81
68
all paid
15. An assembly for use as a fluid conduit comprising:
a tubular;
a responding device connected to said tubular;
a first antenna electrically connected to said responding device and extending along the outer periphery of said tubular; and
a second antenna electrically connected to said responding device and extending along the inner periphery of said tubular.
1. An assembly for identifying and tracking an asset comprising:
a responding device adapted to be connected to an asset;
a first antenna electrically connected to said responding device and extending along the outer periphery of said asset; and
a second antenna electrically connected to said responding device and extending along the inner periphery of said asset.
32. An assembly for use as a fluid conduit comprising:
a tubular;
a collar releasably secured to one end of said tubular, said collar comprising a generally tubular body;
a responding device connected to said generally tubular body;
a first antenna electrically connected to said responding device and extending along the outer periphery of said generally tubular body; and
a second antenna electrically connected to said responding device and extending along the inner periphery of said generally tubular body.
2. The assembly of claim 1 wherein said responding device is a radio frequency identification device.
3. The assembly of claim 2 wherein said radio frequency identification device is passive.
4. The assembly of claim 1 wherein said antenna extends substantially around the entire outer periphery of said asset.
5. The assembly of claim 1 wherein said asset has a groove in the outer surface thereof and said responding device and said first antenna are positioned within said groove.
6. The assembly of claim 5 wherein said responding device is a radio frequency identification device.
7. The assembly of claim 6 wherein said radio frequency identification device is passive.
8. The assembly of claim 5 wherein said groove extends substantially around the entire outer periphery of said asset.
9. The assembly of claim 8 wherein said groove is generally annular.
10. The assembly of claim 8 wherein said first antenna extends substantially around the entire outer periphery of said asset.
11. The assembly of claim 5 further comprising:
a sealant positioned in said groove so as to surround and secure said responding device and said first antenna in said groove.
12. The assembly of claim 1 wherein said responding device is positioned within a hole in said asset.
13. The assembly of claim 1 wherein at least a portion of the interior of said asset has screw threads.
14. The assembly of claim 1 wherein said second antenna is embedded in a ring having a threaded outer surface that is mated with said screw threads of said interior of said asset.
16. The assembly of claim 15 wherein said responding device is a radio frequency identification device.
17. The assembly of claim 16 wherein said radio frequency identification device is passive.
18. The assembly of claim 15 wherein said tubular has a groove in the outer surface thereof and said responding device and said first antenna are positioned within said groove.
19. The assembly of claim 18 wherein said responding device is a radio frequency identification device.
20. The assembly of claim 19 wherein said radio frequency identification device is passive.
21. The assembly of claim 18 wherein said groove extends substantially around the entire outer periphery of said tubular.
22. The assembly of claim 21 wherein said groove is generally annular.
23. The assembly of claim 21 wherein said first antenna extends substantially around the entire outer periphery of said tubular.
24. The assembly of claim 18 further comprising:
a sealant positioned in said groove so as to surround and secure said responding device and said first antenna in said groove.
25. The assembly of claim 15 wherein said responding device is positioned within a hole in said tubular.
26. The assembly of claim 15 wherein at least a portion of the interior of said generally tubular body has screw threads.
27. The assembly of claim 15 wherein said second antenna is embedded in a ring having a threaded outer surface that is mated with said screw threads of said interior of said tubular.
28. The assembly of claim 15 wherein said tubular is drill pipe and the fluid conduit is a drill string for use in a subterranean well.
29. The assembly of claim 15 wherein said tubular is tubing and the fluid conduit is a tubing string for use in a subterranean well.
30. The assembly of claim 15 wherein said tubular is pipe and the fluid conduit is a pipeline.
31. The assembly of claim 15 further comprising:
a tool connected to said tubular; and
a second responding device connected to said tool.
33. The assembly of claim 32 wherein said responding device is a radio frequency identification device.
34. The assembly of claim 33 wherein said radio frequency identification device is passive.
35. The assembly of claim 32 wherein said first antenna extends substantially around the entire outer periphery of said generally tubular body.
36. The assembly of claim 32 wherein said generally tubular body has a groove in the outer surface thereof and said responding device and said first antenna are positioned within said groove.
37. The assembly of claim 36 wherein said responding device is a radio frequency identification device.
38. The assembly of claim 37 wherein said radio frequency identification device is passive.
39. The assembly of claim 36 wherein said groove extends substantially around the entire outer periphery of said generally tubular body.
40. The assembly of claim 39 wherein said groove is generally annular.
41. The assembly of claim 39 wherein said first antenna extends substantially around the entire outer periphery of said generally tubular body.
42. The assembly of claim 36 further comprising:
a sealant positioned in said groove so as to surround and secure said responding device and said first antenna in said groove.
43. The assembly of claim 32 wherein said responding device is positioned within a hole in said generally tubular body.
44. The assembly of claim 32 wherein at least a portion of the interior of said generally tubular body has screw threads.
45. The assembly of claim 32 wherein said second antenna is embedded in a ring having a threaded outer surface that is mated with said screw threads of said interior of said generally tubular body.
46. The assembly of claim 32 wherein said tubular is drill pipe and the fluid conduit is a drill string for use in a subterranean well.
47. The assembly of claim 32 wherein said tubular is tubing and the fluid conduit is a tubing string for use in a subterranean well.
48. The assembly of claim 32 wherein said tubular is pipe and the fluid conduit is a pipeline.

This application is related to the following copending patent applications: U.S. patent application Ser. No. 09/586,648, filed on Jun. 1, 2000 and entitled “Method and System for Performing Operations and for Improving Production in Wells”; U.S. patent application Ser. No. 09/656,720, filed on Sep. 7, 2000 and entitled “Method and System for Performing a Casing Conveyed Perforating Process and Other Operations in Wells”; and U.S. patent application Ser. No. 10/032,114, filed on Dec. 21, 2001 and entitled “Method and Apparatus for Determining Position in a Pipe”.

1. Field of the Invention

The present invention relates to processes and assemblies for identifying and tracking assets, such as tubulars, equipment and tools used in subterranean wells, and more particularly, to processes and assemblies for identifying and tracking such assets which facilitates accurate input of data into a data base.

2. Description of Related Art

Tubulars are commonly employed in subterranean wells. During drilling of a subterranean well bore, a drill bit is secured to one end of a drill string which is made up of individual lengths of drill pipe. These lengths are conventionally secured together by means of a threaded collar. After the drill bit is secured to a first length of drill pipe, the bit and first length of drill pipe are lowered to the ground and usually rotated to permit the bit to penetrate the earth. Drilling fluid is circulated via the interior of the pipe to the drill bit to lubricate the bit and to carry cuttings back to the drilling rig at the surface of the earth via the annulus formed between the bore hole being drilled and the drill pipe. As drilling progresses, additional lengths of drill pipe are secured to the uppermost length of drill pipe in the well bore. As this process continues, a drill string is formed that is made up of individual lengths of drill pipe secured together. Once the well bore is drilled to the desired depth, the well bore is completed by positioning a casing string within the well bore to increase the integrity thereof and provide a path for producing fluids to the surface. The casing string is normally made up of individual lengths of relatively large diameter metal tubulars which are secured together by any suitable means, for example screw threads or welds. Usually, each length of casing is provided with male screw threads at each end thereof and individual lengths of casing are joined together by means of a collar having female screw threads at each end thereof. Conventionally, after the casing string is cemented to the well bore face and perforated to establish fluid communication between the subterranean formation and the interior of the casing string, a production tubing string is positioned within the casing string to convey fluids produced into the well to the surface of the earth. Tubing strings are conventionally made up of individual lengths of relatively small diameter tubing secured together by collars in a manner as described above with respect to casing. Tubing strings may also be used to convey fluids to treat the well or a subterranean formation of interest or to convey tools or equipment, such as packers, plugs, etc., that are needed to complete or work over a well

Tubulars are transported to the well site in anticipation of an operation and are temporarily stored there until deployed into a well. At the well site, each length of tubular is measured or “tagged” to determine the exact length thereof. Because each tubular as manufactured usually varies in length, it is important to determine and know the exact length thereof so that the total length of a given tubular string that is positioned in a subterranean well is known. As the first tubular of a given string is positioned in a well, the tubular is designated with a first number, e.g. 1, and the length thereof is manually recorded at the well site into either a paper or computer data base. As each subsequent individual length of tubular is secured to the tubular string already positioned in the well, the next consecutive number that is assigned to that tubular and its exact length is also manually recorded into the data base at the well site. In this manner, the exact number of tubulars that make up a given string positioned in a subterranean well and the exact length of the string is known. The compilation of a data base in this manner is also desirable so as to maintain an accurate history of the usage of tubulars, equipment and/or tools. Such history of usage can be used to provide maintenance and predict potential problems. However, problems routinely occur with this procedure due to manual error(s) in entering into the data base tubular length(s) that are not part of the tubular string positioned in a well, in entering the wrong sequence of individual tubular lengths that make up a string, and/or in failing to enter an individual tubular length(s) that is part of a tubular string positioned in a subterranean well. Such errors lead to time consuming problem solving, while expensive rigs are often present at the well site, to determine the precise depth of the well, of a certain individual length of casing, and/or of a certain downhole tool. Further problems occur with this conventional method when tubulars are withdrawn from the well bore, temporarily stored on site and subsequently used in a different operation at that well or transported and used in a different well. In accordance with this conventional method, individual lengths of tubulars removed from a well are stacked at the well site without any consideration given to the number assigned to that tubular as run into the well. The individual length of tubulars are not actually physically marked with a designation number and marking such tubulars as they are being pulled from a well is not practical since the rig necessary for performing this operation is expensive. In some instances, individual lengths of drill pipe are provided with a unique serial number from the manufacturer which is entered into the data base as the drill string is being made up. However, such entry is expensive and plagued by manual errors, and often, the serial number of an individual length of drill pipe is not easily found or illegible if found due to rust, corrosion, wear, etc.

In an effort to automate the data input process and to provide a completely accurate information data base, a system has been developed to track asset inventory wherein an electronic tag, such as a passive radio frequency chip, is attached to articles of manufacture that are used in the oil & gas industry. A hand held wand is employed by field personnel to read such electronic tag and the code gleaned during such reading is transferred by cable to a hand held portable terminal. This information is then sent to a personal computer. This system is commercially available from Den-Con Tool Company. of Oklahoma City, Okla. under the trade name designation “Print System”. However, electronic tags, such as a passive radio frequency chip, do not transmit through steel, and therefor, require field personnel to position the hand held wand adjacent and close to the tag to read it. Thus, the use of this system at field locations, such as drilling and completion rigs, offshore platforms etc., has proved to be inefficient since field personnel must first locate the position of the electronic tag and then properly position the wand in extremely close proximity to the tag, sometimes repeating the procedure to ensure that the tag is properly read. This is time consuming and expensive.

Thus, a need exists for an identification and tracking method wherein individual lengths of tubulars, pieces of equipment or tools are accurately identified and inventoried prior to deployment in a given subterranean well, as positioned in a well and/or as stacked at a well site after being pulled from a well and awaiting deployment in the same or different wells. A further need exists for effectively eliminating errors in data base entry for information about individual lengths of tubulars, equipment and/or tools. A still further need exists for eliminating time delays associated with automated reading of radio frequency identification devices employed to identify and track tubulars or other tools or equipment.

To achieve the foregoing and other objects, and in accordance with the purposes of the present invention, as embodied and broadly described herein, one characterization of the present invention may comprise an assembly is provided for identifying and tracking an asset. The assembly comprises a responding device adapted to be connected to an asset and an antenna electrically connected to said responding device.

In another characterization of the present invention, an assembly is provided for use as a fluid conduit. The assembly comprises a tubular, a responding device connected to the tubular, and an antenna electrically connected to the responding device.

In yet another characterization of the present invention, an assembly is provided for use as a fluid conduit. The assembly comprises a tubular, a collar releasably secured to one end of the tubular, the collar comprising a generally tubular body, a responding device connected to the generally tubular body, and an antenna electrically connected to the responding device.

In still another characterization of the present invention, a process for identifying and tracking assets is provided which comprises positioning a transceiver in proximity to an asset having a responding device and an antenna electrically connected to the responding device so as to permit communication between the transceiver and the responding device via the antenna.

In yet still another characterization of the present invention, a process for identifying and tracking tubulars is provided which comprises positioning a transceiver and a tubular having a responding device and an antenna electrically connected to the responding device in proximity to each other without regard to the rotational orientation of the tubular so as to permit communication between the transceiver and the responding device via the antenna.

In yet still another characterization of the present invention, a process is provided for identifying and tracking assets which comprises positioning an asset having a responding device connected thereto within a transceiver having a generally annular antenna so as to permit communication between the transceiver and the responding device via said antenna.

The accompanying drawings, which are incorporated in and form a part of the specification, illustrate the embodiments of the present invention and, together with the description, serve to explain the principles of the invention.

In the drawings:

FIG. 1 is a partially cutaway, perspective view of one embodiment of the process and assembly of the present invention;

FIG. 1A is a blown up portion, as outlined in FIG. 1, of the embodiment of the process and assembly of the present invention that is illustrated in FIG. 1;

FIG. 2 is a partially cutaway, perspective view of another embodiment of the process of the present invention;

FIG. 2A is a blown up portion, as outlined in FIG. 2, of the embodiment of the process and assembly of the present invention that is illustrated in FIG. 2:

FIG. 3 is a partially cutaway, perspective view of still another embodiment of the present invention;

FIG. 3A is a blown up portion, as outlined in FIG. 3, of the embodiment of the process and assembly of the present invention that is illustrated in FIG. 3; and

FIG. 4 is a partially sectioned, perspective view of a responding device being read by a transceiver in accordance with the present invention.

As utilized throughout this specification, the term “asset” refers to any article of manufacture or device, which includes, but is not limited to, tubulars, equipment and tools designed to be run on, connected to and/or operated by tubulars. As utilized throughout this specification, the term “tubular” refers to an individual length of any generally tubular conduit for transporting fluid, particularly oil, gas and/or water in and/or from a subterranean well and/or transportation terminal. When referring to a “tubular” which is used in a subterranean well, tubulars are usually secured together by means of collars to form a string of tubulars, such as a tubing string, drill string, casing string, etc., which is positioned in a subterranean well as utilized, at least in part, to transport fluids. Environments other than a subterranean well in which tubulars may be used in accordance with the present invention, include, but are not limited to, pipelines and sewer lines.

Referring to FIG. 1, a portion of two tubulars are illustrated as 2 and 6. Each end of tubulars 2 and 6 may be provided with screw threads. As illustrated in FIG. 1, the outer surface of one end 3 and 7 of tubulars 2 and 6, respectively, are provided with screw threads 4 and 8. A collar 10 is utilized to secure ends 3 and 7 of tubulars 2 and 6 together. The internal surface of collar 10 is provided with screw threads 12 which threads 4 and 8 are mated with.

In accordance with the embodiment of the present invention as illustrated in FIG. 1, the outer surface of collar 10 is provided with a groove or trough 14 which extends about substantially the entire circumference or periphery of collar 10. A responding device 20, for example a radio frequency identification device (known as a “RFID”), is positioned in groove 14. This radio frequency identification device 20 may be in the form of a passive radio identification device (know as a “PRID”). Such PRIDs are conventional and are used for merchandise security in the retail industry, library security, etc., and generally comprise a solid state printed circuit which is configured to resonate upon receipt of radio frequency energy from a radio transmission of appropriate frequency and strength. Such devices do not require any additional power source, as the energy received from the transmission provides sufficient power for the device to respond with a weak and/or periodic reply transmission so long as it is receiving an appropriate transmission.

Alternatively, the responding device 20 may be in the form of an active device, requiring a separate source of electrical power (e.g., electrical storage battery or other electrical power means). Such devices are also conventional, and may be configured to draw practically no electrical power until a radio frequency signal is received, whereupon they are electrically energized to produce a responding transmission.

In accordance with one embodiment of the present invention, an antenna 24 is electrically connected to the responding device 20 by any suitable means, such as by silver solder or welds, and is positioned within groove 14 and extends about substantially the entire circumference or periphery of collar 10. Antenna 24 may be constructed of any suitable electrically conductive material as will be evident to a skilled artisan, for example suitable nickel based alloys such as INCONEL. Preferably, device 20 and antenna 24 are incorporated in a TEFLON ring which is positioned in groove 14 and forms a fluid tight seal through which an appropriate radio frequency signal may be transmitted and received.

A radio frequency transmitter and receiver (i.e. a transceiver) 40 is provided (FIG. 4). Transceiver may be in the form of a hand held portable terminal 42 connected to a hand-held wand 44 by means of cable 43. In operation, as a tubing string that comprises tubulars joined together, for example by collars, is being moved into position for use, wand 44 may be manually held adjacent the tubulars without regarding for the specific orientation of a responding device on a given tubular. Alternatively, where the process permits, wand 44 may be secured in a stationary position that is adjacent the tubulars and held in that position by any suitable mechanical means as will be evident to a skilled artisan. Transceiver 40 constantly transmits a radio frequency signal in the direction of the tubing string. As antenna 24 on a given collar 10 passes adjacent wand 44, the signal emanating from wand 44 is received by antenna 24 and transmitted to radio frequency identification device 20. Device 20 detects this signal and sends a radio frequency response that is transmitted through the antenna 24 so as to be received by transceiver 40. In this manner, each tubular joint and its position is identified. By using an antenna in accordance with the present invention not only is the orientation of tubulars (and therefor responding devices) as well as the corresponding transceiver irrelevant, but the antenna is able to receive and broadcast radio frequency signals at greater distances than by using only a radio frequency identification device, e.g. up to 15 inches or more with an antenna as compared to 3 inches for an RFID device alone.

In another embodiment of the present invention that is illustrated in FIG. 2, a bore or hole 11 is provided in collar 10 and a RFID 20 is positioned in bore 11 and is electrically connected to an outer antenna 24 by any suitable means, for example by silver solder or welds 25. In accordance with the embodiment of FIG. 2, a generally annular inner antenna 26 is positioned in a ring 18 that is provided with screw threads 19 on the outer surface thereof. Threads 19 are mated with threads 12 on collar 10 such that ring 18 is positioned in the gap between the ends 3, 7 of tubulars 2, 6, respectively, as mated with collar 10. Inner antenna 26 is electrically connected with RFID by any suitable means, for example a silver solder or welds 27. The operation of this embodiment with respect to use of a transceiver 40 that is positioned outside of the tubulars is identical to that described with respect to FIGS. 1 and 4 above. However, the embodiment of FIG. 2 may also be used in conjunction with a transceiver that is transported through the bores of the tubulars (not illustrated). As thus constructed and assembled, radio frequency signals from transceiver(s) may be received from the exterior of tubulars and adjoining collars by means of outer antenna 24 and/or from the interior of tubulars and adjoining collars by means of inner antenna 26 and information from RFID 20 may be transmitted via antenna 24 to transceiver(s) located external to the tubulars and adjoining collars and/or via antenna 26 to transceiver(s) located internal to the tubulars and adjoining collars. In this manner, information transmission can occur to and/or from the exterior and/or the interior of the tubulars.

While responding device 20 and antennas 24 and 26 have been described above as connected to a collar 10, it is within the scope of the present invention to connect responding device 20 and antennas 24 and/or 26 directly to a tubular and/or to tools, equipment and/or devices, especially those used in conjunction with tubulars, in a manner substantially similar with that described above with respect to collar 10. For tubulars, such direct connection is mandatory where collars are not utilize to secure individual tubulars together as is often the case with drill strings where individual tubulars are connected to each other.

It is also within the scope of the present invention to utilize a conventional responding device, for example a RFID, without an associated antenna. As illustrated in FIG. 3, a RFID 20 is positioned within a bore or hole 11 formed in the outer surface of collar 10. A commercially available epoxy is placed in the bore or hole 11 and cured thereby encapsulating RFID device 20 in a fluid tight seal through which an appropriate radio frequency signal may be transmitted and received. In this embodiment, a transceiver 50 is employed which is sized and configured to permit the passage of tubulars therethrough. As illustrated, transceiver 50 is configured in a ring like shape that has an annular groove 51 formed in the inner surface thereof. An antenna 52 for the transceiver is positioned within groove 51 and extends substantially the entire length of the groove. In this embodiment, tubulars equipped with a conventional RFID may be passed through transceiver 50 with the antenna 52 ensuring that radio frequency communication between the transceiver and the RFID occurs without regard to rotational orientation of the tubulars.

While the use of an antenna in accordance with the embodiments of the present invention has been described herein only in conjunction with tubulars, it will be evident to a skilled artisan that the antenna may be used in conjunction with equipment, tools, and other devices that are secured to tubulars or to any asset that is required to be identified and tracked by use of a transceiver. Examples of such equipment, tools and devices used in conjunction with tubulars used in pipelines, subterranean wells or other fluid transmission lines, are bits, packers, plugs, pigs, valves, landing nipples, profiles, disconnects, ported subs, perforated nipples and polished bore receptacles.

While the foregoing preferred embodiments of the invention have been described and shown, it is understood that the alternatives and modifications, such as those suggested and others, may be made thereto and fall within the scope of the invention.

Zierolf, Joseph A.

Patent Priority Assignee Title
10032102, Oct 31 2006 FIBER MOUNTAIN, INC Excess radio-frequency (RF) power storage in RF identification (RFID) tags, and related systems and methods
10036211, Nov 28 2011 Wells Fargo Bank, National Association Torque limiting device
10040141, May 23 2013 CRC-EVANS PIPELINE INTERNATIONAL, INC Laser controlled internal welding machine for a pipeline
10041335, Mar 07 2008 Wells Fargo Bank, National Association Switching device for, and a method of switching, a downhole tool
10107071, Mar 07 2008 Wells Fargo Bank, National Association Systems, assemblies and processes for controlling tools in a well bore
10119377, Mar 07 2008 Wells Fargo Bank, National Association Systems, assemblies and processes for controlling tools in a well bore
10262168, May 09 2007 Wells Fargo Bank, National Association Antenna for use in a downhole tubular
10324177, Apr 11 2011 Lone Star IP Holdings, LP Interrogator and system employing the same
10480862, May 23 2013 CRC-EVANS PIPELINE INTERNATIONAL, INC Systems and methods for use in welding pipe segments of a pipeline
10589371, May 23 2013 CRC-EVANS PIPELINE INTERNATIONAL, INC Rotating welding system and methods
10628645, Mar 03 2004 MEDICAL I P HOLDINGS, LP; LONE STAR SCM SYSTEMS, LP Interrogator and interrogation system employing the same
10668577, Sep 01 2016 CRC-EVANS PIPELINE INTERNATIONAL INC Cooling ring
10670707, Apr 11 2011 Lone Star IP Holdings, LP Interrogator and system employing the same
10695876, May 23 2013 CRC-EVANS PIPELINE INTERNATIONAL, INC Self-powered welding systems and methods
10825008, Nov 28 2005 Wells Fargo Bank, National Association Serialization and database methods for tubulars and oilfield equipment
10828715, Aug 29 2014 CRC-EVANS PIPELINE INTERNATIONAL INC ; CRC-EVANS PIPELINE INTERNATIONAL, INC System for welding
11011267, Sep 18 2013 Hill-Rom Services, Inc. Bed/room/patient association systems and methods
11029444, Mar 30 2015 Schlumberger Technology Corporation Pipe tracking system for drilling rigs
11111757, Mar 16 2017 Schlumberger Technology Corporation System and methodology for controlling fluid flow
11175099, May 23 2013 CRC-Evans Pipeline International, Inc. Systems and methods for use in welding pipe segments of a pipeline
11205058, Mar 03 2004 MEDICAL I P HOLDINGS, LP; LONE STAR SCM SYSTEMS, LP Interrogator and interrogation system employing the same
11458571, Jul 01 2016 CRC-EVANS PIPELINE INTERNATIONAL, INC Systems and methods for use in welding pipe segments of a pipeline
11767934, May 23 2013 CRC-EVANS PIPELINE INTERNATIONAL, INC Internally welded pipes
11911325, Feb 26 2019 Hill-Rom Services, Inc Bed interface for manual location
7503398, Jun 18 2003 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Methods and apparatus for actuating a downhole tool
7547150, Mar 09 2007 FIBER MOUNTAIN, INC Optically addressed RFID elements
7667574, Dec 14 2006 FIBER MOUNTAIN, INC Signal-processing systems and methods for RFID-tag signals
7677439, Apr 27 2001 Wells Fargo Bank, National Association Process and assembly for identifying and tracking assets
7688210, Oct 13 2004 TUBOSCOPE NORGE AS Electronic ID tag and co-operating antenna
7714741, Aug 28 1998 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Method and system for performing operations and for improving production in wells
7760094, Dec 14 2006 Corning Cable Systems LLC RFID systems and methods for optical fiber network deployment and maintenance
7772975, Oct 31 2006 FIBER MOUNTAIN, INC System for mapping connections using RFID function
7782202, Oct 31 2006 FIBER MOUNTAIN, INC Radio frequency identification of component connections
7855697, Aug 13 2007 FIBER MOUNTAIN, INC Antenna systems for passive RFID tags
7965186, Mar 09 2007 FIBER MOUNTAIN, INC Passive RFID elements having visual indicators
8016037, Apr 15 2004 National Oilwell Varco, L.P. Drilling rigs with apparatus identification systems and methods
8044820, Aug 28 1998 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Method and system for performing operations and for improving production in wells
8091775, Apr 27 2001 Wells Fargo Bank, National Association Process and assembly for identifying and tracking assets
8172468, May 06 2010 FIBER MOUNTAIN, INC Radio frequency identification (RFID) in communication connections, including fiber optic components
8248208, Jul 15 2008 Corning Optical Communications LLC RFID-based active labeling system for telecommunication systems
8264355, Dec 14 2006 Corning Cable Systems LLC RFID systems and methods for optical fiber network deployment and maintenance
8264366, Mar 31 2009 FIBER MOUNTAIN, INC Components, systems, and methods for associating sensor data with component location
8333518, May 06 2010 FIBER MOUNTAIN, INC Radio frequency identification (RFID) in communication connections, including fiber optic components
8421626, Oct 31 2006 Corning Optical Communications LLC Radio frequency identification transponder for communicating condition of a component
8463664, Nov 28 2005 Wells Fargo Bank, National Association Serialization and database methods for tubulars and oilfield equipment
8540030, Feb 11 2008 Hydril USA Distribution LLC Riser lifecycle management system, program product, and related methods
8542717, Mar 03 2003 MEDICAL I P HOLDINGS, LP; LONE STAR SCM SYSTEMS, LP Interrogator and interrogation system employing the same
8552869, Mar 03 2003 MEDICAL I P HOLDINGS, LP; LONE STAR SCM SYSTEMS, LP Interrogator and interrogation system employing the same
8708052, Feb 11 2008 Hydril USA Distribution LLC Riser lifecycle management system, computer readable medium and program code
8731405, Aug 28 2008 FIBER MOUNTAIN, INC RFID-based systems and methods for collecting telecommunications network information
8833469, Oct 19 2007 Wells Fargo Bank, National Association Method of and apparatus for completing a well
8850899, Apr 15 2010 Wells Fargo Bank, National Association Production logging processes and systems
8948279, Mar 03 2004 MEDICAL I P HOLDINGS, LP; LONE STAR SCM SYSTEMS, LP Interrogator and interrogation system employing the same
9019119, Jul 22 2010 HM Energy LLC Surface acoustic wave transponder package for down-hole applications
9024776, Sep 15 2006 Schlumberger Technology Corporation Methods and systems for wellhole logging utilizing radio frequency communication
9030324, Feb 17 2011 National Oilwell Varco, L.P. System and method for tracking pipe activity on a rig
9035774, Apr 11 2011 Lone Star IP Holdings, LP Interrogator and system employing the same
9058529, Aug 28 2008 FIBER MOUNTAIN, INC RFID-based systems and methods for collecting telecommunications network information
9085954, Oct 19 2007 Wells Fargo Bank, National Association Method of and apparatus for completing a well
9103197, Mar 07 2008 Wells Fargo Bank, National Association Switching device for, and a method of switching, a downhole tool
9115573, Nov 12 2004 Wells Fargo Bank, National Association Remote actuation of a downhole tool
9135669, Sep 29 2005 Lone Star IP Holdings, LP Interrogation system employing prior knowledge about an object to discern an identity thereof
9140818, Aug 28 1998 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Method and apparatus for determining position in a pipe
9159012, Nov 30 2009 FIBER MOUNTAIN, INC RFID condition latching
9165232, May 14 2012 FIBER MOUNTAIN, INC Radio-frequency identification (RFID) tag-to-tag autoconnect discovery, and related methods, circuits, and systems
9194227, Mar 07 2008 Wells Fargo Bank, National Association Systems, assemblies and processes for controlling tools in a wellbore
9359890, Oct 19 2007 Wells Fargo Bank, National Association Method of and apparatus for completing a well
9379426, Jul 22 2010 HM Energy LLC Surface acoustic wave transponder package for down-hole applications
9453374, Nov 28 2011 Wells Fargo Bank, National Association Torque limiting device
9470787, Apr 11 2011 Lone Star IP Holdings, LP Interrogator and system employing the same
9488046, Aug 21 2009 Wells Fargo Bank, National Association Apparatus and method for downhole communication
9547831, Oct 22 2002 PPI Technology Services, LP High level RFID solution for rental tools and equipment
9563832, Oct 08 2012 FIBER MOUNTAIN, INC Excess radio-frequency (RF) power storage and power sharing RF identification (RFID) tags, and related connection systems and methods
9631458, Mar 07 2008 Wells Fargo Bank, National Association Switching device for, and a method of switching, a downhole tool
9652707, Oct 31 2006 FIBER MOUNTAIN, INC Radio frequency identification (RFID) connected tag communications protocol and related systems and methods
9652708, Oct 31 2006 FIBER MOUNTAIN, INC Protocol for communications between a radio frequency identification (RFID) tag and a connected device, and related systems and methods
9652709, Oct 31 2006 FIBER MOUNTAIN, INC Communications between multiple radio frequency identification (RFID) connected tags and one or more devices, and related systems and methods
9784041, Apr 15 2004 NATIONAL OILWELL VARCO L P Drilling rig riser identification apparatus
9821415, Mar 28 2014 CRC-EVANS PIPELINE INTERNATIONAL, INC Internal pipeline cooler
9824347, Nov 28 2005 Wells Fargo Bank, National Association Serialization and database methods for tubulars and oilfield equipment
9830424, Sep 18 2013 Hill-Rom Services, Inc Bed/room/patient association systems and methods
Patent Priority Assignee Title
4023167, Jun 16 1975 Radio frequency detection system and method for passive resonance circuits
4572293, Aug 31 1984 Amoco Corporation Method of placing magnetic markers on collarless cased wellbores
4630044, Dec 23 1982 ANT Nachrichtentechnik GmbH Programmable inductively coupled transponder
4656463, Apr 21 1983 Intelli-Tech Corporation LIMIS systems, devices and methods
4656944, Dec 06 1985 Exxon Production Research Co. Select fire well perforator system and method of operation
4698631, Dec 17 1986 Hughes Tool Company Surface acoustic wave pipe identification system
4808925, Nov 19 1987 Halliburton Company Three magnet casing collar locator
4827395, Apr 21 1983 Intelli-Tech Corporation Manufacturing monitoring and control systems
5105742, Mar 15 1990 Fluid sensitive, polarity sensitive safety detonator
5142128, May 04 1990 DEN-CON ELECTRONICS, INC Oilfield equipment identification apparatus
5160925, Apr 17 1991 Halliburton Company Short hop communication link for downhole MWD system
5202680, Nov 18 1991 SAVAGE, GEORGE M , TRUSTEE OF GEORGE M SAVAGE REVOCABLE TRUST, DATE 11-01-1995 System for drill string tallying, tracking and service factor measurement
5206680, Apr 03 1992 MISOMEX AB, A CORP OF SWEDEN Contact print frame having a double glass
5279366, Sep 01 1992 Method for wireline operation depth control in cased wells
5354956, May 16 1990 Schlumberger Technology Corporation Ultrasonic measurement apparatus
5355957, Aug 28 1992 Halliburton Company Combined pressure testing and selective fired perforating systems
5361838, Nov 01 1993 Halliburton Company Slick line casing and tubing joint locator apparatus and associated methods
5394141, Sep 12 1991 Geoservices Equipements Method and apparatus for transmitting information between equipment at the bottom of a drilling or production operation and the surface
5457447, Mar 31 1993 Motorola Mobility LLC Portable power source and RF tag utilizing same
5479860, Jun 30 1994 Western Atlas International, Inc. Shaped-charge with simultaneous multi-point initiation of explosives
5495237, Dec 07 1992 Akishima Laboratories (Mitsui Zosen) Inc. Measuring tool for collecting down hole information and metering valve for producing mud-pulse used in the same
5497140, Aug 12 1992 Round Rock Research, LLC Electrically powered postage stamp or mailing or shipping label operative with radio frequency (RF) communication
5505134, Sep 01 1993 Schlumberger Technical Corporation Perforating gun having a plurality of charges including a corresponding plurality of exploding foil or exploding bridgewire initiator apparatus responsive to a pulse of current for simultaneously detonating the plurality of charges
5530358, Jan 25 1994 Baker Hughes Incorporated Method and apparatus for measurement-while-drilling utilizing improved antennas
5608199, Feb 02 1995 All Tech Inspection, Inc. Method and apparatus for tagging objects in harsh environments
5626192, Feb 20 1996 Halliburton Company Coiled tubing joint locator and methods
5629623, Jul 30 1992 Schlumberger Technology Corporation Pulsed nuclear magnetism tool for formation evaluation while drilling
5654693, Apr 10 1996 X-Cyte, Inc. Layered structure for a transponder tag
5680459, Apr 29 1994 Zebra Technologies Corporation Passive transponder
5682099, Mar 14 1994 Baker Hughes Incorporated Method and apparatus for signal bandpass sampling in measurement-while-drilling applications
5682143, Sep 09 1994 INTERMEC IP CORP , A CORPORATION OF DELAWARE Radio frequency identification tag
5720345, Feb 05 1996 APPLIED TECHNOLOGIES ASSOCIATES, INC. Casing joint detector
5836406, May 19 1995 OGP TRINITY HOLDINGS, LLC Adjustable stabilizer for directional drilling
5864323, Dec 19 1996 Texas Instruments Incorporated Ring antennas for resonant circuits
5877996, Nov 23 1993 Den norske stats oljeselskap a.s Transducer arrangement
5911277, Sep 22 1997 Schlumberger Technology Corporation System for activating a perforating device in a well
5923167, Jul 30 1992 Schlumberger Technology Corporation Pulsed nuclear magnetism tool for formation evaluation while drilling
5931239, May 19 1995 Telejet Technologies, Inc. Adjustable stabilizer for directional drilling
5995449, Oct 20 1995 Baker Hughes Incorporated Method and apparatus for improved communication in a wellbore utilizing acoustic signals
6018501, Dec 10 1997 Halliburton Energy Services, Inc Subsea repeater and method for use of the same
6025780, Jul 25 1997 CHECKPOINT SYSTEMS, INC RFID tags which are virtually activated and/or deactivated and apparatus and methods of using same in an electronic security system
6078259, Sep 09 1994 Intermec IP Corp. Radio frequency identification tag
6081729, Jan 31 1996 Siemens Aktiengesellschaft Encapsulated tubular conductor
6085805, Jun 25 1998 Round Rock Research, LLC Communications system and method, fleet management system and method, and method of impeding theft of fuel
6097301, Apr 04 1996 Round Rock Research, LLC RF identification system with restricted range
6184685, Feb 22 1999 Halliburton Energy Services, Inc. Mulitiple spacing resistivity measurements with receiver arrays
6243041, Apr 24 2000 QUARTERHILL INC ; WI-LAN INC Antenna indexing and retaining mechanism
6257338, Nov 02 1998 Halliburton Energy Services, Inc Method and apparatus for controlling fluid flow within wellbore with selectively set and unset packer assembly
6288685, Sep 09 1998 LANDIS+GYR INNOVATIONS, INC Serrated slot antenna
6333700, Mar 28 2000 Wells Fargo Bank, National Association Apparatus and method for downhole well equipment and process management, identification, and actuation
6343649, Sep 07 1999 Halliburton Energy Services, Inc Methods and associated apparatus for downhole data retrieval, monitoring and tool actuation
6366089, Jun 23 1997 Schlumberger Technology Corporation Nuclear magnetic resonance logging with azimuthal resolution
6429653, Feb 09 1999 Baker Hughes Incorporated; Oxford Instruments Superconductivity LTD Method and apparatus for protecting a sensor in a drill collar
6476609, Jan 28 1999 Halliburton Energy Services, Inc Electromagnetic wave resistivity tool having a tilted antenna for geosteering within a desired payzone
6531871, Oct 29 1999 Halliburton Energy Services, Inc Extension assembly for an electromagnetic antenna and method of connection
6536524, Apr 27 1999 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Method and system for performing a casing conveyed perforating process and other operations in wells
6597175, Sep 07 1999 Halliburton Energy Services, Inc.; Halliburton Energy Services, Inc Electromagnetic detector apparatus and method for oil or gas well, and circuit-bearing displaceable object to be detected therein
6788263, Sep 30 2002 Schlumberger Technology Corporation Replaceable antennas for subsurface monitoring apparatus
20010013410,
20010013411,
20010042617,
20010043146,
20010054969,
EP412535,
EP651132,
EP730083,
WO118357,
WO173423,
////////////////////////////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 27 2001Marathon Oil Company(assignment on the face of the patent)
Aug 09 2001ZIEROLF, JOSEPH A Marathon Oil CompanyASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0127820417 pdf
Apr 28 2017Marathon Oil CompanyWEATHERFORD TECHNOLOGY HOLDINGS, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0422220080 pdf
Dec 13 2019Weatherford Norge ASWELLS FARGO BANK NATIONAL ASSOCIATION AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0518910089 pdf
Dec 13 2019HIGH PRESSURE INTEGRITY INC WELLS FARGO BANK NATIONAL ASSOCIATION AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0518910089 pdf
Dec 13 2019PRECISION ENERGY SERVICES INC WELLS FARGO BANK NATIONAL ASSOCIATION AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0518910089 pdf
Dec 13 2019WEATHERFORD CANADA LTDWELLS FARGO BANK NATIONAL ASSOCIATION AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0518910089 pdf
Dec 13 2019Weatherford Switzerland Trading and Development GMBHWELLS FARGO BANK NATIONAL ASSOCIATION AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0518910089 pdf
Dec 13 2019PRECISION ENERGY SERVICES ULCWELLS FARGO BANK NATIONAL ASSOCIATION AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0518910089 pdf
Dec 13 2019WEATHERFORD U K LIMITEDWELLS FARGO BANK NATIONAL ASSOCIATION AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0518910089 pdf
Dec 13 2019WEATHERFORD NETHERLANDS B V WELLS FARGO BANK NATIONAL ASSOCIATION AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0518910089 pdf
Dec 13 2019Weatherford Technology Holdings LLCWELLS FARGO BANK NATIONAL ASSOCIATION AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0518910089 pdf
Dec 13 2019WEATHERFORD TECHNOLOGY HOLDINGS, LLCDEUTSCHE BANK TRUST COMPANY AMERICAS, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0514190140 pdf
Dec 13 2019WEATHERFORD NETHERLANDS B V DEUTSCHE BANK TRUST COMPANY AMERICAS, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0514190140 pdf
Dec 13 2019Weatherford Norge ASDEUTSCHE BANK TRUST COMPANY AMERICAS, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0514190140 pdf
Dec 13 2019HIGH PRESSURE INTEGRITY, INC DEUTSCHE BANK TRUST COMPANY AMERICAS, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0514190140 pdf
Dec 13 2019Precision Energy Services, IncDEUTSCHE BANK TRUST COMPANY AMERICAS, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0514190140 pdf
Dec 13 2019WEATHERFORD CANADA LTDDEUTSCHE BANK TRUST COMPANY AMERICAS, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0514190140 pdf
Dec 13 2019Weatherford Switzerland Trading and Development GMBHDEUTSCHE BANK TRUST COMPANY AMERICAS, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0514190140 pdf
Dec 13 2019PRECISION ENERGY SERVICES ULCDEUTSCHE BANK TRUST COMPANY AMERICAS, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0514190140 pdf
Dec 13 2019WEATHERFORD U K LIMITEDDEUTSCHE BANK TRUST COMPANY AMERICAS, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0514190140 pdf
Aug 28 2020Wells Fargo Bank, National AssociationWeatherford Norge ASRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0538380323 pdf
Aug 28 2020Wells Fargo Bank, National AssociationHIGH PRESSURE INTEGRITY, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0538380323 pdf
Aug 28 2020Wells Fargo Bank, National AssociationPrecision Energy Services, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0538380323 pdf
Aug 28 2020Wells Fargo Bank, National AssociationWEATHERFORD CANADA LTDRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0538380323 pdf
Aug 28 2020Wells Fargo Bank, National AssociationWeatherford Switzerland Trading and Development GMBHRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0538380323 pdf
Aug 28 2020Wells Fargo Bank, National AssociationPRECISION ENERGY SERVICES ULCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0538380323 pdf
Aug 28 2020Wells Fargo Bank, National AssociationWEATHERFORD U K LIMITEDRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0538380323 pdf
Aug 28 2020Wells Fargo Bank, National AssociationWEATHERFORD NETHERLANDS B V RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0538380323 pdf
Aug 28 2020Wells Fargo Bank, National AssociationWEATHERFORD TECHNOLOGY HOLDINGS, LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0538380323 pdf
Aug 28 2020WEATHERFORD TECHNOLOGY HOLDINGS, LLCWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0542880302 pdf
Aug 28 2020WEATHERFORD NETHERLANDS B V WILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0542880302 pdf
Aug 28 2020Weatherford Norge ASWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0542880302 pdf
Aug 28 2020HIGH PRESSURE INTEGRITY, INC WILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0542880302 pdf
Aug 28 2020Precision Energy Services, IncWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0542880302 pdf
Aug 28 2020WEATHERFORD CANADA LTDWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0542880302 pdf
Aug 28 2020Weatherford Switzerland Trading and Development GMBHWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0542880302 pdf
Aug 28 2020PRECISION ENERGY SERVICES ULCWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0542880302 pdf
Aug 28 2020WEATHERFORD U K LIMITEDWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0542880302 pdf
Jan 31 2023DEUTSCHE BANK TRUST COMPANY AMERICASWells Fargo Bank, National AssociationPATENT SECURITY INTEREST ASSIGNMENT AGREEMENT0634700629 pdf
Date Maintenance Fee Events
Aug 21 2009M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Aug 26 2013M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Sep 07 2017M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Mar 21 20094 years fee payment window open
Sep 21 20096 months grace period start (w surcharge)
Mar 21 2010patent expiry (for year 4)
Mar 21 20122 years to revive unintentionally abandoned end. (for year 4)
Mar 21 20138 years fee payment window open
Sep 21 20136 months grace period start (w surcharge)
Mar 21 2014patent expiry (for year 8)
Mar 21 20162 years to revive unintentionally abandoned end. (for year 8)
Mar 21 201712 years fee payment window open
Sep 21 20176 months grace period start (w surcharge)
Mar 21 2018patent expiry (for year 12)
Mar 21 20202 years to revive unintentionally abandoned end. (for year 12)